Инфракрасный сенсор с переключаемым чувствительным элементом



Инфракрасный сенсор с переключаемым чувствительным элементом
Инфракрасный сенсор с переключаемым чувствительным элементом
Инфракрасный сенсор с переключаемым чувствительным элементом
Инфракрасный сенсор с переключаемым чувствительным элементом

Владельцы патента RU 2649040:

федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (RU)

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля. Инфракрасный сенсор с переключаемым чувствительным элементом содержит теплоприемную мембрану, прикрепленную к подложке с помощью консолей и расположенную от подложки на расстоянии, обеспечивающем пренебрежимо малый теплообмен мембраны с подложкой, термочувствительный элемент с электрическими выводами на консолях и полевой электрод, образующий с подложкой первичную цепь электростатического реле. Термочувствительный элемент представляет собой термопару с «теплым» спаем на мембране и «холодными» контактами на подложке или терморезистор, образующие вторичные цепи реле для коммутации сигналов. Технический результат - повышение чувствительности сенсора. 2 ил.

 

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля.

Известна ячейка термопары на полупроводниковой подложке с изолированными областями, включающая подложку, канавку, пассивирующий слой, нанесенный поверх подложки, и примыкающую мембрану [1]. Сенсор обладает следующим недостатком: невысокий уровень разрешающей способности.

Известна ячейка термопары, включающая подложку, мембрану, термопару, жертвенный слой, нанесенный на мембрану [2]. Жертвенный слой создается с целью открытия части мембраны горячими спаями термопар. Мембрана осаждается на жесткий термически проводящий слой. Сенсор обладает следующим недостатком: низкий уровень чувствительности.

Известен инфракрасный сенсор, включающий в себя подложку, одну консольную балку, одну термопару и мембрану [3]. Консольная балка имеет два контакта. Мембрана расположена над консольной балкой и закреплена к ней спаем. Интегральная схема, которая находится под подвешенной мембраной, интегрирована с инфракрасным датчиком. Сенсор обладает следующими недостатками: низкая разрешающая способность и высокая занимаемая площадь на кристалле.

Известен сенсор, состоящий из мембраны с термочувствительным элементом, поглотителем электромагнитной энергии, прикрепленным к подложке с помощью токопроводящих шинок [4]. Термочувствительный элемент и поглотитель электромагнитной энергии объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристаллического материала. Сенсор обладает следующим недостатком: высокое энергопотребление.

Известен инфракрасный сенсор, включающий теплоприемную мембрану, термочувствительный элемент, прикрепленный непосредственно к самой мембране, с электрическими выводами на консолях их контактами к подложке [5]. Сенсор обладает следующим недостатком: низкий уровень чувствительности. Это решение выбрано нами за прототип.

Задача, на решение которой направлено заявленное изобретение, заключается в повышении чувствительности сенсора.

Поставленная задача решается за счет того, что инфракрасный сенсор с переключаемым чувствительным элементом, содержащий теплоприемную мембрану, прикрепленную к подложке с помощью консолей и расположенную от подложки на расстоянии, обеспечивающем пренебрежимо малый теплообмен мембраны с подложкой, и прикрепленный к мембране термочувствительный элемент с электрическими выводами на консолях и их контактами к подложке, отличается тем, что на консолях имеется полевой электрод, образующий с подложкой первичную цепь электростатического реле, термочувствительный элемент представляет собой термопару с «теплым» спаем на мембране и «холодными» контактами на подложке или терморезистор, один из размыкаемых контактов которых, лежащий на подложке, соединен с p-n-переходом и служит выходом сигнала, а другой соединен с антизапорным переходом к подложке и служит омическим контактом к ней, и оба контакта образуют вторичные цепи реле, служащие для коммутации сигналов.

Вследствие отключения чувствительного элемента от измерительной цепи накопившееся тепло не «утекает» за время его накопления, что способствует повышению чувствительности сенсора [6].

Во время нагрева мембраны практически отсутствует утечка тепла с нее, а термо-ЭДС возможно измерить при замыкании на цепь измерения.

