Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты

Настоящее изобретение относится к биотехнологии, в частности к композиции для продукции целевого полипептида в клетке или ткани млекопитающего и способу получения указанного полипептида в клетке или ткани млекопитающего in vitro с применением такой композиции. Указанная композиция содержит состав в виде наночастиц, содержащих катионный липид, фузогенный липид, холестерин и ПЭГ липид. Указанный состав содержит модифицированную мРНК, кодирующую целевой полипептид. Причём мРНК модифицируют таким образом, что уридин заменяют 1-метилпсевдоуридином. Настоящее изобретение позволяет повысить эффективность доставки мРНК в целевую клетку и при этом снизить иммунный ответ. 2 н. и 12 з.п. ф-лы, 3 ил., 154 табл., 98 пр.

 

ССЫЛКА НА ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

[0001] Настоящая заявка подана вместе с Перечнем последовательностей в электронном формате. Файл с Перечнем последовательностей под названием M11PCTSQLST.txt, был создан 14 декабря 2012 года, и его размер составляет 25579 байт. Информация в электронном формате Перечня последовательностей включена в настоящий документ в полном объеме посредством ссылки.

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0002] Настоящая заявка заявляет приоритет Предварительной заявки США №61/576705, поданной 16 декабря 2011 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/618957, поданной 2 апреля 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/648244, поданной 17 мая 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/681712, поданной 10 августа 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», и Предварительной заявки США №61/696381, поданной 4 сентября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/709303, поданной 3 октября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/712490, поданной 11 октября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», и Международной публикации PCT/US 2012/058519, поданной 3 октября 2012 года, под названием «Модифицированные нуклеозиды, нуклеотиды и нуклеиновые кислоты, и их применение», содержание которых включено в данное описание в полном объеме посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

[0003] В общем, экзогенные немодифицированные молекулы нуклеиновой кислоты, конкретно нуклеиновые кислоты вирусов, введенные в клетку, индуцируют природный иммунный ответ, что приводит к выработке цитокинов и интерферона (EFN) и, в конечном итоге, к гибели клетки. Большой интерес в сфере терапевтического, диагностического применения, реагентов и биологических анализов представляет возможность доставлять нуклеиновую кислоту, например, рибонуклеиновую кислоту (РНК), в клетку, например, вызывать внутриклеточную трансляцию нуклеиновой кислоты и выработку кодируемого белка вместо генерации природного иммунного ответа. Таким образом, существует потребность в создании составов препаратов, содержащих агент доставки, который может эффективно облегчать доставку нуклеиновых кислот in vivo в целевые клетки, без генерации природного иммунного ответа.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0004] В настоящем описании раскрываются, среди прочего, составы препаратов, содержащих модифицированные молекулы нуклеиновой кислоты, которые могут кодировать белок, прекурсор белка или частично или полностью процессированную форму белка или прекурсора белка. Составы препаратов могут дополнительно содержать модифицированную молекулу нуклеиновой кислоты и агент доставки. В настоящем изобретении дополнительно раскрываются нуклеиновые кислоты, пригодные для кодирования полипептидов, способных модулировать клеточную функцию и/или активность.

[0005] В одном из аспектов раскрывается способ выработки целевого полипептида в клетке или ткани млекопитающего. Способ включает приведение клетки или ткани млекопитающего в контакт с препаратом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Препарат может представлять собой, без ограничений, наночастицы, микросферы поли(молочной-со-гликолевой кислоты) (ПМГК), липидоиды, липоплекс, липосому, полимеры, углеводы (в том числе, простые сахара), катионные липиды, фибриновый гель, фибриновый гидрогель, фибриновый клей, фибриновый герметик, фибриноген, тромбин, быстро элиминирующиеся липидные наночастицы (бэЛНЧ) и их комбинации. Модифицированная мРНК может содержать очищенный IVT транскрипт.

[0006] В одном варианте реализации состав, содержащий модифицированную мРНК, представляет собой наночастицу, которая может содержать по меньшей мере один липид. Липид может быть выбран из, без ограничений, ДЛин-ДМА, ДЛин-K-ДМА, 98N12-5, С12-200, ДЛин-МС3-ДМА, ДЛин-KC2-ДМА, ДОДМА, ПМГК, ПЭГ, ПЭГ-ДМГ и пегилированных липидов. В другом аспекте липид может представлять собой катионный липид, такой как, без ограничений, ДЛин-ДМА, ДЛин-D-ДМА, ДЛин-МС3-ДМА, ДЛин-KC2-ДМА и ДОДМА.

[0007] Соотношение липида к модифицированной мРНК в составе может составлять от 10:1 до 30:10. Средний размер наночастицы препарата, которая может содержать модифицированную мРНК, составляет от 60 до 225 нм. ИПД наночастиц препарата, содержащего модифицированную мРНК, составляет от 0,03 до 0,15. Зета потенциал липида при рН 7,4 может составлять от -10 до +10.

[0008] Препараты модифицированной мРНК могут содержать фузогенный липид, холестерин и ПЭГ липид. Препарат может содержать молярное соотношение 50:10:38,5:1,5-3,0 (катионный липид:фузогенный липид:холестерин:ПЭГ липид). ПЭГ липид может быть выбран из, без ограничений ПЭГ-к-ДМПО, ПЭГ-ДМГ. Фузогенный липид может представлять собой ДСФХ.

[0009] Приведение в контакт клетки или ткани млекопитающего может быть осуществлено с использованием устройства, например, без ограничений, шприцевого насоса, внутреннего осмотического насоса и внешнего осмотического насоса.

[0010] Препарат модифицированной мРНК может представлять собой микросферы ПМГК, размер которых может составлять от 4 до 20 мкм. Модифицированная мРНК высвобождаться из состава со скоростью менее 50% за период 48 часов. Препарат микросфер ПМГК может быть стабильным в сыворотке. Стабильность можно определить как 90% относительно свободной модифицированной мРНК.

[0011] Массовый процент нагрузки микросфер ПМГК модифицированной мРНК может составлять по меньшей мере 0,05%, по меньшей мере 0,1%, по меньшей мере 0,2%, по меньшей мере 0,3%, по меньшей мере 0,4% или по меньшей мере 0,5%. Эффективность инкапсуляции модифицированной мРНК в микросферы ПМГК может составлять по меньшей мере 50%, по меньшей мере 70%, по меньшей мере 90% или по меньшей мере 97%.

[0012] Липидная наночастица по настоящему изобретению может быть введена в герметик, например, без ограничений, фибриновый герметик.

[0013] Клетки или ткани млекопитающих могут быть приведены в контакт с помощью способа введения, такого как, без ограничений, внутривенный, внутримышечный, в стекловидное тело, интратекальный, в опухоль, легочный и подкожный. Клетки или ткани млекопитающих могут быть приведены в контакт с использованием схемы разделенных доз. Клетка или ткань млекопитающего может быть приведена в контакт посредством инъекции. Инъекция может быть осуществлена в ткань, выбранную из группы, состоящей из: внутрикожного пространства, эпидермиса, подкожной ткани и мышцы. Целевой полипептид может вырабатываться в клетке или ткани, в системной локализации от места контакта.

[0014] Целевой полипептид может обнаруживаться в сыворотке через 72 часа после контакта. Уровень целевого полипептида может быть выше, чем уровни до введения дозы. Уровень целевого полипептида может быть выше в сыворотке субъектов женского пола, чем в сыворотке субъектов мужского пола.

[0015] Препарат модифицированной мРНК может содержать более одной модифицированной мРНК. Препарат может содержать две или три модифицированных мРНК.

[0016] Препарат, содержащий модифицированную мРНК, может содержать быстро элиминирующуюся липидную наночастицу (бэЛНЧ), которая может содержать бэЛНЧ липид, фузогенный липид, холестерин и ПЭГ липид в молярном соотношения 50:10:38,5:1,5 (бэЛНЧ липид:фузогенный липид:холестерин:ПЭГ липид). Фузогенный липид может представлять собой ДСФХ, и ПЭГ липид может представлять собой ПЭГ-к-ДМПО. бэЛНЧ липид может представлять собой ДЛин-ДМА с внутренней или концевой эфирной группой или ДЛин-МС3-ДМА с внутренней или концевой эфирной группой. Массовое соотношение общего липида к модифицированной мРНК может составлять от 10:1 до 30:1.

[0017] Препарат, содержащий модифицированную мРНК, может содержать фибриновый герметик.

[0018] Препарат, содержащий модифицированную мРНК, может содержать липидоид, в котором липид выбран из группы, состоящей из: С12-200 и 98N12-5.

[0019] Препарат, содержащий модифицированную мРНК, может содержать полимер. Полимер может быть покрыт, окружен, охвачен, вложен или содержать слой гидрогеля или хирургического герметика. Полимер может быть выбран из группы, состоящей из: ПМГК, этиленвинилацетата, полоксамера и GELSITE®.

