Способ энергоэффективного освещения светодиодным монохроматическим светом

Изобретение относится к светотехнике и физиологии зрения человека, в частности к обеспечению наиболее энергоэффективного освещение помещений, территорий и пространств при условии скотопической адаптации глаза человека. Способ включает использование одного или нескольких светодиодных источников монохроматического света. Длина волны света составляет 507 (±10) нм, а уровень яркости освещаемых объектов до 10-2 (≤10-2) кд/м2. При этом способ обеспечивает скотопическую адаптацию глаза человека, при которой актины преимущественно палочковые фоторецепторы сетчатки глаза. 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области светотехники

Уровень техники

Известны самые разнообразные способы освещения с использованием различных источников света. Одними из наиболее энергоэффективных источников света являются светодиоды. Наиболее энергоэффективен люминофорный светодиод белого света. Все созданные приборы освещения рассчитаны на фотопическую адаптацию глаза человека. Так же существуют способы освещения, использующие мезопическую адаптацию глаза человека, при которой используются и колбочковые и палочковые фоторецепторы сетчатки глаза человека. Для мезопического зрения важен S/P фактор (Scotopic/Photopic), т.е. соотношение световой отдачи источника света в условиях ночного зрения к световой отдаче в условиях дневного зрения. Энергоэффективных приборов освещения, рассчитанных на использование только скотопической адаптации глаза человека, на данный момент не существует. Известны патенты, где описаны способы энергоэффективного освещения для мезопического зрения. Заявка на патент США №20160327225 «MATERIALS AND PROCESS FOR SPATIAL S/P RATIO DISTRIBUTION» от 10 ноября 2016 года описывает светодиодные источники света для мезопического зрения. Данный способ не позволяет достигнуть наибольшей энергоэффективности освещения, т.к. в процессе восприятия излучения источника света участвуют колбочковые фоторецепторы сетчатки глаза человека, имеющие максимальную спектральную чувствительность 683 лм/Вт и палочковые фоторецепторы сетчатки глаза человека, имеющие максимальную спектральную чувствительность 1700 лм/Вт, что в результате не обеспечивает наибольшую энергоэффективность. Способ энергоэффективного освещения светодиодным монохроматическим светом позволяет при использовании палочковых фоторецепторов сетчатки глаза человека, имеющих максимальную спектральную чувствительность 1700 лм/Вт, достигнуть наибольшей энергоэффективности при скотопической адаптации глаза человека. Следовательно, количество энергии для получения одинаковой зрительной реакции при скотопическом зрения требуется меньше, чем для получения такой же зрительной реакции при мезопическом зрении, что экономически выгодней.

Раскрытие изобретения

Задачей изобретения является наиболее энергоэффективное освещение помещений, территорий и пространств. В условиях яркости освещаемых объектов в диапазонах до 10-2 (≤10-2) кд/м2 это достигается тем, что при освещении способом энергоэффективного освещения светодиодным монохроматическим светом при длине волны λ=507 (±10) нм используется преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека по сравнению с колбочковыми фоторецепторами сетчатки глаза человека, поскольку максимальная спектральная чувствительность (световая эффективность) для монохроматического света при λ=507 нм, К'max = 1700 лм/Вт, а при фотопической адаптации глаза человека для светодиода белого света с цветовой температурой 3000 К, Кmax = 327,6 лм/Вт. (таблица световой эффективности излучения на фиг. 2.), т.е. световая эффективность при ночном зрении в 5,19 раза выше, чем при дневном зрении. Мы не сравниваем максимальные значения световой эффективности ночного и дневного зрения для светодиодных монохроматических источников света, поскольку светодиодов, излучающих на длине волны 555 нм с высокой световой эффективностью, на данный момент не создано. Вышеуказанный коэффициент 5,19 верен для идеальных светодиодных источников света. При существующем реальном уровне энергоэффективности светодиодов коэффициент может быть иным.

В качестве примера сравним два существующих светодиодных источника света.