Время, за которое система возвращается в равновесное состояние, определяется теплопроводностью термопары Gt и теплоемкостью С, поглощающей ИК-излучение МЭМС-мембраны:

Когда время релаксации сенсора τ0 меньше времени кадра τк: τ0к/π, напряжение холостого хода

где Р - мощность падающего ИК-излучения, С - полная теплоемкость фотоприемной мембраны. Поэтому увеличение напряжения холостого хода, используя переключаемый элемент, при заданном быстродействии τк может иметь смысл при достаточно низкой частоте кадров, когда в силу высокой теплопроводности при заданной площади элемента время релаксации сенсора τ<<τк/π не может быть увеличено конструктивно и технологически до значения ~ τк/π.

При использовании переключаемого чувствительного элемента длина консоли может быть существенно уменьшена, чтобы не увеличивать значительно площадь элемента и реализовать достаточно малое время механического переключения, τм<<τк. Это приведет и к снижению собственных шумов вследствие уменьшения сопротивления. При этом, конечно, длина термопары (терморезистора) должна обеспечивать время остывания мембраны по ней τ, существенно превышающее время считывания.

Динамика тепловых и электрических процессов определяется иерархией времен τ0, τ, τ1 и τр,n, где τ1 - собственное время тепловой релаксации консоли, τр,n - время электрической релаксации в ней:

.

При накоплении тепла в мембране холодные контакты термопары не имеют непосредственного контакта с подложкой и, таким образом, теплообмен мембраны с подложкой осуществляется только через дополнительные поддерживающие консоли из SiO2 с теплопроводностью Gc.

В такой ситуации при переключении чувствительного элемента на подложку за малое время τ устанавливается квазистационарное состояние термопары с разницей температуры ΔT(t) на ее спаях и постоянным градиентом, в результате чего мембрана за время τ остывает (экспоненциально) от до .

На фиг. 1 изображен инфракрасный сенсор с переключаемым чувствительным элементом терморезистором, где 1 - теплоприемная мембрана, которая выполняет роль фотоприемной части ИК-излучения; 2 - подложка предназначена для создания гетероструктур; 3 - консоли предназначены для фиксации термочувствительного элемента; 4 - термочувствительный элемент, выполняющий функцию измерения напряжения на электрических выводах 5; 6 - «холодные» контакты, способные к размыканию и замыканию с помощью упругой и электростатической сил; 7 - полевой электрод первичной цепи электростатического реле, выполняющий функцию ключа для замыкания и размыкания цепи; 8 - электростатическое реле с областями 9 выполняет функцию коммутации сигналов: p-n-переходы и/или p-n-переход (9а) и антизапорный (n+-n) переход (9б).

На фиг. 2 изображен инфракрасный сенсор с переключаемым чувствительным элементом термопарой, где 4а и 4б - плечи для разнородных проводников; 10 - теплый «спай» термопары.

При подаче на полевой электрод электрического потенциала, достаточной величины, в силу электростатического взаимодействия контакты 6 (фиг. 1 и фиг. 2) приходят в соприкосновение [6].

Для инфракрасного сенсора с переключаемым чувствительным элементом термопарой, элементы которого изготовлены, например, - мембрана из SixNi1'-x; подложка - монокристаллического n-Si; консоли - SiO2, термопара - из поликристаллического Si; «холодные» контакты, «теплый» спай и полевой электрод - Al.

Для инфракрасного сенсора с переключаемым чувствительным элементом терморезистором, элементы которого изготовлены, например мембрана из α-Si; подложка - монокристаллического n-Si; консоли - SiO2; терморезистор - из поликристаллического Si; «холодные» контакты, «теплый» спай и полевой электрод - Al.