[0020] Целевой полипептид может вырабатываться в клетке или ткани млекопитающего посредством приведения в контакт клетки или ткани млекопитающего с буферным препаратом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Буферный препарат может быть выбран из, без ограничений, раствора соли, буферизованного фосфатом солевого раствора и раствора Рингера с лактатом. Буферный препарат может содержать кальций в концентрации от 1 до 10 мМ. Модифицированная мРНК в буферном препарате может содержать очищенный IVT транскрипт.

[0021] Фармакологический эффект у приматов может быть достигнут посредством приведения примата в контакт с составом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Модифицированная мРНК может содержать очищенный IVT транскрипт и/или может быть введена в наночастицы, микросферы поли(молочной-со-гликолевой кислоты) (ПМГК), липидоиды, липоплекс, липосому, полимеры, углеводы (в том числе, простые сахара), катионные липиды, фибриновый гель, фибриновый гидрогель, фибриновый клей, фибриновый герметик, фибриноген, тромбин, быстро элиминирующиеся липидные наночастицы (бэЛНЧ) и их комбинации. Фармакологический эффект может быть более фармакологическим эффектом, связанным с терапевтическим агентом и/или составом, который доказанно вызывает указанный фармакологический эффект. Состав может содержать модифицированную мРНК, в лекарственной форме или свободную. Результатом фармакологического эффекта может быть терапевтически эффективный исход заболевания, расстройства, состояния или инфекции. Такой терапевтически эффективный исход может включать, без ограничений, лечение, улучшение одного или более симптомов, диагностику, предупреждение и задержку развития. Фармакологический эффект может включать, без ограничений, изменение количества клеток, изменение химических показателей сыворотки, изменение активности фермента, повышение уровня гемоглобина и гематокрита.

[0022] В одном варианте реализации настоящего изобретения предлагается состав препарата, который содержит модифицированную молекулу нуклеиновой кислоты и агент доставки. Модифицированная молекула нуклеиновой кислоты может быть выбрана из группы, состоящей из: ДНК, комплементарной ДНК (кДНК), РНК, матричной РНК (мРНК), индуцирующих иРНК агентов, иРНК агентов, миРНК, РНК-шпильки, миРНК, антисмысловой РНК, рибозимов, каталитической ДНК, РНК, которая индуцирует образование тройной спирали, аптамеров, векторов и их комбинаций. Если модифицированная молекула нуклеиновой кислоты представляет собой мРНК, то мРНК может быть получена из кДНК.

[0023] В одном варианте реализации модифицированная молекула нуклеиновой кислоты может содержать по меньшей мере одну модификацию и транслируемый участок. В некоторых случаях, модифицированная нуклеиновая кислота содержит по меньшей мере две модификации и транслируемый участок. Модификация может быть расположена на скелете и/или нуклеозиде молекулы нуклеиновой кислоты. Модификация может быть расположена на связи нуклеозида и скелета.

[0024] В одном варианте реализации модификация может находиться на скелетной связи в модифицированной молекуле нуклеиновой кислоты. Скелетная связь может быть модифицирована заменой одного или более атомов кислорода. Модификация скелетной связи может включать замену по меньшей мере одной фосфодиэфирной связи фосфоротиоатной связью.

[0025] В одном варианте реализации модификация может находиться в нуклеозиде модифицированной молекулы нуклеиновой кислоты. Модификация в нуклеозиде может находиться в сахарном фрагменте указанного нуклеозида. Модификация нуклеозида может находиться в положении 2' нуклеозида.

[0026] Модификация нуклеозида может включать соединение, выбранное из группы, состоящей из: пиридин-4-он рибонуклеозида, 5-аза-уридина, 2-тио-5-аза-уридина, 2-тиоуридина, 4-тио-псевдоуридина, 2-тио-псевдоуридина, 5-гидроксиуридина, 3-метилуридина, 5-карбоксиметил-уридина, 1-карбоксиметил-псевдоуридина, 5-пропинил-уридина, 1-пропинил-псевдоуридина, 5-тауринометилуридина, 1-тауринометил-псевдоуридина, 5-тауринометил-2-тио-уридина, 1-тауринометил-4-тио-уридина, 5-метил-уридина, 1-метил-псевдоуридина, 4-тио-1-метил-псевдоуридина, 2-тио-1-метил-псевдоуридина, 1-метил-1-дезаза-псевдоуридина, 2-тио-1-метил-1-дезаза-псевдоуридина, дигидроуридина, дигидропсевдоуридина, 2-тио-дигидроуридина, 2-тио-дигидропсевдоуридина, 2-метоксиуридина, 2-метокси-4-тио-уридина, 4-метокси-псевдоуридина, 4-метокси-2-тио-псевдоуридина, 5-аза-цитидина, псевдоизоцитидина, 3-метил-цитидина, N4-ацетилцитидина, 5-формилцитидина, N4-метилцитидина, 5-гидроксиметилцитидина, 1-метил-псевдоизоцитидина, пирроло-цитидина, пирроло-псевдоизоцитидина, 2-тио-цитидина, 2-тио-5-метил-цитидина, 4-тио-псевдоизоцитидина, 4-тио-1-метил-псевдоизоцитидина, 4-тио-1-метил-1-дезаза-псевдоизоцитидина, 1-метил-1-дезаза-псевдоизоцитидина, зебуларина, 5-аза-зебуларина, 5-метил-зебуларина, 5-аза-2-тио-зебуларина, 2-тио-зебуларина, 2-метокси-цитидина, 2-метокси-5-метил-цитидина, 4-метокси-псевдоизоцитидина, 4-метокси-1-метил-псевдоизоцитидина, 2-аминопурина, 2,6-диаминопурина, 7-дезаза-аденина, 7-дезаза-8-аза-аденина, 7-дезаза-2-аминопурина, 7-дезаза-8-аза-2-аминопурина, 7-дезаза-2,6-диаминопурина, 7-дезаза-8-аза-2,6-диаминопурина, 1-метиладенозина, N6-метиладенозина, N6-изопентениладенозина, N6-(цис-гидроксиизопентенил)аденозина, 2-метилтио-N6-(цис-гидроксиизопентенил)аденозина, N6-глицинилкарбамоиладенозина, N6-треонилкарбамоиладенозина, 2-метилтио-N6-треонилкарбамоиладенозина, N6,N6-диметиладенозина. 7-метиладенина, 2-метилтио-аденина, 2-метокси-аденинаинозина, 1-метил-инозина, виозина, вибутозина, 7-дезаза-гуанозина, 7-дезаза-8-аза-гуанозина, 6-тио-гуанозина, 6-тио-7-дезаза-гуанозина, 6-тио-7-дезаза-8-аза-гуанозина, 7-метил-гуанозина, 6-тио-7-метил-гуанозина, 7-метилинозина, 6-метокси-гуанозина, 1-метилгуанозина, N2-метилгуанозина, N2,N2-диметилгуанозина, 8-оксо-гуанозина, 7-метил-8-оксо-гуанозина, 1-метил-6-тио-гуанозина, N2-метил-6-тио-гуанозина и N2,N2-диметил-6-тио-гуанозина. В другом варианте реализации модификации независимо выбраны из группы, состоящей из: 5-метилцитозина, псевдоуридина и 1-метилпсевдоуридина

[0027] В одном варианте реализации модификация может находиться в нуклеиновом основании модифицированной молекулы нуклеиновой кислоты. Модификация нуклеинового основания может быть выбрана из группы, состоящей из: цитозина, гуанина, аденина, тимина и урацила. Модификация нуклеинового основания может быть выбрана из группы, состоящей из дезаза-аденозина и дезаза-гуанозина, и линкер может быть присоединен в положении С-7 или С-8 указанного дезаза-аденозина или дезаза-гуанозина. Модифицированное нуклеиновое основание может быть выбрано из группы, состоящей из: цитозина и урацила, и линкер может быть присоединен к модифицированному нуклеиновому основанию в положении N-3 или С-5. Линкер, присоединенный к нуклеиновому основанию, может быть выбран из группы, состоящей из: диэтиленгликоля, дипропиленгликоля, триэтиленгликоля, трипропиленгликоля, тетраэтиленгликоля, тетраэтиленгликоля, двухвалентного алкила, алкенила, алкинильного фрагмента, сложного эфира, амида и эфирного фрагмента.

[0028] В одном варианте реализации две модификации молекулы нуклеиновой кислоты могут быть расположены на нуклеозидах модифицированной молекулы нуклеиновой кислоты. Модифицированные нуклеозиды могут быть выбраны из 5-метилцитозина и псевдоуридина.

