Способ исследования акустической коагуляции в газовой среде

Изобретение относится к сфере космических исследований и технологий и может быть использовано для экспериментальной отработки технологии ускорения осаждения пыли в марсианской атмосфере. Способ исследования акустической коагуляции в газовой среде, при котором в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению, создают взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли. На полученную взвесь воздействуют инфразвуком, при этом выполняют микровзрывы, звуки которых содержат большое количество инфразвуковых частот. Технический результат - ускорение процесса оседания марсианской пыли в условиях атмосферы у поверхности Марса.

 

Изобретение относится к сфере космических исследований и технологий и может быть использовано для экспериментальной отработки технологии ускорения осаждения пыли в марсианской атмосфере.

Из уровня техники известен способ исследования акустической коагуляции в газовой среде, соответствующей атмосфере у поверхности Земли по химическому составу, температуре и давлению. При этом в газовой среде создают взвесь мелких твердых частиц, соответствующих по химическому составу и размерам земной пыли, и на полученную взвесь воздействуют звуком /Большая советская энциклопедия, третье издание, т. 12, стр. 348, столбец 1030/.

Недостатком указанного известного технического решения является его неприспособленность к использованию в условиях марсианской атмосферы, на 95% состоящей из углекислого газа, в которой давление изменяется от 0,18 до 1 кПа при низкой температуре, суточно-сезонно варьирующей в пределах 100-150 К /Физическая энциклопедия, М.: Большая Российская энциклопедия, 1992, т. 3, стр. 48/. Звук в таких условиях, в частности при таком низком давлении, распространяется только на небольшие расстояния и не может вызвать акустическую коагуляцию, существенно влияющую на процесс оседания марсианской пыли.

Наиболее близким к заявленному изобретению известным техническим решением является способ исследования акустической коагуляции в газовой среде, при котором в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению, создают взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, и на полученную взвесь воздействуют звуком /RU 2014128791 А; A01G 15/00, B01D 51/08; 14.07.2014; 10.02.2016/.

Но и это техническое решение из-за сильного поглощения звуковых волн и неэффективности воздействия их на процесс коагуляции пылевых частиц при низком давлении, соответствующем атмосферному давлению у поверхности Марса, не может обеспечить ускорения процесса оседания марсианской пыли.

Задачей изобретения является обеспечение ускорения процесса оседания марсианской пыли в условиях атмосферы у поверхности Марса.

Указанная задача решена за счет того, что в способе исследования акустической коагуляции в газовой среде, при котором в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению, создают взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, на полученную взвесь воздействуют инфразвуком, при этом выполняют микровзрывы, звуки которых содержат большое количество инфразвуковых частот.

Изобретение характеризуется следующей совокупностью существенных отличительных признаков: воздействием инфразвуком на взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению; выполнением микровзрывов, звуки которых содержат большое количество инфразвуковых частот.

Указанная совокупность существенных отличительных признаков позволяет обеспечить ускорение процесса оседания марсианской пыли в условиях атмосферы у поверхности Марса.

Спектральные наблюдения молекулярных полос углекислого газа в инфракрасной области, а также ослабление радиосигналов автоматических межпланетных станций /АМС/ "Маринер-4", "Маринер-6" и "Маринер-7" при захождении их за диск Марса позволили установить значение полного давления на среднем уровне поверхности Марса в 650±200 Па. Из радионаблюдений АМС "Маринер-6" температура Марса вблизи экватора составляет 250 К, температура ночной атмосферы в точке с широтой +36° по измерениям с АМС "Маринер-7" составила 205 К, а ближе к полюсу, на широте +79°, 164 К /БСЭ, т. 15, стр. 410, столбец 1216/.

Согласно модели, отвечающей данным измерений содержаний химических элементов в грунте, основными химическими соединениями по массе в марсианской пыли являются: двуокись кремния - 45%, окись железа - 18%, окись магния - 8%, серный ангидрид. - 8%, окись алюминия - 5%, окись кальция - 5%. Содержание пылевых частиц в марсианской атмосфере во время бури достигает 0,01 кг/м3, средний размер частиц 1-3 мкм. В спокойной атмосфере также присутствует пыль со средними размерами частиц 0,05-0,1 мкм /Физическая энциклопедия, М.: Большая Российская энциклопедия, 1992, т. 3, стр. 48-49/.

