Скважинная насосная установка

Изобретение относится к технике добычи нефти и, в частности, к технике подъема добываемой продукции скважин, а именно водогазонефтяных эмульсий. Технический результат - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции. Устройство содержит спущенный в скважину на колонне подъемных труб центробежный насос с электродвигателем. Над насосом в полости подъемных труб расположен пневматический колпак для гашения пульсаций давления, оснащенный обратным клапаном, установленным в его нижней части, дросселирующим каналом и завихрителем потока жидкости. Дросселирующий канал пневматического колпака выполнен на боковой поверхности корпуса колпака. Ниже пневматического колпака во внутренней полости внутренней подъемной трубы, коаксиально установленной, перфорирована зона размещения завихрителя потока жидкости, выполненного в форме спирали. Дросселирующий канал выполнен в виде конусного отверстия, основанием обращенного во внутрь пневматического колпака. Упомянутый канал имеет пробку соответствующего профиля и расположен на одной оси с монтажным отверстием на противоположной стенке пневматического колпака, заглушенного винтом. 3 ил.

 

Изобретение относится к технике добычи нефти, в частности к технике подъема добываемой продукции скважин, а именно водогазонефтяных эмульсий.

Известна скважинная насосная установка, которая содержит центробежный насос с электродвигателем, установленный в скважине на колонне подъемных труб пневматический колпак для гашения пульсаций давления в трубах и обратный клапан с осевым дросселирующим каналом (А.с. СССР №612009, 1975 г.).

Однако данная установка имеет низкую надежность при откачивании жидкости со свободным газом.

Известна электроцентробежная скважинная насосная установка, содержащая центробежный насос с электродвигателем, установленный в скважине на колонне подъемных труб, пневматический колпак для гашения пульсаций давления в трубах и обратный клапан с осевым дросселирующим каналом. Пневматический колпак расположен в полости подъемных труб, а клапан установлен в его нижней части (А.с. СССР №918419, 1982 г.).

Недостатком известной конструкции является недостаточная степень надежности, обусловленная длительным временем приведения в рабочее состояние, которое необходимо для отделения газа от жидкости, при небольшом количестве содержащегося в жидкости свободного газа.

Наиболее близкой к изобретению является скважинная насосная установка, содержащая центробежный насос с электродвигателем, расположенный в полости подъемных труб для гашения пульсаций давления пневматический колпак с установленным в его нижней части обратным клапаном с дросселирующим каналом. Причем, пневматический колпак снабжен завихрителем потока жидкости, установленным в его нижней части над обратным клапаном (Патент РФ №2056540, 1996 г.).

Недостатком устройства является то, что зарядка пневматического колпака газом происходит лишь через определенное время после начала работы установки, а если гаситель пульсаций установлен ниже уровня, соответствующего давлению насыщения нефти газом (в этом случае нефтяной газ в жидком состоянии), то зарядка гасителя не происходит и он не работоспособен.

Техническая задача, решаемая изобретением, - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции.

Поставленная техническая задача решается предлагаемой скважинной насосной установкой.

Скважинная насосная установка содержит спущенный в скважину на колонне подъемных труб центробежный насос с электродвигателем. Над насосом, в полости подъемных труб расположен пневматический колпак для гашения пульсаций давления, оснащенный обратным клапаном, установленным в его нижней части, дросселирующим каналом и завихрителем потока жидкости.

Новым является то, что дросселирующий канал пневматического колпака выполнен на боковой поверхности корпуса колпака, а ниже пневматического колпака во внутренней полости внутренней подъемной трубы, коаксиально установленной, перфорирована зона размещения завихрителя потока жидкости, выполненного в форме спирали.

Новым является и то, что дросселирующий канал выполнен в виде конусного отверстия, основанием обращенного во внутрь пневматического колпака, имеет пробку соответствующего профиля и расположен на одной оси с монтажным отверстием на противоположной стенке пневматического колпака, заглушенного винтом.