1. Светодиод C35L-CN-A производства фирмы SEMILEDS, имеющий следующие параметры: минимальная световая эффективность при температуре кристалла Tj = 25°C равна 87.4 лм/Вт для фотопического зрения. Эффективность для скотопического зрения для данного светодиода рассчитаем, используя значения V(λ) относительной спектральной световой чувствительности таблицы (Табл. 2 ГОСТа 8.332-78). Значение V(λ) = 0,4443 при λ = 507 нм. Световую отдачу для скотопического зрения η' рассчитаем по формуле: η'=[V'(λ)/V(λ)*К'max/Кmax]*η=489 лм/Вт, где η = 87,4 лм/Вт - световая отдача для фотопического зрения, взятая из «SEMILEDS PRODUCT DATASHEET C35L-XX-A High Power LED», V'(λ) - относительная скотопическая спектральная световая эффективность излучения для стандартного фотометрического наблюдателя МКО, V(λ) - относительная фотопическая спектральная световая эффективность излучения для стандартного фотометрического наблюдателя МКО, К'max = 1700 лм/Вт - максимальная скотопическая спектральная чувствительность, Кmax = 683 лм/Вт - максимальная фотопическая спектральная чувствительность.

2. Светодиод C35L-W0-A производства фирмы SEMILEDS, имеющий следующие параметры: минимальная световая эффективность при температуре кристалла Tj = 25°C равна 139 лм/Вт для фотопического зрения, взятая из «SEMILEDS PRODUCT DATASHEET C35L-XX-A High Power LED». Сравнивая светодиоды C35L-CN-A и C35L-W0-A, видно, что для создания освещенности в 1 лк светодиодом C35L-CN-A будет потребляться электроэнергии в η'/η = 489 лм/Вт/139 лм/Вт = 3.5 раза меньше. Т.е. в данном примере светодиодный источник монохромного света с длиной волны λ = 507 нм экономичнее люминофорного светодиодного источника света в 3,5 раза.

Осуществление изобретения

Задачей изобретения является наиболее энергоэффективное освещение помещений, территорий и пространств. В условиях скотопической адаптации глаза человека, при яркости освещаемых объектов в диапазоне до 10-2 (≤10-2) кд/м2 это достигается тем, что при освещении способом энергоэффективного освещения светодиодным монохроматическим светом с длиной волны λ = 507 (±10) нм при скотопической адаптации глаза человека используется преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека по сравнению с колбочковыми фоторецепторами сетчатки глаза человека в диапазоне до 10-2 (≤10-2) кд/м2, поскольку максимальная спектральная чувствительность (световая эффективность) для монохромного света при λ = 507 нм, К'max = 1700 лм/Вт, а при фотопической адаптации глаза человека для светодиода белого света с цветовой температурой 3000 К, Кmax = 327,6 лм/Вт (таблица световой эффективности излучения на фиг. 2.), т.е. световая эффективность при ночном зрении в 5,19 раза выше, чем при дневном зрении. Мы не сравниваем максимальные значения световой эффективности ночного и дневного зрения для светодиодных монохроматических источников света, поскольку светодиодов, излучающих на длине волны 555 нм с высокой световой эффективностью, на данный момент не создано.

Способ работает следующим образом. Предлагаемый способ использует преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека перед колбочковыми фоторецепторами сетчатки глаза человека. Существующие источники освещения не создают преимущественных условий для палочковых фоторецепторов сетчатки глаза человека. Существующие источники освещения используют различные непрерывные, в том числе и комбинированные диапазоны длин волн в видимом диапазоне спектра электромагнитного излучения, которые не позволяют наиболее энергоэффективно использовать свойства ночного зрения глаза человека. Скотопическое зрение осуществляется с помощью только палочковых фоторецепторов сетчатки глаза человека, при скотопической адаптации при яркости фона в пределах до 10-2 (≤10-2) кд/м2. Скотопическое зрение обладает наибольшей чувствительностью при светодиодном монохроматическом освещении с λ = 507 нм, при яркости фона в пределах до 10-2 (≤10-2) кд/м2, однако не способно передавать ощущение цветности.

Для реализации предлагаемого способа необходимо наличие следующих условий:

1. Яркость освещаемых объектов, создаваемая светодиодным источником либо источниками света, находится в пределах до 10-2 (≤10-2) кд/м2, что соответствует условиям скотопической адаптации глаза человека.