[0029] В одном варианте реализации две модификации модифицированной молекулы нуклеиновой кислоты могут быть расположены на нуклеотиде или нуклеозиде. В одном варианте реализации настоящего изобретения раскрывается препарат, содержащий молекулу нуклеиновой кислоты, например, без ограничений, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9 и SEQ ID NO: 10, и фрагмент агента. Молекула нуклеиновой кислоты может содержать поли-А хвост длиной приблизительно 160 нуклеотидов. Кроме того, молекула нуклеиновой кислоты может содержать по меньшей мере один 5' концевой кэп, например, без ограничений, Кэп 0, Кэп 1, ARCA, инозин, N1-метил-гуанозин, 2'-фтор-гуанозин, 7- дезаза-гуанозин, 8-оксо-гуанозин, 2-амино-гуанозин, ЦНК-гуанозина и 2-азидо-гуанозина.

[0030] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 6, 5' концевой кэп в которой представляет собой Кэп 1, хвост поли-А длиной приблизительно 160 нуклеотидов и агент доставки.

[0031] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 7, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0032] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 9, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0033] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 10, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0034] В одном варианте реализации агент доставки включает по меньшей мере один способ повышения эффективности доставки, выбранный из группы, состоящей из: липидоидов, липосом, липидных наночастиц, быстро элиминирующихся липидных наночастиц (бэЛНЧ), полимеров, липоплексов, пептидов, белков, гидрогелей, герметиков, химических модификаций, конъюгации, клеток и усилителей. Липидоид, липидная наночастица и быстро элиминирующиеся липидные наночастицы, которые могут быть использованы в качестве агентов доставки, могут содержать липид, который может быть выбран из группы, состоящей из: С12-200, MD1, 98N12-5, ДЛин-ДМА, ДЛин-K-ДМА, ДЛИН-КС2-ДМА, ДЛин-МС3-ДМА, ПМГК, ПЭГ, ПЭГ-ДМГ, пегилированных липидов и их аналогов. Быстро элиминирующаяся липидная наночастица может содержать сложноэфирную связь на конце липидной цепи, или сложноэфирная связь может представлять собой внутреннюю связь, расположенную справа или слева от насыщенного атома углерода в липидной цепи. Быстро элиминирующаяся липидная наночастица, которая может быть использована в качестве агента доставки, может представлять собой, без ограничений, ДЛин-МС3-ДМА и ДЛин-ДМА.

[0035] В одном варианте реализации липидная наночастица может содержать ПЭГ и по меньшей мере один компонент, такой как, без ограничений, холестерин, катионный липид и фузогенный липид.

[0036] В одном варианте реализации липидная наночастица может содержать по меньшей мере один из ПЭГ, холестерина, катионного липида и фузогенного липида.

[0037] В одном варианте реализации фузогенный липид представляет собой дистероилфосфатидилхолин (ДСФХ). В другом варианте реализации ПЭГ липид представляет собой ПЭГ-ДМГ. В еще одном варианте реализации катионный липид может представлять собой, без ограничений, ДЛин-ДМА, ДЛин-МС3-ДМА, С12-200, 98N12-5 и ДЛин-KC2-ДМА.

[0038] В одном варианте реализации состав липидной наночастицы может включает 50 моль % катионного липида, 10 моль % ДСФХ, 1,5-3,0 моль % ПЭГ и 37-38,5 моль % холестерина.

[0039] В одном варианте реализации модифицированная нуклеиновая кислота может быть введена в состав вместе с ПМГК с получением препарата с замедленным высвобождением. В другом варианте реализации модифицированная нуклеиновая кислота может быть введена в состав вместе с ПМГК и другими активными и/или неактивными компонентами с получением препарата с замедленным высвобождением. В одном варианте реализации модифицированная молекула нуклеиновой кислоты может включать, без ограничений, SEQ ID NO: 9 и SEQ ID NO: 10.

[0040] В одном варианте реализации препарат с замедленным высвобождением может включать микросферу с замедленным высвобождением. Диаметр микросферы с замедленным высвобождением может составлять от приблизительно 10 до приблизительно 50 мкм. В другом варианте реализации микросфера с замедленным высвобождением может содержать от приблизительно 0,001 до приблизительно 1,0% масс по меньшей мере одной модифицированной молекулы нуклеиновой кислоты.

[0041] В одном варианте реализации модифицированные нуклеиновые кислоты по настоящему изобретению могут содержать по меньшей мере один стоп-кодон перед 3' нетранслируемым участком (НТУ). Стоп-кодон может быть выбран из TGA, ТАА и TAG. В одном варианте реализации модифицированные нуклеиновые кислоты по настоящему изобретению содержат стоп-кодон TGA и один дополнительный стоп-кодон. В другом варианте реализации дополнительный стоп-кодон может представлять собой ТАА. В другом варианте реализации модифицированная нуклеиновая кислота по настоящему изобретению содержит три стоп-кодона.

[0042] В одном варианте реализации настоящего изобретения раскрывается препарат с контролируемым высвобождением, содержащий модифицированную нуклеиновую кислоту, которая может кодировать целевой полипептид. Модифицированная нуклеиновая кислота может быть инкапсулирована или в значительной степени инкапсулирована в агент доставки. Агент доставки может быть покрыт, охвачен, окружен, включен или содержать слой полимера, гидрогеля и/или хирургического герметика. В дополнительном варианте реализации препарат с контролируемым высвобождением может содержать второй слой полимера, гидрогеля и/или хирургического герметика.

[0043] В одном варианте реализации агент доставки в препарате с контролируемым высвобождением может содержать, без ограничений, липидоиды, липосомы, липидные наночастицы, быстро элиминирующиеся липидные наночастицы, липоплексы и самособирающиеся липидные наночастицы.

[0044]

[0045] Полимер, который может быть использован в препарате с контролируемым высвобождением, может включать, без ограничений, ПМГК, этиленвинилацетат, полоксамер и GELSITE®. Хирургический герметик, который может быть использован в препарате с контролируемым высвобождением, может включать, без ограничений, полимеры фибриногена, TISSEELL®, герметики на основе ПЭГ и COSEAL®.

[0046] В одном варианте реализации агент доставки в препарате с контролируемым высвобождением включает агент доставки в форме липидной наночастицы или быстро элиминирующейся липидной наночастицы. В одном из аспектов, липидная наночастица или быстро элиминирующиеся липидная наночастица может быть покрыта, в значительной степени покрыта, охвачена, в значительной степени охвачена, окружена, в значительной степени окружена, включена, в значительной степени включена или может содержать слой полимера, гидрогеля и/или хирургического герметика. В другом аспекте агент доставки может представлять собой липидную наночастицу, которая может быть покрыта, охвачена, в значительной степени охвачена, окружена, в значительной степени окружена, включена, в значительной степени включена или может содержать слой ПМГК.

КРАТКОЕ ОПИСАНИЕ ФИГУР

[0047] Раскрытые выше и другие объекты, признаки и преимущества будут очевидными из нижеследующего описания конкретных вариантов изобретения, как проиллюстрировано на сопроводительных фигурах, где подобные обозначения указывают на одни и те же части в различных проекциях. Фигуры не нуждаются с масштабировании, скорее акцент поставлен на иллюстрации принципов различных вариантов реализации изобретения.

[0048] Фиг. 1 иллюстрирует липидные структуры из уровня техники, пригодные для данного изобретения. Проиллюстрированы структуры 98N12-5 (TETA5-LAP), ДЛин-ДМА, ДЛин-K-ДМА (2,2-дилинолеил-4-диметиламинометил-[1,3]-диоксолан), ДЛин-KC2-ДМА, ДЛин-МС3-ДМА и С12-200.

[0049] Фиг. 2 иллюстрирует характерную плазмиду, пригодную для реакций IVT, раскрытых в настоящем документе. Плазмида содержит вставку 64818, сконструированную изобретателями настоящего изобретения.

[0050] Фиг. 3 иллюстрирует профиль в геле модифицированной мРНК, инкапсулированной в микросферы ПМГК.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0051] Доставка нуклеиновых кислот в клетки сопровождается множеством нежелательных осложнений, в том числе, интеграцией нуклеиновой кислоты в геном клетки-мишени, что может приводить к неопределенным уровням экспрессии, вредоносной передаче нуклеиновой кислоты потомству и соседним клеткам и значительному риску мутаций. Молекулы модифицированных нуклеиновых кислот в соответствии с настоящим документом способны снижать природную иммунную активность популяции клеток, в которые они введены, таким образом, повышая эффективность выработки белка в указанной популяции клеток. Кроме того, в настоящем документе раскрыты один или более дополнительных предпочтительных видов активности и/или свойств нуклеиновых кислот и белков в соответствии с настоящим документом.

[0052] Дополнительно, в настоящем документе раскрыты способы лечения субъекта с диагностированным или предполагаемым заболеванием, расстройством и/или состоянием, причем способы включают введение субъекту, нуждающемуся в таком лечении, состава, раскрытого в настоящем документе, в количестве, достаточном для лечения заболевания, расстройства и/или состояния.

[0053] Если не указано иное, все технические и научные термины, используемые в настоящем документе, имеют такое же значение, как обычно понимается средним специалистом в данной области, к которой принадлежит настоящее изобретение. Хотя материалы и методы, подобные или эквивалентные раскрытым в настоящем документе, могут применяться в практике или тестировании способов, раскрытых в изобретении, пригодные материалы и методы раскрыты ниже.