Заявляемое техническое решение поясняется чертежами, где

- на фиг. 1 приведена схема скважинной насосной установки;

- на фиг. 2 представлен фрагмент А - общий вид пневматического колпака для гашения пульсаций давления;

- на фиг. 3 приведен дросселирующий канал с пробкой.

Скважинная насосная установка (фиг. 1) включает центробежный насос 1, электродвигатель 2, наружную поверхность 14 пневматического колпака 5 (фрагмент А).

Фрагмент А - пневматический колпак для гашения пульсаций давления (фиг. 2) содержит внутреннюю подъемную трубу 3, внешнюю подъемную трубу 4, пневматический колпак 5, обратный клапан 6, перфорированную зону 9, завихритель потока жидкости 10, пробку 11, монтажное отверстие 12 и винт 13.

Дросселирующий канал с пробкой (фиг. 3) включает дросселирующий канал 7, корпус 8 и пробку 11.

Скважинная насосная установка содержит центробежный насос 1 с электродвигателем 2, установленные на колонне подъемных внутренних 3 и внешних 4 труб, в полости которых находится пневматический колпак 5, в нижней части которого расположен обратный клапан 6 (фиг. 2). Дросселирующий канал 7 пневматического колпака 5 выполнен на боковой поверхности корпуса 8 пневматического колпака 5 (фиг. 3). Во внутренней полости внутренней подъемной трубы 3, коаксиально установленной, перфорирована зона 9 размещения завихрителя потока жидкости 10, выполненного в форме спирали (фиг. 2). Дросселирующий канал 7 выполнен в виде конусного отверстия, основанием обращенного во внутрь пневматического колпака 5, имеет пробку 11 соответствующего профиля и расположен на одной оси с монтажным отверстием 12 на противоположной стенке пневматического колпака 5, заглушенного винтом 13, позволяющим установить пробку 11 в дросселирующий канал 7.

Скважинная насосная установка работает следующим образом.

Перед спуском насосного оборудования в скважину пневматический колпак 5 заряжают инертным газом через обратный клапан 6, причем пробка 11 установлена в отверстие дросселирующего канала 7, затем винт 13 завинчивается в монтажное отверстие 12, герметизируя пневматический колпак 5. Таким образом, пневматический колпак 5 изначально находится в рабочем состоянии. В процессе спуска насосного оборудования при давлении Р2 в скважине, приходящемся на площадь поперечного сечения одного конца пробки 11, превышающем давление Р1 в пневматическом колпаке 5, приходящемся на площадь поперечного сечения другого конца пробки 11, происходит выпадение последней в полость пневматического колпака 5.

Указанные величины связаны между собой следующим образом:

Причем расположение дросселирующего канала 7 на боковой поверхности корпуса 8 пневматического колпака 5 предотвращает повторное его перекрытие пробкой 11.

В процессе работы центробежного насоса 1 жидкость с попутным газом попадает в полость пневматического колпака 5, преодолевая вес обратного клапана 6 и под действием завихрителя потока жидкости 10, разделяясь на жидкую и газовую фракции за счет разности их плотностей и под влиянием центробежных сил. Причем, фазовое разделение происходит многократно и в несколько уровней, благодаря форме завихрителя потока жидкости 10 - спираль. Кроме того, жидкая фаза через перфорированную зону 9 направляется в кольцевую полость (обозначена), образованную корпусом 8 пневматического колпака 5 и внутренним диаметром расширенных внешних подъемных труб 4 и далее на прием центробежного насоса 1, исключая попадание жидкости в полость пневматического колпака 5, что повышает его работоспособность. Площадь поперечного сечения указанной кольцевой полости равна площади поперечного сечения ниже внутренних 3 и вышележащих внешних 4 подъемных труб. Газ вытесняет находившуюся в полости пневматического колпака 5 жидкость через дросселирующий канал 7 и зазор обратного клапана 6. При изменении давления нагнетания газ в полости пневматического колпака 5 либо сжимается (при увеличении давления), либо расширяется (при уменьшении давления). В первом случае в полость пневматического колпака 5 поступает дополнительное количество жидкости, а во втором случае происходит ее обратное вытеснение через дросселирующий канал 7.