2. Длина волны монохромного светодиодного источника, либо источников света, должна соответствовать длине волны λ = 507 (±10) нм, при которой функция относительной спектральной эффективности монохроматического излучения для стандартного фотометрического наблюдателя МКО V'(λ) достигает своего максимального значения. Максимальная спектральная чувствительность (световая эффективность) К'max = 1700 лм/Вт (Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга, 3-е изд. перераб. и доп. 2006 г., табл. 1.2). Основным преимуществом способа энергоэффективного освещения светодиодным монохроматическим светом с длиной волны λ = 507 нм является более низкое энергопотребление, в 5,19 раза меньше, чем у люминофорных светодиодных источников белого света. Данный коэффициент верен для идеальных источников света.

Определение понятий

Дневное (фотопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях относительно высокой освещенности. Осуществляется с помощью колбочек при яркости фона, превышающей 5 кд/м2, что соответствует дневным условиям освещения. Палочки в этих условиях не функционируют.

Ночное (скотопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях относительно низкой освещенности. Осуществляется с помощью палочек при яркости фона менее 0,5*10-2(≤0,5*10-2) кд/м2 (CIE 191:2010), что соответствует ночным условиям освещения. Колбочки в этих условиях не функционируют, поскольку для их возбуждения требуется более высокая интенсивность света.

Сумеречное (мезопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях освещенности, промежуточной по отношению к тем, при которых действуют ночное и дневное зрение. Осуществляется с помощью функционирующих одновременно палочек и колбочек при значениях яркостях фона, лежащих в диапазоне между 0,5*10-2 и 5 кд/м2 (CIE 191:2010).

Световая эффективность излучения - физическая величина, равная отношению светового потока к соответствующему потоку излучения: K=Фv/Фе, единица измерения в Международной системе единиц (СИ): лм/Вт.

Спектральная чувствительность зрения - стандартная кривая МКО 1931 и 1951 гг. относительной спектральной чувствительности V(λ), изображенной на фиг. 1, определяющей световую эффективность, измеряемую в лм/Вт.

Монохроматический свет, излучение - электромагнитное излучение, обладающее очень малым разбросом частот, в идеале - одной частотой (длиной волны). Монохроматическое излучение формируется в системах, в которых существует только один разрешенный электронный переход из возбужденного в основное состояние.

Энергоэффективный источник света - источник света, обладающий наибольшей световой эффективностью излучения из всех существующих источников света.

Световая отдача источника света - отношение излучаемого источником светового потока к потребляемой им мощности. В Международной системе единиц (СИ) измеряется в люменах на ватт (лм/Вт). Является показателем эффективности и экономичности источников света. Выражение для световой отдачи имеет вид: η = Фv/Р, где Фv - световой поток, излучаемый источником, а Р - потребляемая им мощность.

Описание графика и таблицы:

На фиг. 1 представлена спектральная чувствительность V(λ) для дневного и V'(λ) для ночного зрения в абсолютных единицах. На фиг. 2 представлена таблица световой эффективности излучения.

Способ энергоэффективного освещения светодиодным монохроматическим светом в условиях скотопической адаптации глаза человека, включающий использование одного или нескольких светодиодных источников монохроматического света с длиной волны 507 (±10) нм, при уровнях яркости освещаемых объектов до 10-2 (≤10-2) кд/м2.



 

Похожие патенты:

Изобретение относится к светотехнике и физиологии зрения человека, в частности к обеспечению наиболее энергоэффективного освещения помещений, территорий и пространств при условии мезопической адаптации глаза человека.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лечения амблиопии у детей. Для этого проводят электроэнцефалографию с определением амплитуды альфа-ритма.

Изобретение относится к устройству введения для лечения глаукомы. Устройство содержит корпус с внутренней полостью и пазом для скользящего элемента, проходящим от наружной поверхности этого корпуса в указанную полость; иглу с просветом; плунжер, выполненный с возможностью перемещения внутри указанного просвета; компонент привода, содержащий цилиндрический элемент, соединенный с иглой посредством паза для иглы и плунжером посредством паза для плунжера для обеспечения их перемещения вдоль продольной оси устройства при вращении этого компонента, при этом компонент привода дополнительно включает в себя паз для скользящего элемента, продольно перекрывающий паз для иглы и паз для плунжера; и скользящий элемент, соединенный с корпусом и выполненный с возможностью скольжения вдоль него, при этом скользящий элемент соединен с компонентом привода посредством паза для скользящего элемента так, что перемещение скользящего элемента вдоль оси обеспечивает поворот компонента привода внутри корпуса и перемещение иглы и плунжера вдоль указанной оси.