Модифицированные молекулы нуклеиновой кислоты

[0054] В настоящем изобретении раскрываются нуклеиновые кислоты, в том числе, РНК, например, мРНК, которые содержат один или более модифицированных нуклеозидов или нуклеотидов (называются «модифицированными молекулами нуклеиновой кислоты» «модифицированными мРНК» или «модифицированными молекулами мРНК»), как раскрыто в настоящем документе. Модификация молекул нуклеиновой кислоты по настоящему изобретению может придавать полезные свойства, в том числе, без ограничений, значительное снижение или отсутствие значимого природного иммунного ответа клетки, в которую введена модифицированная мРНК. Модифицированные молекулы нуклеиновых кислот также могут демонстрировать повышенную эффективность выработки белка, внутриклеточного удерживания нуклеиновых кислот и жизнеспособность приведенных в контакт клеток, а также сниженную иммуногенность по сравнению с немодифицированными молекулами нуклеиновой кислоты.

[0055] Раскрыты модифицированные молекулы нуклеиновой кислоты, содержащие транслируемый участок и одну, две или более двух различных модификаций нуклеозидов. В качестве примера, нуклеиновые кислоты для использования в практике настоящего изобретения включают рибонуклеиновые кислоты (РНК), дезоксирибонуклеиновые кислоты (ДНК), треозонуклеиновые кислоты (ТНК), гликольнуклеиновые кислоты (ГНК), циклические нуклеиновые кислоты (ДНК) или их гибриды. В предпочтительных вариантах реализации, модифицированные молекулы нуклеиновой кислоты включают матричную РНК (мРНК). Как раскрыто в настоящем документе, модифицированные молекулы нуклеиновой кислоты в соответствии с настоящим документом могут в значительной степени не индуцировать природный иммунный ответ клетки, в которую введена модифицированная мРНК. В другом варианте реализации модифицированная молекула нуклеиновой кислоты может демонстрировать уменьшенное разложение, по сравнению с немодифицированной нуклеиновой кислотой, в клетке, куда введена модифицированная молекула нуклеиновой кислоты.

[0056] Термин «нуклеиновая кислота» включает любое соединение и/или вещество, которое инкорпорировано или может быть инкорпорировано в олигонуклеотидную цепь. В качестве примера, нуклеиновые кислоты для применения в соответствии с настоящим документом включают, без ограничений, одну или более ДНК, кДНК, РНК, в том числе, матричную РНК (мРНК), их гибриды, индуцирующие иРНК агенты, иРНК агенты, миРНК, РНК-шпильку, миРНК, антисмысловые РНК, рибозимы, каталитическую ДНК, РНК, которая индуцирует образование тройной спирали, аптамеры, векторы и т.п.

[0057] В некоторых вариантах реализации желательным является внутриклеточное разложение модифицированной молекулы нуклеиновой кислоты, введенной в клетку. Например, было бы желательным разложение модифицированной молекулы нуклеиновой кислоты, если желательной является выработка белка в пределах точного интервала времени. Таким образом, в настоящем изобретении предлагается модифицированная молекула нуклеиновой кислоты, содержащая домен разложения, способный действовать направленным образом в пределах клетки.

[0058] В некоторых вариантах реализации модифицированные молекулы нуклеиновой кислоты могут быть химически модифицированы в остатке сахара, нуклеинового основания {например, в положении 5' нуклеинового основания) или фосфатном скелете (например, замена фосфата другим фрагментом, таким как тиофосфат). В некоторых вариантах реализации модификация может приводить к нарушению взаимодействия с основным партнером бороздки по связыванию, что может способствовать природному иммунному ответу. В некоторых вариантах реализации состав препарата при введении субъекту может приводить к улучшению биодоступности, терапевтического окна или объема распределения модифицированной молекулы нуклеиновой кислоты, по сравнению с введением модифицированной молекулы нуклеиновой кислоты без инкорпорации агента доставки. В некоторых вариантах реализации модифицированные нуклеозиды и нуклеотиды модифицированных молекул нуклеиновой кислоты по настоящему изобретению могут быть синтезированы с использованием О-защищенных соединений, раскрытых в Международной публикации WO 2012138530, содержание которой включено в настоящий документ в полном объеме посредством ссылки.

[0059] В некоторых вариантах реализации модифицированная молекула нуклеиновой кислоты может содержать мРНК. В конкретных вариантах реализации модифицированная мРНК (ммРНК) может происходить от кДНК. В некоторых вариантах реализации ммРНК может содержать по меньшей мере две модификации нуклеозидов. В одном варианте реализации модификации нуклеозидов могут быть выбраны из 5-метилцитозина и псевдоуридина. В другом варианте реализации по меньшей мере одна из модификаций нуклеозидов не является 5-метилцитозином и/или псевдоуридином. В некоторых вариантах реализации агент доставки может включать препараты, позволяющие локальную и системную доставку ммРНК. Препараты модифицированных молекул нуклеиновых кислот и/или ммРНК могут быть выбраны из, без ограничений, липидоидов, липосом и липидных наночастиц, быстро элиминирующихся липидных наночастиц, полимеров, липоплексов, пептидов и белков, по меньшей мере одной химической модификации и конъюгации, усилителей и/или клеток.

[0060] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты по настоящему изобретению могут содержать по меньшей мере два стоп-кодона перед 3' нетранслируемым участком (НТУ). Стоп-кодон может быть выбран из TGA, ТАА и TAG. В одном варианте реализации нуклеиновые кислоты по настоящему изобретению содержат стоп-кодон TGA и один дополнительный стоп-кодон. В другом варианте реализации дополнительный стоп-кодон может представлять собой ТАА. В другом варианте реализации модифицированные молекулы нуклеиновой кислоты могут содержать три стоп-кодона.

[0061] Другие компоненты нуклеиновой кислоты являются необязательными в модифицированной молекуле нуклеиновой кислоты, но данные компоненты могут быть предпочтительными в некоторых вариантах.

Нетранслируемые участки (НТУ)

[0062] Нетранслируемые участки (НТУ) гена транскрибируются, но не транслируются. 5' НТУ начинается на сайте инициации транскрипции и продолжается до старт-кодона, но не включает старт-кодон; тогда как 3' НТУ начинается непосредственно после стоп-кодона и продолжается до сигнала терминации транскрипции. В настоящее время появляется все больше доказательств регуляторных ролей НТУ в том, что касается стабильности молекулы нуклеиновой кислоты и трансляции. Регуляторные признаки НТУ могут быть введены в модифицированные молекулы мРНК по настоящему изобретению для повышения стабильности молекулы. Конкретные признаки также могут быть введены для обеспечения контролируемой регуляции вниз транскрипта в случае, если он ошибочно направлен на нежелательные органы-мишени.

5' НТУ и инициация трансляции

[0063] Природные 5' НТУ несут признаки, которые играют роль в инициации трансляции. Они содержат сигнатуры по типу последовательности Козака, которые, как широко известно, принимают участие в процессе инициации рибосомой трансляции многих генов. Последовательности Козака содержат консенсус CCR(A/G)CCAUGG (SEQ ID NO: 1), в котором R представляет собой пурин (аденин или гуанин), на три остатка основания отстоящий в направлении 5' от старт-кодона (AUG), за которым следует другой остаток «G». Кроме того, известно, что 5' НТУ образует вторичные структуры, которые принимают участие в связывании с фактором удлинения.

[0064] Путем конструирования признаков, обычно находимых в обильно экспрессирующихся генах конкретных органов-мишеней, можно повысить стабильность и выработку белка модифицированными молекулами мРНК по изобретению. Например, введение 5' НТУ экспрессируемой в печени мРНК, например, альбумина, сывороточного амилоида А, Аполипопротеина А/В/Е, трансферрина, альфа-фетопротеина, эритропоэтина или Фактора VIII, может применяться для повышения экспрессии модифицированной молекулы нуклеиновой кислоты, такой как ммРНК, в линиях гепатоцитов или печени. Подобным образом, применение 5' НТУ, происходящего от любой тканеспецифичной мРНК, с целью повышения экспрессии в указанной ткани, возможно для мышцы (MyoD, миозин, миоглобин, миогенин, геркулин), для эндотелиальных клеток (Tie-1, CD36), для миелоидных клеток (С/ЕВР, AML1, G-CSF, GM-CSF, CD11b, MCR, Fr-1, i-NOS), для лейкоцитов (CD45, CD18), для жировой ткани (CD36, GLUT4, ACRP30, адипонектин) и для эпителиальных клеток легких (SP-A/B/C/D).

[0065] Другие не-НТУ последовательности могут быть введены в 5' НТУ (или 3' НТУ) модифицированных молекул нуклеиновой кислоты по настоящему изобретению. Например, последовательности интронов или частей интронов могут быть введены во фланкирующие участки модифицированной мРНК по изобретению. Введение интронных последовательностей может увеличивать выработку белка, а также уровни мРНК.

