Способ управления двухроторным газотурбинным двигателем самолета при останове

Изобретение относится к управлению авиационным двигателем. Способ управления двухроторным газотурбинным двигателем самолета при останове заключается в уменьшении частоты вращения вала ротора высокого давления и вала ротора низкого давления. При этом частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения. Роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, после чего частоту вращения роторов уменьшают до останова. Изобретение обеспечивает стабильную подачу масла к опорам двигателя на останове до полной остановки всех роторов двигателя, а также позволяет снизить эффект «прихватывания» вала ротора высокого давления при останове. 1 ил.

 

Изобретение относится к области авиационной техники, к способам управления двухкаскадным газотурбинным двигателем в частности, при останове.

Наиболее близким по технической сущности и достигаемому результату является раскрытый в описании к системе запуска турбовентиляторного газотурбинного двигателя, способ управления двухроторным газотурбинным двигателем самолета при останове, включающий уменьшение частоты вращения вала ротора высокого давления и вала ротора низкого давления. /RU 161322 U1 МПК B64C 19/00 Опубликовано: 20.04.2016/

В известных конструкциях двухроторных газотурбинных двигателей роторы высокого и низкого давления вращаются свободно относительно друг друга. Кинематическая связь либо отсутствует вообще, либо осуществлена за счет межроторных или межвальных подшипников. При остановке двигателя ротор высокого давления, в связи с загрузкой приводами агрегатов и систем, останавливается раньше ротора низкого давления. Выбег ротора высокого давления в несколько раз (по времени) меньше выбега ротора низкого давления. При останове ротора высокого давления происходит прекращение работы маслонасосов и подачи масла к подшипникам, на которые опирается ротор низкого давления, и подшипникам, расположенным между роторами. Это приводит к снижению ресурса опор двигателя. Кроме того, ранний останов ротора высокого давления может вызвать «прихватывание» из-за касания рабочих лопаток турбины о статор, лабиринтов уплотнений о статор и т.д., что может сделать невозможным повторный запуск двигателя.

Задачей изобретения является повышение эксплуатационной надежности.

Ожидаемый технический результат:

- Стабильная подача масла к опорам двигателя на останове вплоть до полной остановки всех роторов двигателя;

- Снижение «прихватывания» вала ротора высокого давления при останове.

Технический результат достигается тем, что известный способ управления двухроторным газотурбинным двигателем самолета при останове, включающий уменьшение частоты вращения вала ротора высокого давления и вала ротора низкого давления, согласно изобретению частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения, роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, после чего частоту вращения роторов уменьшают до останова.

Сущность изобретения заключается в создании условий взаимодействия вала высокого давления и вала низкого давления, при их относительном вращении в том или ином направлении. Это взаимодействие может быть достигнуто с помощью обгонных муфт путем обеспечения давления звеньев при их вращении в одном направлении и исключения давления в другом направлении (например, нефрикционные храповые муфты) либо путем заклинивания самоторможения одного звена относительно другого в одном направлении и свободного вращения в другом направлении (фрикционные муфты). Для реализации способа в рамках изобретения допускается использование обеих разновидностей муфт любых конструкций, обеспечивающих передачу свободного хода, по схеме одинарного - одностороннего действия. По этой схеме муфта имеет два звена - входное и выходное. Входное звено передает вращающий момент только в одном направлении, а в другом направлении вращается свободно относительно выходного звена, т.е. перестает быть ведущим.

В обеих разновидностях различие условий взаимодействия достигается выбором углов давления одного звена на другое. Чтобы произошло заклинивание звеньев в режиме передачи движения, угол скоса α выбирают из условия α<2ρ, где ρ - угол трения. С другой стороны, α ограничен возможностью расклинивания. Обычно принимают α=7°.

Способ поясняется чертежом.

Согласование частоты вращения роторов при останове осуществляется за счет установки между валом высокого 1 и валом низкого 2 давления обгонной муфты 3. Установку обгонной муфты осуществляют в промежуточном корпусе между валами компрессора высокого и низкого давления. В данном случае ведомым валом является вал ротора высокого давления. При останове двигателя ротор низкого давления 2 через обгонную муфту 3 входит в зацепление с ротором высокого давления, не позволяя ему остановиться раньше или за счет инерции свободного вращения ротора низкого давления - подкрутить ротор высокого давления.