Изобретение относится к медицине. Офтальмологическое устройство с энергообеспечением выполнено с возможностью расположения в глазу или на глазу и содержит: один или более модулируемых фотонных излучателей; вставку-среду, поддерживающую первый процессор и один или более источников света; при этом указанные один или более источников света выполнены с возможностью генерировать свет, причем по меньшей мере часть генерируемого света от одного или более источников света излучается одним или более фотонными излучателями; и датчик, первый процессор выполнен с возможностью: принимать от датчика указание для проецирования визуального представления, управлять, в ответ на принятое указание, по меньшей мере одним из одного или более модулируемым фотонных излучателей и одним или более источниками света на основе одного или более запрограммированных параметров; и генерировать визуальное представление в глазу.

Изобретение относится к медицине, в частности к офтальмологии, и касается лечения эпикантопластики. Для этого после рассечения кожи века производят выделение эпикантальной связки из окружающих тканей и проводят ее пересечение.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лечения задних блефаритов, сочетанных с демодекозным поражением век. Для этого в течение 10 дней 2 раза в день накладывают на края век Декса-гентамициновую мазь.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для проведения задней послойно-сквозной кератопластики при буллезной кератопатии.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для хирургического лечения рубцовой стадии субретинальной неоваскулярной мембраны. Способ включает витрэктомию, удаление задней гиалоидной мембраны стекловидного тела, микроретинотомию и удаление рубцовой субретинальной неоваскулярной мембраны.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для определения времени ультразвукового воздействия при хирургии возрастных катаракт.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для определения времени ультразвукового воздействия при хирургии возрастных катаракт.

Группа изобретений относится к медицине. Офтальмологическое устройство содержит устройство вставки, в котором часть поверхности на устройстве вставки имеет на себе металлические элементы, формирующие метаповерхность. Причем металлические элементы расположены в узоре, периодичность которого составляет меньше чем расстояние, равное целевой длине волны света, и метаповерхность выполнена с возможностью изменения фазовой характеристики видимого света, проходящего через офтальмологическое устройство. Устройство вставки может содержать: слой диэлектрика; и комбинацию несмешивающихся текучих сред вблизи слоя диэлектрика, причем по меньшей мере одна из несмешивающихся текучих сред включает в себя одно или более из металлической наносферы или металлического наностержня. Другой вариант офтальмологического устройства содержит по меньшей мере первую размещенную в трехмерном пространстве группу элементов метаповерхности, взаимодействие которых с падающим светом создает эффект линзы, изменяющий фазовую характеристику видимого света, проходящего через офтальмологическое устройство. Применение данной группы изобретений позволит улучшить зрение человека. 3 н. и 17 з.п. ф-лы, 10 ил.

Изобретение относится к области медицины, а именно к офтальмологии. Для лечения сужения слезоотводящих путей сначала через один из слезных канальцев вводят металлический зонд. Проводят его по всей длине слезоотводящих путей до выхода в области устья носослезного протока. Рассекают по зонду слизистую оболочку носослезного протока от места устья до костной части носослезного канала и резецируют участок слизистой оболочки шириной 3-4 мм вдоль разреза. Образовавшиеся лоскуты отворачивают в боковые стороны. С помощью зонда вводят один конец лакримального имплантата в слезный каналец и выводят его из полости носа, зонд удаляют. Затем проводят зонд через другой слезный каналец, через него проводят второй конец лакримального имплантата и выводят из полости носа. Оба конца лакримального имплантата скрепляют, а экстубацию лакримального имплантата проводят через 3-4 месяца. Способ обеспечивает коррекцию сужения слезоотводящих путей на всех уровнях, включая устья носослезного протока, и предупреждение рубцевания в этой зоне за счет сочетания биканакулярного зондирования и соответствующего проведения двойного лакримального имплантата с иссечением участка слизистой оболочки в области устья носослезного протока и последующим пластическим формированием устья носослезного протока. 1 пр., 4 ил.