Воздействие инфразвуком на взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению, позволяет установить диапазон частот инфразвука и диапазон параметров газовой среды, при которых наблюдается акустическая коагуляция мелких твердых частиц, взвешенных в газовой среде, имитирующей атмосферу у поверхности Марса. В отличие от звука инфразвук имеет свойство распространяться на очень большие расстояния благодаря малому поглощению инфразвуковых волн в разных средах, в т.ч. и газовой, что позволяет существенно влиять на процесс оседания марсианской пыли с помощью инфразвука.

Для генерирования инфразвука выполняют микровзрывы, звуки которых содержат большое количество инфразвуковых частот. При этом используют эффект увеличения скорости распространения инфразвука в газовой среде при микровзрыве, обусловленный вызванным микровзрывом повышением температуры и давления, и позволяющий ускорить процесс оседания марсианской пыли в условиях атмосферы у поверхности Марса за счет повышения эффективности коагуляции пылевых частиц при взрывном воздействии.

Изобретение осуществляют с помощью известных методов и средств.

Таким образом, воздействие инфразвуком на взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, в газовой среде, соответствующей атмосфере Марса по химическому составу, температуре и давлению, благодаря установлению диапазона частот инфразвука и диапазона параметров газовой среды, при которых происходит акустическая коагуляция мелких твердых частиц, взвешенных в газовой среде, соответствующей атмосфере у поверхности Марса, за счет малого поглощения инфразвуковых волн позволяет обеспечить ускорение процесса оседания марсианской пыли в условиях атмосферы у поверхности Марса.

При этом выполнение микровзрывов, звуки которых содержат большое количество инфразвуковых частот, за счет увеличения скорости распространения инфразвука в газовой среде при повышении температуры и давления, вызванном микровзрывом, благодаря повышению эффективности коагуляции пылевых частиц при взрывном воздействии, позволяет дополнительно ускорить процесс оседания пыли.

Способ исследования акустической коагуляции в газовой среде, при котором в газовой среде, соответствующей атмосфере у поверхности Марса по химическому составу, температуре и давлению, создают взвесь мелких твердых частиц, соответствующих по химическому составу и размерам марсианской пыли, отличающийся тем, что на полученную взвесь воздействуют инфразвуком, при этом выполняют микровзрывы, звуки которых содержат большое количество инфразвуковых частот.



 

Похожие патенты:

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А0, прошедшего через дисперсную фазу (жидкость без частиц), затем вносят частицы, фиксируют величину амплитуды Аn импульсов, прошедших расстояние L через исследуемую систему и времена tn, определяют разность А0-Аn величин импульсов в разные моменты времени tn и на основе массива А0-Аn/А0 судят о структуре дисперсной системы.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что присвоение значения 0 или 1 каждому элементу матрицы осуществляется по вероятностному закону, заданному индивидуально для каждого элемента, отличается тем, что вероятность присвоения значения принимается такой, чтобы при соединении центров излучающих и приемных элементов АР геометрическими лучами, в соответствии с выбранным способом контроля и с учетом известных законов прохождения и отражения, проходящими через поверхности объекта контроля и, возможно, отражающимися от поверхностей контроля и проходящими через возможный дефект или отражающимися от возможного дефекта в месте возможного положения дефекта, обеспечить заданное распределение геометрических лучей по коридорам между лучами от излучающих элементов к приемным элементам АР с одинаковыми номерами.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля вращающихся элементов авиационного двигателя. Объектами изобретения являются система и способ обнаружения дефектов на объекте, содержащий этапы, на которых: формируют изображение (13), характеризующее указанный объект (11), на основании сигналов (9), связанных с объектом, разбивают указанное изображение на участки (15) в соответствии с самоадаптирующимися разрешениями и вычисляют расхождения между различными участками для обнаружения аномального участка, указывающего на возможность повреждения.

Изобретение относится к акустике. Способ измерения скорости распространения головной ультразвуковой волны предполагает возбуждение и прием прошедших по изделию ультразвуковых импульсов, оцифровку импульсов, запись в компьютер и определение временных интервалов между этими импульсами.

Использование: для определения параметров деталей, изготовленных из композитного материала. Сущность изобретения заключается в том, что определяют характеристики продольной ультразвуковой волны, проходящей по пути внутри детали, при этом измеряют время прохождения продольной ультразвуковой волны, пропускаемой деталью, и измеряют время прохождения прошедшей волны путем наблюдения начала волны.