Пример

Способ реализован на летательном аппарате, двигатель которого оборудован обгонной муфтой, установленной между валами роторов высокого и низкого давлений. Конструкция обводной муфты и ее настроечные характеристики обеспечивают зацепление ротора низкого давления с ротором высокого давления при установленной частоте вращения ротора низкого давления.

Пример (Останов двигателя)

В процессе эволюций летательного аппарата в полете в двухроторном газотурбинном двигателе путем подачи и сжигания топлива, поддерживали частоту вращения вала ротора высокого давления выше частоты вращения вала ротора низкого давления.

После посадки летательного аппарата и отключения подачи топлива вал ротора низкого давления вращался свободно по инерции, а вал ротора высокого давления, в связи с загрузкой приводами агрегатов и систем, останавливался со скоростью, большей скорости вала ротора низкого давления.

При достижении установленной частоты вращения вала ротора низкого давления и соответствующей ей частоте вращения вала ротора высокого давления с помощью обгонной муфты производили зацепление роторов. Энергия свободно вращающегося вала ротора низкого давления передается валу ротора высокого давления. Продолжительность вращения вала ротора высокого давления до полной его остановки увеличилась приблизительно в 2-3 раза (по времени).

Продолжительность работы маслонасосов и подачи масла к подшипникам, на которые опираются роторы, также увеличилась. Прихватывание вала ротора высокого давления из-за касания рабочих лопаток турбины о статор и лабиринтов уплотнений о статор не наблюдалось. Двигатель всегда штатно повторно запускался.

Использование изобретения позволяет стабильно подавать масла к опорам двигателя на останове вплоть до полной остановки всех роторов двигателя, снизить эффект «прихватывания» вала ротора высокого давления при останове.

Способ управления двухроторным газотурбинным двигателем самолета при останове, включающий уменьшение частоты вращения вала ротора высокого давления и вала ротора низкого давления, отличающийся тем, что частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения, роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, после чего частоту вращения роторов уменьшают до останова.



 

Похожие патенты:

Газотурбинный двигатель содержит редуктор, соединенный с возможностью вращения с приводным валом вентилятора, и компрессор высокого давления. Газотурбинный двигатель выполнен с возможностью поддержания температуры на выходе компрессора высокого давления в диапазоне от 621 до 732°C при взлете, а отношение скоростей истечения, определяемое как отношение скорости истечения вентиляторной струи к скорости истечения основной струи, находится в диапазоне от 0,75 до 0,90 при полете с крейсерской мощностью двигателя на высоте около 10668 метров (35000 футов) со скоростью около 0,80 числа Маха.

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов низкого давления (РНД) модуля газогенератора и вал ротора модуля силовой турбины.

Опорный узел редукторной системы турбомашины содержит опору, имеющую более податливую часть и менее податливую часть. Менее податливая часть содержит стопор, ограничивающий осевое перемещение редукторной системы в турбомашине.

Система передачи мощности для турбомашины содержит передаточный вал, связанный с валом двигателя с помощью средств соединения и приводящий в действие оборудование или вспомогательные средства.

Изобретение относится к энергетике. Газотурбинная система, содержащая газовую турбину (23), первую нагрузку (71) и вторую нагрузку (72), приводимые в действие с помощью газовой турбины.

Газотурбинный двигатель содержит гибкую опору для зубчатой передачи привода вентилятора. Первая турбинная секция имеет первую выходную площадь и способна вращаться с первой скоростью.

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам крутящего момента от турбины высокого давления ЦКП и кинематически соединенные с ней редукторы приводов КДА и КСА.

Двухвальный турбореактивный двигатель содержит передний вентилятор, модуль высокого давления с ротором высокого давления, модуль турбины низкого давления, промежуточный корпус, содержащий упорный подшипник ротора высокого давления.

Приводная конструкция для газотурбинного двигателя содержит: вал вентилятора; раму, поддерживающую вал вентилятора; зубчатую систему, приводящую во вращение вал вентилятора; гибкую несущую конструкцию, по меньшей мере частично поддерживающую зубчатую систему, и входной узел зубчатой системы.

Приводная конструкция для газотурбинного двигателя содержит: вал вентилятора; раму, поддерживающую вал вентилятора; зубчатую систему, приводящую во вращение вал вентилятора; гибкую несущую конструкцию, по меньшей мере частично поддерживающую зубчатую систему, и входной узел зубчатой системы.