Изобретение относится к области медицины, а именно к офтальмологии. Для лечения сужения слезоотводящих путей сначала через один из слезных канальцев вводят металлический зонд. Проводят его по всей длине слезоотводящих путей до выхода в области устья носослезного протока. Рассекают по зонду слизистую оболочку носослезного протока от места устья до костной части носослезного канала и резецируют участок слизистой оболочки шириной 3-4 мм вдоль разреза. Образовавшиеся лоскуты отворачивают в боковые стороны. С помощью зонда вводят один конец лакримального имплантата в слезный каналец и выводят его из полости носа, зонд удаляют. Затем проводят зонд через другой слезный каналец, через него проводят второй конец лакримального имплантата и выводят из полости носа. Оба конца лакримального имплантата скрепляют, а экстубацию лакримального имплантата проводят через 3-4 месяца. Способ обеспечивает коррекцию сужения слезоотводящих путей на всех уровнях, включая устья носослезного протока, и предупреждение рубцевания в этой зоне за счет сочетания биканакулярного зондирования и соответствующего проведения двойного лакримального имплантата с иссечением участка слизистой оболочки в области устья носослезного протока и последующим пластическим формированием устья носослезного протока. 1 пр., 4 ил.
Изобретение относится к области медицины, а именно к офтальмологии. Для фиксации зрачковой интраокулярной линзы (ИОЛ) после ее имплантации на глазах без капсульной поддержки после центрации ИОЛ нить с иглами на обоих концах проводят в передней камере через два парацентеза, расположенных в противоположных меридианах 3 и 9 часов. Выводят нить из глаза через основной разрез, причем один конец нити проводят через зрачок и, прошив радужную оболочку насквозь снизу вверх приблизительно на 12 часах, выкалывают в пределах передней гаптической части ИОЛ. Далее оба конца нити, выходящие из основного разреза, затягивают, следя за тем, чтобы нить фиксировала оптический цилиндр ИОЛ. Способ позволяет снизить риск возникновения геморрагических осложнений, а также снизить риск прорезывания швов, фиксирующих ИОЛ к радужной оболочке. 2 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Для фиксации зрачковой интраокулярной линзы (ИОЛ) после ее имплантации на глазах без капсульной поддержки после центрации ИОЛ нить с иглами на обоих концах проводят в передней камере через два парацентеза, расположенных в противоположных меридианах 3 и 9 часов. Выводят нить из глаза через основной разрез, причем один конец нити проводят через зрачок и, прошив радужную оболочку насквозь снизу вверх приблизительно на 12 часах, выкалывают в пределах передней гаптической части ИОЛ. Далее оба конца нити, выходящие из основного разреза, затягивают, следя за тем, чтобы нить фиксировала оптический цилиндр ИОЛ. Способ позволяет снизить риск возникновения геморрагических осложнений, а также снизить риск прорезывания швов, фиксирующих ИОЛ к радужной оболочке. 2 пр.