Изобретение относится к управлению технологическим процессом. В способе использования данных о вибрациях для определения состояния устройства управления собирают первые данные о вибрациях от первого датчика, связанного с устройством управления технологическим процессом, во время калибровки; рассчитывают эксплуатационный порог устройства управления на основании первых данных о вибрациях; собирают данные об эксплуатации относительно устройства управления.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн.

Использование: для неразрушающего контроля объектов с помощью ультразвука. Сущность изобретения заключается в том, что сканируют ультразвуковым пучком контрольную деталь, имеющую геометрическую форму, идентичную с контролируемым объектом, и измеряют амплитуду, прошедшую через деталь, чтобы на ее основании вывести картографию, при этом ультразвуковой пучок усиливают с контрольным коэффициентом усиления, определяют поправки к коэффициенту усиления для коррекции контрольного коэффициента усиления в точках сканирования контрольной детали таким образом, чтобы получить постоянную для всех точек картографии амплитуду ультразвукового пучка, прошедшего через деталь, осуществляют сканирование и измерение амплитуды на контролируемом объекте, при этом коэффициент усиления, применяемый в различных точках сканирования, соответствует контрольному коэффициенту усиления, скорректированному с помощью указанных поправок.

Использование: для неразрушающего контроля несущих металлических конструкций зданий и сооружений. Сущность изобретения заключается в том, что устройство комплексной безопасности эксплуатации конструкций, выполненное с возможностью крепления к металлической конструкции, включает пьезоэлектрические датчики, усилители аналогового сигнала, устройство приема-передачи, подключенное к компьютеру, видеокамеры, подключенные к компьютеру, панель оператора со звуковым и световым сопровождением, при этом устройство дополнительно содержит датчик температуры, акселерометры, находящиеся внутри корпуса и подключенные через усилители аналоговых сигналов и аналого-цифровой преобразователь к компьютеру, причем пьезоэлектрические датчики и акселерометры, находящиеся внутри корпуса, соединены с усилителями аналоговых сигналов и аналого-цифровым преобразователем, а видеокамера, установленная в корпусе устройства, - через аналого-цифровой преобразователь с компьютером.
Изобретение относится к области биохимии. Предложено биосенсорное устройство для обнаружения биологических микро- и нанообъектов, таких как бактерии и вирусы.

Изобретение относится к очистке сжатого воздуха, в особенности от туманов, в различных отраслях народного хозяйства, преимущественно, на крупных компрессорных станциях со значительным суточным расходом сжатого воздуха.

Изобретение относится к области технологий очистки газов от взвешенных инородных частиц за счет воздействия на них ультразвуковыми колебаниями высокой интенсивности, а именно к способам коагуляции частиц, выделяющихся в процессе производств в различных отраслях (горно-металлургическая, химическая, теплоэнергетическая, пищевая) промышленности.

Изобретение относится к импульсному устройству для сжигания топлива и способу акустического спекания микрочастиц, образующихся при сгорании топлива, так чтобы эти частицы можно было удалить из потока продуктов сгорания.

Изобретение относится к оборудованию для разделения компонентов газовых смесей методом их сжижения и может быть использовано в различных отраслях народного хозяйства.

Циклон // 2116120
Изобретение относится к устройствам очистки сжатого воздуха или газа от влаги, масла и механических примесей. .

Изобретение относится к технологии очистки жидкостей и газов от взвешенных инородных частиц, в особенности микрочастиц диаметром от 0,01 до 100 мкм, путем использования энергии ультразвука.

Изобретение относится к влажной газоочистке в поле акустических колебаний и может быть использовано в промышленной экологии. .

Использование: для определения вклада пластической деформации в величину акустической анизотропии при измерении в деталях машин и элементах конструкций. Сущность изобретения заключается в том, что выполняют ультразвуковое измерение акустической анизотропии, позволяющее определить величину вклада пластической деформации в величину акустической анизотропии путем сравнения значений акустической анизотропии, измеренной в контрольной точке детали или элемента до и после шлифования его поверхности на глубину не менее половины характерного размера зерна металла, при этом, циклы шлифования и последующего измерения акустической анизотропии на шлифованной поверхности в контрольной точке продолжают до тех пор, пока относительная разница значений акустической анизотропии в двух соседних циклах не составит значение, не превышающее 10%. Технический результат: обеспечение возможности оценить степень поврежденности конструкций в процессе эксплуатации без механической разгрузки конструкций с высокой степенью достоверности. 2 з.п. ф-лы, 2 ил., 2 табл.
Наверх