Способ испытания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). Для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при включенной системе противообледенения в рабочем диапазоне частот вращения роторов, вычисляют поправочные коэффициенты к измеренным параметрам путем отношения значений параметров, измеренных с включенной противообледенительной системой, к значениям параметров, измеренных с выключенной противообледенительной системой, формируют зависимости поправочных коэффициентов на измеряемые параметры от частоты вращения роторов Ki=f(n), а при проведении испытаний других двигателей в условиях обледенения с включенной противообледенительной системой умножают измеренные значения параметров на полученные коэффициенты. Cпособ позволяет получить достоверные результаты при испытаниях ГТД в условиях обледенения с включенной противообледенительной системой. 2 ил., 2 табл.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям (ГТД) и способам их испытаний.

Известен способ испытаний авиационных ГТД, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям (Ю.А. Литвинов, В.О. Боровик. "Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей". М.: "Машиностроение", 1979, стр. 136-137).

При реализации известного способа не предусмотрено влияние противообледенительной системы на параметры двигателя, что приводит к некорректному определению параметров при околонулевых температурах окружающей среды при включенной противообледенительной системе и недостоверным результатам испытаний.

Задача изобретения заключается в обеспечении возможности корректного определения параметров двигателя при испытаниях с включенной противообледенительной системой.

Техническим результатом, достигаемым при использовании настоящего изобретения, является возможность корректного определения параметров двигателя при испытаниях в условиях обледенения с включенной противообледенительной системой и получение достоверных результатов испытаний.

Указанный технический результат достигается тем, что в известном способе испытания ГТД, включающем измерение параметров по режимам работы двигателя и приведение их к стандартным атмосферным условиям, согласно настоящему изобретению для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при включенной системе противообледенения в рабочем диапазоне частот вращения роторов, вычисляют поправочные коэффициенты к измеренным параметрам путем отношения значений параметров, измеренных с включенной противообледенительной системой, к значениям параметров, измеренных с выключенной противообледенительной системой, формируют зависимости поправочных коэффициентов на измеряемые параметры от частоты вращения роторов Ki=f(n), а при проведении испытаний других двигателей в условиях обледенения с включенной противообледенительной системой умножают измеренные значения параметров на полученные коэффициенты.

Предлагаемый способ испытаний реализуется следующим образом.

Пример

Один опытный образец двигателя подвергают испытаниям на испытательном стенде в рабочем диапазоне частот вращения роторов и измеряют тягу и расход топлива на режимах n1пр=70%, 75%, 80%, 85%, 90%, 95%, 100% при включенной и выключенной противообледенительной системе.

В таблице 1 представлены значения тяги R и расхода топлива Gt, измеренные при на режимах n1пр=70%, 75%, 80%, 85%, 90%, 95%, 100% при включенной и выключенной противообледенительной системе:

Вычисляют поправочные коэффициенты КR и КG, учитывающие влияние противообледенительной системы на параметры двигателя, путем отношения значения параметра, измеренного с включенной противообледенительной системой, к значениям параметра, измеренного с выключенной противообледенительной системой (таблица 2):

По полученным значениям строят зависимости поправочных коэффициентов KR и KG в зависимости от приведенных оборотов ротора n1пр (фиг. 1 и фиг. 2).

При испытаниях другого опытного образца двигателя в условиях обледенения при включенной системе противообледенения измеряют значения тяги RПОС и расхода топлива GтПОС при частоте вращения ротора n1пр=90%.

Затем определяют по полученным зависимостям коэффициенты КR и КG и умножают полученные значения тяги и расхода топлива на эти коэффициенты:

R=RПОС×КR=5834×1,0041=5858 кг;

G1=GtПОС×KG=4656×0,9949=4632 кг/ч.

Полученные коэффициенты используют для вычисления параметров двигателя при различных частотах вращения ротора в условиях обледенения с включенной системой противообледенения.

Способ позволяет корректно определять параметры двигателя при испытаниях в условиях обледенения с включенной противообледенительной системой и обеспечивает получение достоверных результатов испытаний.

Способ испытания газотурбинного двигателя, включающий измерение параметров по режимам работы двигателя и приведение их к стандартным атмосферным условиям, отличающийся тем, что для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при включенной системе противообледенения в рабочем диапазоне частот вращения роторов, вычисляют поправочные коэффициенты к измеренным параметрам путем отношения значений параметров, измеренных с включенной противообледенительной системой, к значениям параметров, измеренных с выключенной противообледенительной системой, формируют зависимости поправочных коэффициентов на измеряемые параметры от частоты вращения роторов Ki=f(n), а при проведении испытаний других двигателей в условиях обледенения с включенной противообледенительной системой умножают измеренные значения параметров на полученные коэффициенты.



 

Похожие патенты:

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ эксплуатации двигателя (10) заключается в том, что во время запуска двигателя выполняют индикацию о снижении эффективности работы клапана (78), установленного между картером (28) и впускным коллектором (42), на основании характеристик временного провала давления в вентиляционной трубке (74) картера.

Настоящее изобретение касается способа акустического обнаружения по меньшей мере одного нарушения (DYS) работы двигателя, причем двигатель создает первичный шум Ро, который обрабатывается системой активного контроля шума, посылая на цели сокращения шума акустический сигнал Рс, производимый по меньшей мере одним воздействующим устройством и связанный передаточной функцией Н с сигналом Y, производимым упомянутой системой активного контроля шума, причем упомянутое нарушение (DYS) работы имеет акустическую сигнатуру, которая может быть идентифицирована в первичном шуме Ро на целях сокращения шума, отличающегося тем, что он включает в себя следующие этапы: получение упомянутого сигнала Y, производимого системой активного контроля; идентификация возможного появления нарушения работы с помощью средства слежения, которое обрабатывает знание об Y и о Н и подает, при необходимости, аварийное сообщение.
Изобретение относится к области эксплуатации машин и может быть использовано для диагностики подшипников кривошипно-шатунного механизма дизельных автотракторных двигателей.