3' НТУ и богатые AU элементы

[0066] Известно, что 3' НТУ содержат в своем составе участки, состоящие из Аденозина (А) и Уридина (U). Указанные сигнатуры, богатые AU, особенно преобладают в генах с высокой скоростью функционального цикла. На основании признаков и функциональных свойств их последовательности, богатые AU элементы (АРЭ) могут быть разделены на три класса (Chen et al, 1995): АРЭ Класса I содержат несколько разбросанных копий мотива AUUUA в пределах богатых U участков. С-Мус и MyoD составляют Класс I АРЭ. АРЭ Класса II содержат два или более перекрывающихся нонам ера UUAUUUA(U/A)(U/A) (SEQ ID NO: 2). Молекулы, относящиеся к данному типу АРЭ, включают GM-CSF и TNF-a. АРЭ Класса III не так хорошо определены. Указанные богатые U участки не содержат мотива AUUUA. c-Jun и миогенин представляют собой два хорошо изученных примера из данного класса. Известно, что большинство белков, связывающихся с АРЭ, дестабилизируют мРНК, тогда как члены семейства ELAV, в основном, HuR, доказанно повышают стабильность мРНК. HuR связывается с АРЭ всех трех классов. Конструирование сайтов специфичного связывания с HuR в 3' НТУ молекул нуклеиновой кислоты будет приводить к связыванию с HuR и, таким образом, стабилизации информации in vivo.

[0067] Введение, удаление или модификация богатых AU элементов 3' НТУ (АРЭ) могут применяться с целью модуляции стабильности модифицированной мРНК по изобретению. При конструировании конкретной модифицированной мРНК, одна или более копий АРЭ могут быть введены для получения менее стабильной модифицированной мРНК по изобретению, и, таким образом, ограничивать трансляцию и снижать выработку результирующего белка.

[0068] Подобным образом, АРЭ могут быть идентифицированы и удалены или подвергнуты мутации с целью повышения внутриклеточной стабильности и, таким образом, увеличения трансляции и выработки результирующего белка. Эксперименты по трансфекции могут быть проведены в соответствующих клеточных линиях с использованием модифицированной мРНК по изобретению, и выработка белка может быть количественно оценена в различных точках времени после трансфекции. Например, клетки могут быть трансфицированы различными АРЭ-сконструированными молекулами и посредством использования набора ТИФА для соответствующего белка, с количественным определением образовавшегося белка через 6 часов, 12 часов, 24 часа, 48 часов и 7 дней после трансфекции.

Введение сайтов связывания с микроРНК

[0069] МикроРНК (или миРНК) представляют собой некодирующие РНК длиной 19-25 нуклеотидов, которые связываются с 3' НТУ молекул нуклеиновой кислоты и регулируют вниз экспрессию гена посредством уменьшения стабильности молекулы нуклеиновой кислоты или ингибирования трансляции. Модифицированная мРНК по изобретению может содержать одну или более целевых последовательностей микроРНК, последовательностей микроРНК или зародышей микроРНК. Такие последовательности могут соответствовать любой известной микроРНК, такой как раскрытые в Публикациях США US 2005/0261218 и US 2005/0059005, содержание которых включено в настоящий документ в полном объеме посредством ссылки.

[0070] Последовательность микроРНК содержит «зародышевый» участок, т.е., последовательность участка в положениях 2-8 зрелой микроРНК, которая обладает идеальной уотсон-криковской комплементарностью к последовательности РНК-мишени. Зародыш микроРНК может содержать положения 2-8 или 2-7 зрелой микроРНК. В некоторых вариантах реализации зародыш микроРНК может содержать 7 нуклеотидов (например, нуклеотиды 2-8 зрелой микроРНК), причем зародыш-комплементарный сайт в соответствующей миРНК-мишени фланкирован аденином (А), противостоящим положению 1 микроРНК. В некоторых вариантах реализации зародыш микроРНК может содержать 6 нуклеотидов (например, нуклеотиды 2-7 зрелой микроРНК), где зародыш-комплементарный сайт в соответствующей миРНК-мишени фланкирован баянным аденином (А), противостоящим положению 1 микроРНК, см., например, Grimson A, Farh KK, Johnston WK, Garrett-Engele Р, Lim LP, Bartel DP; Mol Cell. 2007 Jul 6;27(1):91-105; каждая из которых включена в настоящий документ в полном объеме посредством ссылки. Основания зародыша микроРНК полностью комплементарны последовательности-мишени. Путем введения целевых последовательностей микроРНК в 3' НТУ модифицированной мРНК по изобретению можно обеспечить нацеливание молекулы в сторону разложения или уменьшения трансляции, при условии, что доступна необходимая микроРНК. Такой способ будет уменьшать опасность нецелевого воздействия при доставке молекулы нуклеиновой кислоты. Сообщалось об идентификации микроРНК, целевых участков микроРНК и характера их экспрессии, а также биологической роли (Bonauer et al., Curr Drug Targets 2010 11:943-949; Anand and Cheresh Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 Dec 20. doi: 10.1038/leu.2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[0071] Например, если модифицированная молекула нуклеиновой кислоты представляет собой модифицированную мРНК и не предназначена для доставки в печень, но, в конце концов туда поступает, то микроРНК miR-122, в больших количествах встречающаяся в печени, может ингибировать экспрессию целевого гена в одном или нескольких целевых сайтах miR-122, введенных в 3' НТУ модифицированной мРНК. Введение одного или нескольких сайтов связывания с различными микроРНК может быть предусмотрено с целью дополнительного увеличения продолжительности жизни, стабильности и трансляции в белок модифицированной молекулы нуклеиновой кислоты и/или модифицированной мРНК.

[0072] В настоящем документе термин «сайт микроРНК» обозначает сайт-мишень микроРНК или сайт распознавания микроРНК или любую нуклеотидную последовательность, с которой микроРНК связывается или образует ассоциацию. Следует понимать, что «связывание» может соответствовать правилам традиционной уотсон-криковской гибридизации или может отображать любую стабильную ассоциацию микроРНК с целевой последовательностью на сайте микроРНК или смежно с ним.

[0073] И наоборот, для целей создания модифицированной мРНК по настоящему изобретению, сайты связывания с микроРНК могут быть сконструированы за пределами (т.е., удалены из) последовательности, где они встречаются в природе, с целью повышения экспрессии белка в конкретных тканях. Например, сайты связывания с miR-122 могут быть удалены для повышения экспрессии белка в печени. Регуляция экспрессии в нескольких тканях может быть достигнута посредством введения или удаления одного или нескольких сайтов связывания с микроРНК.

[0074] Примеры ткани, в которых микроРНК известны как регуляторы мРНК и, следовательно, экспрессии белка, включают, без ограничений, печень (miR-122), мышцу (miR-133, miR-206, miR-208), эндотелиальные клетки (miR-17-92, miR-126), миелоидные клетки (miR-142-3р, miR-142-5p, miR-16, miR-21, miR-223, miR-24, miR-27), жировую ткань (let-7, miR-30c), сердце (miR-1d, miR-149), почку (miR-192, miR-194, miR-204) и эпителиальные клетки легкого (let-7, miR-133, miR-126). Кроме того, микроРНК регулирует комплекс биологических процессов, таких как ангиогенез (miR-132) (Anand and Cheresh Curr Opin Hematol 2011 18:171-176; включена в настоящий документ в полном объеме посредством ссылки). В модифицированной мРНК по настоящему изобретению, сайты связывания с микроРНК, которые принимают участие в таких процессах, могут быть удалены или введены, с целью регуляции экспрессии модифицированной мРНК в биологически релевантных типах клеток или контексте релевантных биологических процессов.

[0075] И, наконец, посредством понимания характера экспрессии микроРНК в различных типах клеток, может быть сконструирована модифицированная мРНК для более направленной экспрессии в конкретных типах клеток или только в конкретных биологических условиях. Посредством введения сайтов связывания с тканеспецифичной микроРНК, может быть сконструирована модифицированная мРНК, которая будет оптимальной для экспрессии белка в ткани или в контексте биологического условия.

[0076] Эксперименты по трансфекции могут быть проведены в релевантных линиях клеток, с использованием сконструированной модифицированной мРНК, и выработка белка может быть количественно оценена в различных точках времени после трансфекции. Например, клетки могут быть трансфицированы сконструированной модифицированной мРНК, содержащей различные сайты связывания с микроРНК, и путем использования набора ТИФА для соответствующего белка, с количественным анализом образовавшегося белка через 6 часов, 12 часов, 24 часа, 48 часов, 72 часа и 7 дней после трансфекции. Кроме того, могут быть проведены эксперименты in vivo с использованием молекул со сконструированным сайтом связывания с микроРНК для исследования изменений тканеспецифичной экспрессии введенной в препараты модифицированной мРНК.