Возможность приема жидкости в полость пневматического колпака при повышении ее давления, и ее вытеснения при - снижении, уменьшает разброс давления в трубах. Причем, обратное вытеснение происходит относительно медленно, через дросселирующий канал со значительным расходом энергии давления газа, позволяет снизить колебания давления в насосных трубах, следовательно, и вибрацию оборудования. Внедрение предлагаемого объекта обеспечивает эффективное гашение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции. В результате повышается эффективность эксплуатации скважин, оборудованных установками электропогружных центробежных насосов за счет увеличения межремонтного периода их работы.

Скважинная насосная установка, содержащая установленный в скважине на колонне подъемных труб центробежный насос с электродвигателем, расположенный в полости подъемных труб для гашения пульсаций давления пневматический колпак с установленным в его нижней части обратным клапаном, дросселирующим каналом и завихрителем потока жидкости, отличающаяся тем, что дросселирующий канал пневматического колпака выполнен на боковой поверхности корпуса колпака, а ниже пневматического колпака во внутренней полости внутренней подъемной трубы, коаксиально установленной, перфорирована зона размещения завихрителя потока жидкости, выполненного в форме спирали, при этом дросселирующий канал выполнен в виде конусного отверстия, основанием обращенного во внутрь пневматического колпака, имеет пробку соответствующего профиля, расположен на одной оси с монтажным отверстием на противоположной стенке пневматического колпака, заглушенного винтом.



 

Похожие патенты:

Группа изобретений относится к испытаниям гидравлических машин и предназначена для измерения рабочих характеристик погружных газосепараторов, используемых при добыче нефти.

Изобретение относится к испытаниям газосепараторов погружных электронасосных агрегатов для добычи из скважин нефти с высоким газосодержанием. Стенд содержит накопительную емкость с гидравлически сопряженным с ней стендовым гравитационным газожидкостным сепаратором, подпорный насос, систему приготовления газожидкостной смеси с источником газа, блок моделирования внутрискважинных условий для размещения испытуемых гидравлических машин и электродвигателей к ним.

Изобретение относится к области нефтедобычи и может быть применено в установках для гидрозащиты погружных маслозаполненных электродвигателей для электроцентробежных насосов, используемых для добычи пластовой жидкости из скважин.

Изобретение относится к области электромашиностроения и может быть использовано для гидрозащиты погружных маслозаполненных электродвигателей насосов для добычи нефти.

Изобретение относится к области нефтедобычи и может быть применено в установках для гидрозащиты погружных маслозаполненных электродвигателей электроцентробежных насосов для добычи пластовой жидкости из скважин.

Изобретение относится к области производства погружных скважинных электрических насосов и компрессоров. Устройство охлаждения и защиты от твердых частиц торцевого уплотнения погружного электродвигателя, соединенного соединительной муфтой с насосом, имеет на наружной цилиндрической поверхности муфты пескосбрасыватель, а в нижней части муфты - полый цилиндр.

Изобретение относится к области насосостроения и может быть использовано при изготовлении погружных центробежных насосных агрегатов, предназначенных для комплектации насосных установок, используемых в нефтедобывающей и других отраслях при подъеме и перекачивании среды.

Изобретение относится к технике добычи нефти и, в частности, к технике подъема добываемой продукции скважин, а именно газожидкостной смеси. Технический результат - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции.

Подводная скважинная гидравлическая система для работы под водой в водном объекте включает в себя электрическую машину и гидравлическую часть. Электрическая машина содержит ротор и статор, расположенные в первом кожухе в заданных условиях эксплуатации.

Изобретение относится к многоступенчатым погружным насосам для откачки пластовой жидкости из скважин. Установка погружного лопастного насоса компрессионного типа включает электродвигатель, протектор с осевой опорой вала и по меньшей мере одну насосную секцию.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для автоматического управления технологическими процессами. При реализации способа осуществляют открытие и закрытие запорно-регулирующей арматуры куста скважин путем независимой подачи рабочего тела или электрического тока в исполнительные механизмы запорно-регулирующей арматуры и подземных клапанов-отсекателей в заданной последовательности.