Поскольку коэффициент теплопроводности SiO2 примерно в 30 раз меньше, чем коэффициент теплопроводности Si*, то, например, при длине SiO2 консоли 100 мкм, ширине 2 мкм и толщине 0,5 мкм при площади фотоприемной мембраны 5000 мкм2 τ0≈1 c. Поэтому при τк>3 с использованием переключаемого чувствительного элемента и SiO2 консоли позволило бы получить напряжение холостого хода, в 30 раз превышающее, при прочих одинаковых условиях, напряжение холостого хода с элементом на такой же Si* консоли: время релаксации такого сенсора τ≈0,03 с.

Для термопары длиной l=10 мкм:

τ0≈1 c, τ≈τ0/300≈0,003 с, , τр,n≈l2/D≈10-7 c (DSi*≈10 см2/с).

Таким образом, вакуумные ИК-фотоприемники с переключаемым чувствительным элементом могут быть достаточно эффективными для тепловизионных систем.

Источники информации

1. Патент США №9324760

2. Европейский патент №2887032

3. Патент США №6335478

4. Патент РФ №2511275

5. Патент США №20140326883 - прототип

6. Федирко В.А., Фетисов Е.А. Электромеханика МДП МЭМС. // Труды Первой российско-белорусской конференции «Элементная база отечественной радиоэлектроники». РНТОРЭС им. А.С. Попова, Нижний Новгород. 2013. Т. 2. С. 13-16.

7. Фетисов Е.А., Федирко В.А., Тимофеев А.Е. Исследование теплового ИК-фотоприемника на вакуумной микро/наноэлектромеханической системе с нестационарным термоэлектрическим эффектом. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ЭЛЕКТРОННОГО ПРИБОРОСТРОЕНИЯ. АПЭП-2016. Саратов. 2016. Т. 2. С. 590-596.

Инфракрасный сенсор с переключаемым чувствительным элементом, содержащий теплоприемную мембрану, прикрепленную к подложке с помощью консолей и расположенную от подложки на расстоянии не более ее толщины, и прикрепленный к мембране термочувствительный элемент с электрическими выводами на консолях и их контактами к подложке, отличающийся тем, что на консолях имеется полевой электрод, образующий с подложкой первичную цепь электростатического реле, термочувствительный элемент представляет собой термопару с «теплым» спаем на мембране и «холодными» контактами на подложке или терморезистор, образующие вторичные цепи реле для коммутации сигналов.



 

Похожие патенты:

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, а именно для подзарядки различных гаджетов и других устройств при отсутствии источников электроснабжения.

Изобретение относится к области термоэлектричества. Сущность: термоэлектрический элемент (1) включает по меньшей мере две пленки основного материала (2) в виде углеродного материала с sp3 гибридизацией атомных связей, между которыми нанесена пленка дополнительного материала (3) в виде углеродного материала с sp2 гибридизацией связей.

Изобретение относится к области электроизмерительной техники, а именно к устройствам термопреобразователей, и может быть использовано для измерения быстроменяющихся температурных процессов, например температуры капель воды.

Изобретение относится к области термоэлектричества, а именно к технологии изготовления конструктивных элементов для термоэлектрических модулей. Сущность: способ изготовления конструктивного элемента (12) для термоэлектрического модуля (15) имеет следующие шаги: а) обеспечение по меньшей мере одной нити (1), имеющей протяженность (2), б) обеспечение трубчатого приемного элемента (13), имеющего внешнюю периферическую поверхность (14), в) нанесение термоэлектрического материала (3) по меньшей мере на одну нить (1), г) наматывание по меньшей мере одной нити (1) вокруг трубчатого приемного элемента (13), так что на внешней периферической поверхности (14) образовывается по меньшей мере один кольцеобразный конструктивный элемент (12) для термоэлектрического модуля (15).

Изобретение относится к теплоэнергетике, а именно к системам теплоснабжения зданий. Термоэлектронасос содержит подающий трубопровод (1) с термоэлектрическим блоком (3), соединенным электропроводкой с инвертором (4), аккумулятором (5) и электродвигателем насоса (6), установленным в трубопроводе (2).

Изобретение относится к термоэлектричеству. Технический результат: получение термоэлектрического элемента с высоким термическим сопротивлением, который требует меньше полупроводникового материала.