5' Кэппинг

[0077] Структура 5' кэпа в мРНК принимает участие в экспорте из ядра, повышает стабильность мРНК и связывается с белком связывания кэпа (БСК) мРНК, который ответственен за стабильность мРНК в клетке и компетентность трансляции в процессе ассоциации БСК с поли(А) связывающимся белком, с образованием зрелой формы циклической мРНК. Кроме того, кэп способствует удалению 5' проксимальных интронов в ходе сплайсинга мРНК.

[0078] Может быть осуществлен кэппинг 5'-конца эндогенных молекул мРНК с образованием 5'-ррр-5'-трифосфатной связи между концевым остатком гуанозина кэпа и 5'-концевым транскрибированным смысловым нуклеотидом молекулы мРНК. Указанный 5'-гуанилированный кэп в дальнейшем может быть метилирован с образованием остатка N7-метил-гуанилата. Кроме того, рибозные сахара концевых и/или неконцевых транскрибированных нуклеотидов на 5' конце мРНК необязательно могут быть 2'-O-метилированы. Удаление 5'-кэпа посредством гидролиза и расщепления гуанилатной структуры кэпа может нацеливать молекулу нуклеиновой кислоты, такую как молекула мРНК, в сторону разложения.

[0079] Модификации в модифицированной мРНК по настоящему изобретению могут давать негидролизуемую структуру кэпа, предупреждающую удаление кэпа и, таким образом, увеличивающую период полувыведения мРНК. Вследствие того, что структура кэпа требует расщепления 5'-ррр-5'-фосфородиэфирных связей, модифицированные нуклеотиды могут использоваться в ходе реакции кэппинга. Например, кэппинг-фермент коровьей оспы производства New England Biolabs (Ипсвич, Массачусетс) может использоваться с α-тио-гуанозиновыми нуклеотидами, в соответствии с инструкциями производителя, для образования фосфоротиоатной связи в кэпе 5'-ррр-5'. Могут использоваться дополнительные модифицированные гуанозиновые нуклеотиды, такие как α-метил-фосфонатные и селено-фосфатные нуклеотиды.

[0080] Дополнительные модификации включают, без ограничений, 2'-O-метилирование рибозных сахаров 5'-концевых и/или 5'-неконцевых нуклеотидов мРНК (как упоминалось выше) на 2'-гидроксильной группе сахарного кольца. Множество разнообразных структур 5'-кэпа может применяться для образования 5 '-кэпа в молекуле нуклеиновой кислоты, такой как молекула мРНК.

[0081] Аналоги кэпа, которые в настоящем документе также называются синтетическими аналогами кэпа, химическими кэпами, химическими аналогами кэпа или структурными или функциональными аналогами кэпа, являются отличными от природных (т.е., эндогенных, дикого типа или физиологических) 5'-кэпов по своей химической структуре, при сохранении функции кэпа. Аналоги кэпа могут быть химически (т.е., неферментно) или ферментно синтезированы и/или соединены с молекулой нуклеиновой кислоты.

[0082] Например, анти-инвертный аналог кэпа (ARCA) содержит два остатка гуанина, соединенные 5'-5'-трифосфатной группой, где один остаток гуанина содержит N7-метильную группу, а также 3'-О-метильную группу (т.е., N7,3'-O-диметил-гуанозин-5'-трифосфат-5'-гуанозин (m7G-3'mppp-G; который также может обозначаться как 3' О-Me-m7G(5')ppp(5')G). Атом 3'-О другого, немодифицированного гуанинового остатка соединяется с 5'-концевым нуклеотидом кэппированной молекулы нуклеиновой кислоты (например, мРНК или ммРНК). N7- и 3'-О-метилированные гуаниновые остатки обеспечивают концевой фрагмент кэппированной молекулы нуклеиновой кислоты (например, мРНК или ммРНК).

[0083] Другой пример кэпа представляет собой mCAP, сходный с ARCA, но содержащий 2'-O-метильную группу на гуанозине (т.е., N7,2'-O-диметил-гуанозин-5'-трифосфат-5'-гуанозин, m7Gm-ppp-G).

[0084] Хотя аналоги кэпа обеспечивают сопутствующий кэппинг молекулы нуклеиновой кислоты в реакции транскрипции in vitro, до 20% транскриптов могут оставаться без кэпа. Это, а также структурные отличия аналога кэпа от эндогенных структур 5'-кэпа нуклеиновых кислот, образованных эндогенным способом, с помощью клеточного аппарата транскрипции, могут приводить к снижению трансляционной компетентности и клеточной стабильности.

[0085] Модифицированные мРНК по настоящему изобретению также могут быть кэппированы посттранскрипционно, с использованием ферментов, с целью генерации более аутентичных структур 5'-кэпа. В настоящем документе выражение «более аутентичный» обозначает признак, который точно отображает или имитирует, структурно или функционально, признак эндогенного происхождения или дикого типа. Таким образом, признак «более аутентичный» является более характерным для эндогенной, дикого типа, природной или физиологической клеточной функции и/или структуры, по сравнению с синтетическими признаками или аналогами, и т.д., из уровня техники или такими, которые превосходят соответствующий эндогенный, дикого типа, природный или физиологический признак в одном или более отношениях. Неограничивающими примерами более аутентичных структур 5'-кэпа по настоящему изобретению являются обладающие, среди прочего, повышенной способностью связывания с белками, которые связываются с кэпом, увеличенным периодом полувыведения, сниженной чувствительностью к 5' эндонуклеазам и/или сниженным уровнем удаления 5'-кэпа, по сравнению с синтетическими структурами 5'-кэпа, известными из уровня техники (или дикого типа, природной или физиологической структурой 5'-кэпа). Например, рекомбинантный кэппинг-фермент вируса коровьей оспы и рекомбинантный фермент 2'-O-метилтрансфераза могут образовывать канонические 5'-5'-трифосфатные связи между 5'-концевым нуклеотидом мРНК и гуаниновым нуклеотидом кэпа, где гуаниновый кэп содержит N7 метилирование, и 5'-концевой нуклеотид мРНК содержит 2'-O-метил. Такая структура заканчивается структурой Кэпа 1. Такой кэп приводит к повышению трансляционной компетентности и клеточной стабильности, а также снижению активации клеточных провоспалительных цитокинов, по сравнению, например, с другими структурами аналогов 5'-кэпа, известными из уровня техники. Структуры кэпа включают, без ограничений, 7mG(5')ppp(5')N,pN2p (кэп 0), 7mG(5')ppp(5')NlmpNp (кэп 1) и 7mG(5')-ppp(5')NlmpN2mp (кэп 2).

[0086] Поскольку модифицированная мРНК может быть кэппирована посттранскрипционально, и поскольку данный процесс является более эффективным, практически 100% модифицированной мРНК может быть кэппировано. В противоположность этому, эффективность составляет ~80%, если аналог кэпа присоединяется к мРНК в ходе реакции транскрипции in vitro.

[0087] В соответствии с настоящим изобретением, 5' концевые кэпы могут включать эндогенные кэпы или аналоги кэпа. В соответствии с настоящим изобретением, 5' концевой кэп может включать гуаниновый аналог. Пригодные гуаниновые аналоги включают, без ограничений, инозин, N1-метил-гуанозин, 2'фтор-гуанозин, 7-дезаза-гуанозин, 8-оксо-гуанозин, 2-амино-гуанозин, ЦНК-гуанозин и 2-азидо-гуанозин.

Вирусные последовательности

[0088] Дополнительные вирусные последовательности, например, без ограничений, последовательность усилителя трансляции вируса желтой карликовости ячменя (BYDV-PAV) могут быть сконструированы и вставлены в 3' НТУ модифицированной мРНК по изобретению, и могут стимулировать трансляцию мРНК in vitro и in vivo. Эксперименты по трансфекции могут быть проведены на релевантных линиях клеток, и выработка белка может быть количественно определена методом ТИФА через 12 часов, 24 часа, 48 часов, 72 часа и 7 дней после трансфекции.

Последовательности ВСВР

[0089] Дополнительно раскрыты модифицированные мРНК, которые могут содержать внутренний сайт вхождения в рибосому (ВСВР). Впервые идентифицированный как признак вируса РНК Picorna, ВСВР играет важную роль в инициации синтеза белка в отсутствие структуры 5'-кэпа. ВСВР может действовать как единственный сайт связывания с рибосомой или может служить одним из нескольких сайтов связывания мРНК с рибосомой. Модифицированная мРНК, содержащая более одного функционального сайта связывания с рибосомой, может кодировать несколько пептидов или полипептидов, которые транслируются независимо рибосомами («полицистронные молекулы нуклеиновой кислоты»). Если модифицированная мРНК снабжена ВСВР, она дополнительно может необязательно содержать второй транслируемый участок. Примеры последовательностей ВСВР, которые могут применяться в соответствии с изобретением, включают, без ограничений, последовательности пикорнавирусов (например, вируса ящура), вирусов домашних животных (CFFV), вирусов полиомиелита (ВП), вирусов энцефаломиокардита (ВЭЦМ), вирусов ящура (ВЯ), вирусов гепатита С (HCV), вирусов классической чумы свиней (ВКЧС), вируса лейкоза мышей (ВЛМ), вирусов иммунодефицита обезьян (ВИО) или вирусы паралича сверчков (ВПСв).