Изобретение относится к газотурбинным двигателям с биротативным вентилятором авиационного применения. Газотурбинный двигатель с биротативным вентилятором содержит подпорные ступени, размещенные между рабочими колесами биротативного вентилятора, а также биротативную турбину, соединенную валами с рабочими колесами биротативного вентилятора.

Опорный узел редукторной системы турбомашины содержит опору, имеющую более податливую часть и менее податливую часть. Менее податливая часть содержит стопор, ограничивающий осевое перемещение редукторной системы в турбомашине.

Изобретение относится к энергетике. Способ эксплуатации газотурбинного двигателя, при котором во время работы газотурбинного двигателя при полной нагрузке клапанную систему поддерживают в закрытом положении для того, чтобы по существу предотвратить проход воздуха через систему трубопроводов системы рециркуляции воздуха оболочки.

Вентилятор авиационного двигателя содержит ротор, имеющий множество лопаток из композитного материала, включающего тканые волокна, и систему для обнаружения деформации в результате столкновения тела с вентилятором.

Система индикации износа турбомашины содержит компонент турбомашины и другой компонент турбомашины, находящийся в контакте с компонентом турбомашины. В компоненте турбомашины в зоне контакта с другим компонентом турбомашины образована канавка.

Изобретение относится к энергетике. Эндоскопическая система 10 содержит эндоскоп 12 и устройство 16 обработки данных, в котором эндоскоп 12 содержит устройство 13 записи изображений, причем эндоскоп 12 выполнен с возможностью передачи записей изображений от устройства 13 записи изображений изнутри газовой турбины 11 к устройству 16 обработки данных, при этом эндоскопическая система 10 выполнена с возможностью позиционирования и юстировки определенным образом в газовой турбине 11 эндоскопа 12, содержащего устройство 13 записи изображений, которое введено в газовую турбину 11.

Уплотнительное устройство содержит заглушку, выполненную с возможностью размещения в резьбовом отверстии корпуса и удаления из него путем завинчивания и отвинчивания.

Газотурбинный двигатель, имеющий продольную ось, определяющую аксиальное направление двигателя, содержит компрессорную секцию, секцию сжигания, содержащую множество устройств для сжигания, турбинную секцию, кожух и систему рециркуляции воздуха оболочки.

Изобретение относится к энергетике. Система регулирования, предназначенная для выполнения логического алгоритма обеспечения безопасности в неустановившемся режиме, с целью предотвращения автоматического отключения турбины по давлению на выхлопе, обусловленного скачком давления на выхлопе турбины, который вызван сильным снижением расхода потока через турбину, связанным с внезапным повышением давления на выхлопе турбины.

Изобретение предназначено для тестирования системы защиты от заброса оборотов и включает в себя: а) по получении команды на запуск турбомашины электронная система регулирования посылает команду на цепь управления элементом отсечки топлива на закрытие элемента отсечки топлива или на удержание его в закрытом положении; b) проверку состояния закрытия элемента отсечки топлива на основе информации, переданной на электронную систему регулирования и представляющей положение элемента отсечки топлива; с) если результат проверки на этапе b) положителен, электронная система регулирования посылает команду на цепь управления элементом отсечки топлива, разрешающую открыть элемент отсечки топлива и продолжить процедуру запуска турбомашины; и d) если результат проверки на этапе b) отрицателен, электронная система регулирования выдает сигнал отказа системы защиты от заброса оборотов. Технический результат изобретения - обеспечение простого и надежного способа тестирования системы защиты от заброса оборотов турбомашины при запуске.

Система управления в продольном канале пилотируемых и беспилотных летательных аппаратов содержит радиовысотомер малых высот, систему воздушных сигналов, бесплатформенную инерциальную навигационную систему в составе датчика нормальной перегрузки, датчика угловой скорости тангажа и датчика положения ручки летчика, цифровую систему траекторного управления и модальную систему дистанционного управления, электрогидравлический привод.

Изобретение относится к управлению авиационным двигателем. Способ управления двухроторным газотурбинным двигателем самолета при останове заключается в уменьшении частоты вращения вала ротора высокого давления и вала ротора низкого давления. При этом частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения. Роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, после чего частоту вращения роторов уменьшают до останова. Изобретение обеспечивает стабильную подачу масла к опорам двигателя на останове до полной остановки всех роторов двигателя, а также позволяет снизить эффект «прихватывания» вала ротора высокого давления при останове. 1 ил.

Наверх