Использование: обнаружение и регистрация металлических частиц износа в потоке масла работающего ГТД. Для обнаружения металлических частиц износа в потоке масла работающего газотурбинного двигателя общий поток масла разделяют на N независимых потоков, суммарная площадь поперечного сечения которых равна площади поперечного сечения общего входного потока; контроль каждого независимого потока осуществляют индивидуальным одновитковым вихретоковым чувствительным элементом кластерного датчика, благодаря чему повышается чувствительность вихретоковых чувствительных элементов и возможность обнаружения единичных металлических частиц, находящихся в одном поперечном сечении потока масла; фиксируют момент времени и возможное число от одной до N одновременно прошедших частиц металла через контролируемое сечение потока масла, а по результатам измерения судят об изменении технического состояния двигателя непосредственно во время его эксплуатации, что позволяет своевременно обнаружить зарождение дефектов трущихся поверхностей и принять меры по недопущению аварийной ситуации.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий.

Способ диагностики двигателя внутреннего сгорания с наддувом, оборудованного турбокомпрессором фиксированной геометрии, содержащим компрессор, через который проходит воздух, поступающий во впускную систему двигателя, и турбину, которая связана во вращении с компрессором через общий вал и через которую проходят выхлопные газы двигателя в выпускную систему двигателя, при этом указанный двигатель связан: с дроссельным клапаном для изменения пропускного сечения воздуха, поступающего во впускную систему двигателя; и с разгрузочным вентилем waste-gate, установленным параллельно с турбиной в выпускной системе двигателя для изменения количества выхлопных газов, проходящих через турбину, при этом содержит: этап вычисления первого временного интеграла измерения атмосферного давления в течение времени вычисления; этап вычисления временного интеграла измерения давления наддува в течение указанного времени вычисления; этап вычисления второго временного интеграла измерения атмосферного давления в течение указанного времени вычисления; этап вычисления двух критериев диагностики; этап сравнения первого критерия диагностики с первым порогом диагностики и сравнения второго критерия диагностики с вторым порогом диагностики; и этап диагностики неисправности, когда по меньшей мере один из двух критериев диагностики меньше своего соответствующего порога диагностики.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля вращающихся элементов авиационного двигателя. Объектами изобретения являются система и способ обнаружения дефектов на объекте, содержащий этапы, на которых: формируют изображение (13), характеризующее указанный объект (11), на основании сигналов (9), связанных с объектом, разбивают указанное изображение на участки (15) в соответствии с самоадаптирующимися разрешениями и вычисляют расхождения между различными участками для обнаружения аномального участка, указывающего на возможность повреждения.

Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель.
Изобретение относится к области диагностики, а именно к способам оценки технического состояния роторного оборудования, и может быть использовано при определении дефектных узлов и деталей, оценке долговечности оборудования.

Изобретение относится к расходомеру для жидкой или газовой среды. Расходомер (23) для жидкой и газовой среды (3) содержит корпус (24) и измерительный вкладыш (25), который вставлен в упомянутый корпус (24).

Измерительный преобразователь (260) технологической переменной для восприятия технологической переменной технологической текучей среды в промышленном процессе включает в себя технологическую прокладку (200), имеющую поверхность, выполненную с возможностью образования уплотнения с поверхностью технологического резервуара.

Изобретение относится к расходомеру для жидкостей. Расходомер для жидкостей содержит измерительный корпус (10), окружающий крыльчатку (50), установленную в нем с возможностью вращения, подводящую трубку (12) и отводящую трубку (13), причем крыльчатка эксцентрически установлена в отводящей трубке (13) за образующим сопло сужением (14).

Изобретение относится к способу сварки корпуса измерительного преобразователя с корпусом измерительного устройства для установки и герметизации измерительных преобразователей в ультразвуковых расходомерах.

Изобретение относится к вибрационным измерителям, в частности к вибрационному измерителю с корпусом из синтетической обмотки. Предложен датчик (10) в сборе вибрационного измерителя (5).

Предоставляется система (30) датчика, включающая в себя сборку (10) датчика для измерителя (5) расхода флюида. Сборка (10) датчика включает в себя один или несколько расходомерных трубопроводов (103A, 103B).

Изобретение относится к ультразвуковым расходомерам для измерения расхода жидкости и газа. Расходомер содержит основной корпус расходомера, кожух, камеру, расположенную между кожухом и основным корпусом расходомера, охватывающий корпус, соединенный с основным корпусом расходомера и выполненный с возможностью размещения электронных средств.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при включенной системе противообледенения в рабочем диапазоне частот вращения роторов, вычисляют поправочные коэффициенты к измеренным параметрам путем отношения значений параметров, измеренных с включенной противообледенительной системой, к значениям параметров, измеренных с выключенной противообледенительной системой, формируют зависимости поправочных коэффициентов на измеряемые параметры от частоты вращения роторов Kif, а при проведении испытаний других двигателей в условиях обледенения с включенной противообледенительной системой умножают измеренные значения параметров на полученные коэффициенты. Cпособ позволяет получить достоверные результаты при испытаниях ГТД в условиях обледенения с включенной противообледенительной системой. 2 ил., 2 табл.

Наверх