Поли-А хвосты

[0090] В ходе процессинга РНК, длинная цепь адениновых нуклеотидов (поли-А хвост) может быть добавлена к модифицированной молекуле нуклеиновой кислоты, такой как модифицированная молекула мРНК, с целью повышения стабильности. Немедленно после транскрипции, 3' конец транскрипта может быть расщеплен до свободной 3' гидроксильной группы. Поли-А полимераза присоединяет цепь адениновых нуклеотидов к РНК. В ходе процесса под названием полиаденилирование, присоединяется поли-А хвост, длина которого может составлять, например, приблизительно от 100 до 250 остатков.

[0091] Было обнаружено, что определенная уникальная длина поли-А хвоста обеспечивает некоторые преимущества модифицированной мРНК по настоящему изобретению.

[0092] В общем, длина поли-А хвоста по настоящему изобретению составляет более 30 нуклеотидов. В другом варианте реализации длина поли-А хвоста составляет более 35 нуклеотидов (например, по меньшей мере или более чем приблизительно 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500 и 3000 нуклеотидов). В некоторых вариантах реализации модифицированная мРНК содержит от приблизительно 30 до приблизительно 3000 нуклеотидов (например, от 30 до 50, от 30 до 100, от 30 до 250, от 30 до 500, от 30 до 750, от 30 до 1000, от 30 до 1500, от 30 до 2000, от 30 до 2500, от 50 до 100, от 50 до 250, от 50 до 500, от 50 до 750, от 50 до 1 000, от 50 до 1500, от 50 до 2 000, от 50 до 2500, от 50 до 3 000, от 100 до 500, от 100 до 750, от 100 до 1 000, от 100 до 1500, от 100 до 2 000, от 100 до 2500, от 100 до 3000, от 500 до 750, от 500 до 1000, от 500 до 1500, от 500 до 2000, от 500 до 2500, от 500 до 3000, от 1000 до 1500, от 1000 до 2000, от 1000 до 2500, от 1000 до 3000, от 1500 до 2000, от 1500 до 2500, от 1500 до 3000, от 2000 до 3000, от 2000 до 2500 и от 2500 до 3000).

[0093] В одном варианте реализации поли-А хвост конструируется относительно общей длины модифицированной мРНК. Такой дизайн может быть основан на длине кодирующего участка, длине конкретного признака или участка (например, фланкирующих участков) или на длине конечного продукта, экспрессирующегося из модифицированной мРНК.

[0094] В данном контексте длина поли-А хвоста может быть на 10, 20, 30, 40, 50, 60, 70, 80, 90 или 100% больше длины модифицированной мРНК, ее участка или признака. Кроме того, поли-А хвост может быть сконструирован как отрезок модифицированной мРНК, к которой он принадлежит. В данном контексте, поли-А хвост может составлять 10, 20, 30, 40, 50, 60, 70, 80 или 90% или более от общей длины молекулы или общем длины молекулы минус поли-А хвост. Дополнительно, сконструированные сайты связывания и конъюгации модифицированной мРНК с белком, связывающимся с поли-А, могут повышать экспрессию.

[0095] Дополнительно, несколько различных модифицированных мРНК могут быть одновременно соединены с БСПА (белок, связывающийся с поли-А) посредством 3'-конца, с использованием модифицированных нуклеотидов на 3'-конце поли-А хвоста. Эксперименты по трансфекции могут быть проведены на релевантных линиях клеток, и выработка белка может быть количественно оценена методом ТИФА через 12 часов, 24 часа, 48 часов, 72 часа и 7 дней после трансфекции.

[0096] В одном варианте реализации модифицированная мРНК по настоящему изобретению сконструирована таким образом, чтобы содержать полиА-G квартет. G-Квартет представляет собой циклический, соединенный водородными связями массив из 4-х гуаниновых нуклеотидов, который может образовываться богатыми G последовательностями в ДНК и РНК. В данном варианте реализации, квартет G введен на конце поли-А хвоста. Полученную молекулу ммРНК анализируют на предмет стабильности, выработки белка и других параметров, в том числе, периода полувыведения в различных временных точках. Было обнаружено, что результат введения полиА-G квартета с точки зрения выработки белка эквивалентен по меньшей мере 75% результата, полученного с применением только поли-А хвоста длиной 120 нуклеотидов.

Модификации

[0097] Модифицированные нуклеиновые кислоты и модифицированная мРНК (ммРНК) по изобретению могут содержать одну, две или более различных модификаций. В некоторых вариантах реализации модифицированные нуклеиновые кислоты и ммРНК могут содержать одну, две или более различных модификаций нуклеозидов или нуклеотидов. В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК (например, содержащие одну или более молекул ммРНК), введенная в клетку, может демонстрировать уменьшение разложения в клетке, по сравнению с немодифицированной нуклеиновой кислотой или ммРНК.

[0098] Модифицированные нуклеиновые кислоты и ммРНК могут содержать любую пригодную модификацию, например, сахара, нуклеинового основания (например, одну или более модификаций нуклеинового основания, такую как замена или замещение пиримидинового атома нуклеинового основания необязательно замещенной аминогруппой, необязательно замещенным тиолом, необязательно замещенным алкилом (например, метилом или этилом) или галогеном (например, хлором или фтором), или межнуклеозидной связи (например, одна или более модификаций в фосфодиэфирном скелете). В некоторых вариантах реализации модификации присутствуют в сахарном фрагменте и межнуклеозидной связи (например, одна или более модификаций, таких как присутствуют в рибонуклеиновых кислотах (РНК), дезоксирибонуклеиновьгх кислотах (ДНК), треозонуклеиновых кислотах (ТНК), гликольнуклеиновых кислотах (ГНК), пептиднуклеиновых кислотах (ПНК), циклических нуклеиновых кислотах (ЦНК) или их гибридах). Дополнительные модификации раскрыты в настоящем документе.

[0099] Как раскрыто в настоящем документе, модифицированные нуклеиновые кислоты и ммРНК по изобретению в значительной степени не индуцируют природного иммунного ответа клетки, в которую введена мРНК. В некоторых вариантах реализации может быть желательным внутриклеточное разложение модифицированной молекулы нуклеиновой кислоты или модифицированной молекулы нуклеиновой кислоты, введенной в клетку. Например, разложение модифицированной молекулы нуклеиновой кислоты или модифицированной мРНК может быть предпочтительным, если желательна выработка белка в пределах точного интервала времени. Таким образом, в некоторых вариантах реализации изобретения предлагается модифицированная молекула нуклеиновой кислоты, содержащая домен разложения, способный действовать непосредственно в пределах клетки. В другом аспекте настоящего документа раскрываются нуклеиновые кислоты, содержащие нуклеозид или нуклеотид, который может нарушать связывание нуклеиновой кислоты с основным партнером по взаимодействию для бороздки (например, если модифицированный нуклеотид обладает сниженной аффинностью связывания с основным партнером по взаимодействию для бороздки, по сравнению с немодифицированным нуклеотидом).

[00100] Модифицированная нуклеиновая кислота и ммРНК необязательно могут включать другие агенты (например, индуцирующие иРНК агенты, иРНК агенты, миРНК, РНК-шпильку, миРНК, антисмысловую РНК, рибозимы, каталитическую ДНК, тРНК, РНК, которая индуцирует образование тройной спирали, аптамеры, векторы и т.д.). В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК могут включать одну или более матричных РНК (мРНК) и один или более модифицированных нуклеозидов или нуклеотидов (например, молекулы ммРНК). Подробное описание указанных модифицированных нуклеиновых кислот и ммРНК приведено ниже.

Модифицированные нуклеиновые кислоты

[00101] Модифицированные нуклеиновые кислоты или ммРНК по изобретению могут содержать первый участок соединенных нуклеозидов, кодирующий целевой полипептид, первый фланкирующий участок, расположенный на 5' конце первого участка, и второй фланкирующий участок, расположенный на 3' конце первого участка.