Изобретение относится к нефтяной и газовой промышленности и, в частности, к механизированной добыче нефти из скважин насосами. Технический результат - повышение эффективности добычи нефти за счет сокращения затрат электрической энергии.

Изобретение относится к строительству нефтяных и газовых скважин, а именно к устройствам для удержания механических примесей в составе бурового или тампонажного растворов.

Система управления текучей средой содержит корпус с входным каналом, находящимся в гидравлическом сообщении с выходным каналом. Положение дроссельного поршня в корпусе управляет потоком текучей среды от входного канала к выходному каналу.

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, в частности к осцилляторам для бурильной колонны, предназначенным для создания гидромеханических импульсов, воздействующих на бурильную колонну.

Изобретение предназначено для использования в нефтедобывающей промышленности при эксплуатации скважин с обводненными пластами. Технический результат – повышение эффективности эксплуатации скважин за счет обеспечения возможности постоянного режима их эксплуатации при максимально возможной производительности.

Описывается узел и способ заканчивания боковых стволов скважин. Данная компоновка заканчивания скважины содержит установку сопряжения с главной и боковой секциями, а также боковую колонну заканчивания и фиксирующее устройство, присоединенные к концу боковой секции, расположенной со стороны ниже по стволу скважины, и концу установки сопряжения, расположенной со стороны выше по стволу скважины, соответственно.

Изобретение относится к области добычи природного газа. Автоматизированная система управления технологическими процессами (АСУ ТП) газового промысла в реальном масштабе времени контролирует устьевое давление Ру.и, устьевую температуру Ту.и, расход газа каждой скважины Qи, а также давления газа Рнгсш в начале газосборного шлейфа и следит за соблюдением условия Pу.и>Pнгсш для всех скважин куста.

Изобретение относится к нефтедобывающей промышленности и, в частности, к технике добычи нефти механизированным способом. Технический результат – повышение эффективности работы малодебитной скважины в условиях снижающейся продуктивности пласта за счет оптимизации параметров работы насосной установки, увеличения ее дебита и снижения риска срывов подачи при снижении притока.

Изобретение относится к области нефтегазодобывающей промышленности и может найти применение при разработке нефтегазоконденсатных месторождений. Способ аккумуляции холода в пласте включает использование двухтрубной компоновки в двуствольной горизонтальной скважине, спуск первой лифтовой трубы с установкой пакера для отделения затрубного пространства и добычи нефти, спуск второй лифтовой трубы меньшего диаметра.

Изобретение относится к нефтедобыче и может быть применено в гидроразрыве пласта при одновременном контроле геометрических и гидродинамических параметров трещины в реальном времени. Способ включает измерение распределенных температуры и давления в скважине с последующим вычислением по ним геометрических параметров трещины. При этом дополнительно одновременно производят измерение механических деформаций обсадной колонны скважины с помощью тензодатчиков, размещенных на наружной поверхности обсадной колонны скважины в заданном порядке в пределах интервала перфорации, и мониторинг сейсмических событий посредством приемников, размещенных выше и ниже интервала перфорации. Благодаря проводимому в реальном времени параллельному мониторингу распределенных физических параметров скважины и сейсмических событий вокруг нее, заявляемый способ позволяет определять азимут, длину, ширину раскрытия трещины, высоту (интервал раскрытия) трещины в реальном времени при выполнении гидродинамического воздействия на проницаемый коллектор, что, в совокупности с геомеханической моделью развития трещины, позволяет оптимальным образом уточнить режимы закачки с целью достижения целевых параметров трещины ГРП. Технический результат заключается в обеспечении возможности определения с высокой точностью геометрических параметров трещины, а именно азимута, длины, средней ширины раскрытия, высоты (интервала раскрытия) непосредственно в процессе ГРП. 6 з.п. ф-лы, 2 ил.
Наверх