Изобретение относится к термоэлектрическим преобразователям энергии. Сущность: термоэлектрический преобразователь содержит по меньшей мере одну термоэлектрическую ячейку с последовательно соединенными пленочными термоэлектрическими ветвями (1, 2), выполненными из полупроводниковых материалов и расположенными между теплообменными слоями (11, 12).

Изобретение относится к термоэлектрическому преобразованию энергии и может быть использовано для построения термоэлектрических батарей. Сущность: термоэлектрическая батарея содержит цельное металлическое основание, на котором размещены полупроводниковые стержни одного типа проводимости с образованием спаев.

Изобретение относится к термоэлектрическим устройствам и их изготовлению. Сущность: термоэлектрический модуль (1), который простирается в продольном направлении (9), с внешней трубкой (2) и расположенной внутри внешней трубки (2) внутренней трубкой (3).

Изобретение относится к термоэлектрическим устройствам теплообмена. Технический результат: повышение эффективности устройства за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями.

Изобретение относится к микроэлектронике, а именно к интегральным фотоэлектрическим преобразователям. Ячейка фотоэлектрического преобразователя приемника изображения содержит фотодиод, транзистор считывания заряда, накопленного фотодиодом, транзистор предустановки, обеспечивающий восстановление исходного потенциала на фотодиоде, входной транзистор истокового повторителя, транзистор выборки строки и малошумящий делитель заряда, обеспечивающий выделение малой части заряда, накопленного фотодиодом за время релаксации, и ее передачу на затвор входного транзистора истокового повторителя с многократным повторением данной процедуры в течение времени кадра.

Изобретение относится к матричным фотоприемным устройствам (ФПУ) на основе фотодиодов (ФД), изготовленных по мезатехнологии в гетероэпитаксиальных полупроводниковых структурах III-V групп InGaAs/AlInAs/InP, преобразующих излучение в коротковолновой инфракрасной области спектра (0,9-1,7 мкм).

Изобретение относится к области микроэлектроники и касается пассивного беспроводного датчика ультрафиолетового излучения. Датчик включает в себя пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный встречно-штыревой преобразователь (ВШП) и два отражательных ВШП.

Изобретение относится к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного (ИК) излучения при комнатной температуре и может быть использовано, например, в устройствах, измеряющих характеристики сред, содержащих газообразные углеводороды, и в волоконно-оптических датчиках, измеряющих состав жидкости по методу исчезающей волны, для которых указанная полоса совпадает с максимумом фундаментального поглощения измеряемого компонента, например спирта или нефтепродуктов.

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления.

Группа изобретений относится к нанооптоэлектронике. В фоточувствительной структуре, представляющей собой чувствительную к терагерцовому излучению при температуре эффективного фототока многослойную полупроводниковую гетероструктуру с квантовой ямой, выполненной в виде слоя узкозонного твердого раствора, содержащего Hg и Te и заключенного между барьерными слоями широкозонного трехкомпонентного твердого раствора CdyHg1-yTe, где у составляет величину в предпочтительном интервале от 65% до 72%, узкозонный слой квантовой ямы сформирован из трехкомпонентного твердого раствора Hg1-xCdxTe с содержанием Cd, определяемым величиной x в интервале от 4% до 12%, причем ширина квантовой ямы выбрана для заданного терагерцового поддиапазона частот принимаемого излучения при температуре 4,2K или 77K в зависимости от содержания Cd в соответствии с таблицей 1, представленной в описании изобретения.

Изобретения могут быть использованы в устройствах для формирования изображения, определения координат исследуемых объектов, оптической пеленгации, автоматического управления, контроля и измерения параметров излучения, экологического мониторинга, медицинской диагностики и неразрушающего контроля.

Изобретение относится к фотоэлектронике и может использоваться в пороговых фотоприемных устройствах для регистрации коротких импульсов электромагнитного излучения оптического и инфракрасного (ИК) диапазона.
Наверх