Группа изобретений относится к медицине. Устройство для введения интраокулярной линзы содержит: опорную часть для интраокулярной линзы, выполненную с возможностью обеспечения опоры для интраокулярной линзы для ее введения в глаз животного; приводную часть, выполненную с возможностью приема механической энергии от устройства для хранения энергии и с возможностью преобразования полученной механической энергии в поступательное перемещение линзы, поддерживаемой в опорной части для интраокулярной линзы. Причем приводная часть содержит замкнутый поток текучей среды, заполненный по существу несжимаемой текучей средой, и плунжерное устройство. Замкнутый поток текучей среды передает энергию от устройства для хранения энергии на плунжерное устройство для его перемещения. Также предложен способ высвобождения интраокулярной линзы из кассеты интраокулярной линзы, согласно которому: высвобождают хранимую энергию из сжимаемой среды для хранения энергии; передают энергию, высвобожденную из сжимаемой среды для хранения энергии, на плунжер посредством по существу несжимаемой текучей среды; перемещают плунжер с помощью по существу несжимаемой текучей среды для выталкивания интраокулярной линзы из кассеты интраокулярной линзы. Применение данной группы изобретений позволит уменьшить усилия, прикладываемые хирургом. 3 н. и 17 з.п. ф-лы, 19 ил.
Изобретение относится к области медицины, а именно к офтальмохирургии. Для микроинвазивного хирургического лечения серозной отслойки сосудистой оболочки глаза (ОСО) проводят транссклеральное дренирование субхориоидального пространства в месте наиболее высокого отслоения сосудистой оболочки. Процесс дренирования стимулируют с помощью вещества, которое вводят в витреальную полость через витреальный порт под давлением, величину которого можно варьировать. В качестве вещества, стимулирующего процесс дренирования, используют воздух. Операцию начинают с выполнения субтотальной 3-портовой витрэктомии, после чего производят замещение раствора BSS на воздух. Далее определяют место наиболее высокого отслоения сосудистой оболочки путем трансконъюнктивального вдавления склеры пинцетом. Затем в проекции этой зоны транссклерально, под острым углом к склере, в сторону заднего полюса, в субхориоидальное пространство медленно вводят инъекционную иглу 29G, по которой жидкость самотеком вытекает наружу, и по мере опорожнения пузыря, иглу постепенно выводят из полости глаза. При сочетании ОСО с патологией стекловидного тела (СТ) операцию заканчивают выведением иглы из полости глаза, а при сочетании ОСО с отслойкой сетчатки, дополнительно после удаления субхориоидальной жидкости с помощью инъекционной иглы, выполняют отграничительную эндолазерную коагуляцию сетчатки, затем воздух в полости СТ замещают на газ или силиконовое масло. Способ позволяет ускорить восстановление зрительных функций и устранить отслойку сосудистой оболочки и сетчатки, при ее наличии, а также снизить операционные и послеоперационные осложнения. 1 з.п. ф-лы, 2 пр.
Изобретение относится к медицине, а именно к офтальмохирургии, и может быть использовано при выполнении анестезии при факоэмульсификации катаракты. Способ включает проведение коньюнктивотомии размером 1,0 мм в нижне-внутреннем квадранте глазного яблока и введение в субтеноново пространство 1,5 мл раствора ропивакаина в концентрации 7,5 мг/мл. Дополнительно после выполнения парацентеза роговицы размером 1,0 мм в переднюю камеру вводят 0,3-0,5 мл того же раствора ропивакаина. Способ позволяет достичь адекватного обезболивания на протяжении всей операции, стимулировать защитные иммунные реакции в тканях глаза, обеспечивает профилактику послеоперационных воспалительных реакций в глазу, достижение быстрой зрительной реабилитации пациентов. 6 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Для достижения рефракционного эффекта при коррекции положения, ранее имплантированного интрастромального кольца MyoRing у пациентов с кератоконусом, определяют корригируемую величину сферического компонента рефракции в зависимости от величины, направления смещения, а также параметров самого кольца MyoRing. При смещении на 0,5 мм кольца MyoRing диаметром 5,0 мм и высотой 320 мкм в сторону вершины кератоконуса компенсируется гипоэффект, а при смещении в противоположную сторону - гиперэффект в 5,0 дптр, при высоте 300 мкм - 4,5 дптр, при высоте 280 мкм - 4,0 дптр сферической рефракции. Способ позволяет повысить остроту зрения и улучшить качество жизни пациентов с кератоконусом. 2 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Для хирургического лечения неэкссудативной формы центральной хориоретинальной дистрофии сетчатки проводят субтотальную витрэктомиию с использованием канюлей 25, 27 G, с удалением задней гиалоидной мембраны. Осуществляют пилинг внутренней пограничной мембраны сетчатки макулярной зоны. Под сетчатку заводят сбалансированный физиологический раствор через микроретинотомию с использованием канюли 38 G, проводя ее отслоение в пределах макулярной зоны. В образовавшееся пространство субретинально через выполненную ранее микроретинотомию при помощи канюли 38 G заводят 0,1-0,2 мл аутоплазмы, обогащенной тромбоцитами. Способ улучшает зрительные функции и анатомо-физиологические показатели сетчатки пораженного глаза, обеспечивает максимальное снижение послеоперационных осложнений и рисков за счет стимулирующего эффекта аутоплазмы, обогащенной тромбоцитами. 2 пр.
Наверх