[00102] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n соединенных нуклеозидов Формулы (Ia) или Формулы (Ia-1):

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00103] U представляет собой О, S, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил;

[00104] представляет собой одинарную связь или отсутствует;

[00105] каждый из R1', R2', R, R, R1, R2, R3, R4 и R5, если он присутствует, независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует; где комбинация R3 с одним или более из R1', R, R2', R или R5 (например, комбинация R1' и R3, комбинация R и R3, комбинация R2' и R3, комбинация R и R3 или комбинация R5 и R3) могут быть объединены с образованием необязательно замещенного алкилена или необязательно замещенного гетероалкилена, и, вместе с атомами углерода, к которым они присоединены, образуют необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил); где комбинация R5 с одним или более из R1', R, R2' или R (например, комбинация R1' и R5, комбинация R и R5, комбинация R2' и R5 или комбинация R2ʺ и R5) могут быть объединены с образованием необязательно замещенного алкилена или необязательно замещенного гетероалкилена и, вместе с атомами углерода, к которым они присоединены, образуют необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил); и где комбинация R4 и одного или более из R1', R, R2', R, R3 или R5 может быть объединена с образованием необязательно замещенного алкилена или необязательно замещенного гетероалкилена и, вместе с атомами углерода, к которым они присоединены, образовывать необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил);

[00106] каждое из m' и mʺ независимо равно целому числу от 0 до 3 (например, от 0 до 2, от 0 до 1, от 1 до 3 или от 1 до 2);

[00107] каждый из Y1, Y2 и Y3, независимо представляет собой О, S, Se, -NRN1-, необязательно замещенный алкилен или необязательно замещенный гетероалкилен, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный арил или отсутствует;

[00108] каждый Y4 независимо представляет собой Н, гидрокси, тиол, боранил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино;

[00109] каждый Y5 независимо представляет собой О, S, Se, необязательно замещенный алкилен (например, метилен) или необязательно замещенный гетероалкилен;

[00110] n равно целому числу от 1 до 100 000; и

[00111] В представляет собой нуклеиновое основание (например, пурин, пиримидин или их производные), где комбинация В и R1', комбинация В и R2', комбинация В и R или комбинация В и R могут, вместе с атомами углерода, к которым они присоединены, необязательно образовывать бициклическую группу (например, бициклический гетероциклил), или где комбинация В, R и R3 или комбинация В, R и R3 необязательно может образовывать трициклическую или тетрациклическую группу (например, трициклический или тетрациклический гетероциклил, такой как в Формулах (IIo)-(IIp) настоящего документа). В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит модифицированную рибозу.

[00112] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (Ia-2)-(Ia-5) или фармацевтически приемлемую соль или стереоизомер указанного соединения.

,.

[00113] В некоторых, вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (Ib) или Формулы (Ib-1):

,

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00114] U представляет собой О, S, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил;

[00115] представляет собой одинарную связь или отсутствует; [00116] каждый из R1, R3', R и R4 независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует; и где комбинация R1 и R3' или комбинация R1 и R вместе может образовывать необязательно замещенный алкилен или необязательно замещенный гетероалкилен (например, с образованием циклической нуклеиновой кислоты);

[00117] каждый R5 независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси или отсутствует;

[00118] каждый из Y1, Y2 и Y3 независимо представляет собой О, S, Se, -NRN1-, необязательно замещенный алкилен или необязательно замещенный гетероалкилен, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил;

каждый Y4 независимо представляет собой Н, гидрокси, тиол, боранил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино;

[00119] n равно целому числу от 1 до 100 000; и

[00120] В представляет собой нуклеиновое основание.

[00121] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (Ic):

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00122] U представляет собой О, S, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил;

[00123] - представляет собой одинарную связь или отсутствует;

[00124] каждый из В1, В2 и В3 независимо представляет собой нуклеиновое основание (например, пурин, пиримидин или их производные, как раскрыто в настоящем документе), Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил, где один и только один из В1, В2 и В3 представляет собой нуклеиновое основание;

[00125] каждый из Rb1, Rb2, Rb3, R3 и R5 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил;

[00126] каждый из Y1, Y2 и Y3, независимо представляет собой О, S, Se, -NRN1-, необязательно замещенный алкилен или необязательно замещенный гетероалкилен, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил;

[00127] каждый Y4 независимо представляет собой Н, гидрокси, тиол, боранил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино;

[00128] каждый Y5 независимо представляет собой О, S, Se, необязательно замещенный алкилен (например, метилен) или необязательно замещенный гетероалкилен;

[00129] n равно целому числу от 1 до 100 000; и

[00130] где содержащее U кольцо может содержать одну или более двойных связей.

[00131] В конкретных вариантах реализации кольцо, содержащее U, не содержит двойной связи между U-CB3Rb3 или между CB3Rb3-CB2Rb2.

[00132] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (Id):

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00133] U представляет собой О, S, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил;

[00134] каждый R3 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил;

[00135] каждый из Y1, Y2 и Y3 независимо представляет собой О, S, Se, -NRN1-, необязательно замещенный алкилен или необязательно замещенный гетероалкилен, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил;

[00136] каждый Y4 независимо представляет собой Н, гидрокси, тиол, боранил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино;

[00137] каждый Y5 независимо представляет собой О, S, необязательно замещенный алкилен (например, метилен) или необязательно замещенный гетероалкилен;

[00138] n равно целому числу от 1 до 100 000; и

[00139] В представляет собой нуклеиновое основание (например, пуриновое, пиримидиновое или их производные).

[00140] В некоторых вариантах реализации модифицированные молекулы нуклеиновой кислоты или модифицированные мРНК содержат n связанных нуклеозидов Формулы (Ie):

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00141] каждый из U' и Uʺ независимо представляет собой О, S, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил;

каждый R6 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, или необязательно замещенный аминоалкинил;

[00142] каждый Y5' независимо представляет собой О, S, необязательно замещенный алкилен (например, метилен или этилен) или необязательно замещенный гетероалкилен;

[00143] n равно целому числу от 1 до 100 000; и

[00144] В представляет собой нуклеиновое основание (например, пуриновое, пиримидиновое или их производные).

[00145] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (If) или (If-1):

, или фармацевтически приемлемую соль или стереоизомер указанного соединения, где

[00146] каждый из U' и Uʺ независимо представляет собой О, S, N, N(RU)nu или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил (например, U' представляет собой О и Uʺ представляет собой N);

[00147] - представляет собой одинарную связь или отсутствует;

[00148] каждый из R1', R2', R, R, R3 и R4 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует; и где комбинация R1' и R3, комбинация R и R3, комбинация R2' и R3 или комбинация R и R3 вместе может образовывать необязательно замещенный алкилен или необязательно замещенный гетероалкилен (например, с образованием циклической нуклеиновой кислоты); каждое из m' и mʺ независимо равно целому числу от 0 до 3 (например, от 0 до 2, от 0 до 1, от 1 до 3 или от 1 до 2);

[00149] каждый из Y1, Y2 и Y3, независимо представляет собой О, S, Se, -NRN1-, необязательно замещенный алкилен или необязательно замещенный гетероалкилен, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный арил или отсутствует;

[00150] каждый Y4 независимо представляет собой Н, гидрокси, тиол, боранил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино;

[00151] каждый Y5 независимо представляет собой О, S, Se, необязательно замещенный алкилен (например, метилен) или необязательно замещенный гетероалкилен;

[00152] n равно целому числу от 1 до 100 000; и

[00153] В представляет собой нуклеиновое основание (например, пурин, пиримидин или их производные).

[00154] В некоторых вариантах модифицированной нуклеиновой кислоты или ммРНК (например, (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), кольцо, содержащее U, содержит одну или две двойные связи.

[00155] В некоторых вариантах модифицированной нуклеиновой кислоты или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), каждый из R1, R1' и R, если он присутствует, представляет собой Н. В дополнительных вариантах реализации каждый из R2, R2' и R, если он присутствует, независимо представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси. В конкретных вариантах реализации алкоксиалкокси представляет собой -(CH2)s2(OCH2CH2)s1(CH2)s3OR', где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10) и R' представляет собой Н или С1-20алкил). В некоторых вариантах реализации s2 равно 0, s1 равно 1 или 2, s3 равно 0 или 1, и R' представляет собой C1-6алкил.

[00156] В некоторых вариантах модифицированной нуклеиновой кислоты или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), каждый из R2, R2' и R, если он присутствует, представляет собой Н. В дополнительных вариантах реализации каждый из R1, R1' и R, если он присутствует, независимо представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси. В конкретных вариантах реализации алкоксиалкокси представляет собой -(CH2)s2(OCH2CH2)s1(CH2)s3OR', где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R' представляет собой Н или С1-20алкил). В некоторых вариантах реализации s2 равно 0, s1 равно 1 или 2, s3 равно 0 или 1, и R' представляет собой C1-6алкил.

[00157] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), каждый из R3, R4 и R5 независимо представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси. В конкретных вариантах реализации R3 представляет собой Н, R4 представляет собой Н, R5 представляет собой Н или R3, R4 и R5 все представляют собой Н. В конкретных вариантах реализации R3 представляет собой C1-6алкил, R4 представляет собой C1-6алкил, R5 представляет собой С1-6алкил или R3, R4 и R5 все представляют собой C1-6алкил. В конкретных вариантах реализации R3 и R4 оба представляют собой Н, и R5 представляет собой C1-6алкил.

[00158] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), R3 и R5 вместе образуют необязательно замещенный алкилен или необязательно замещенный гетероалкилен и, вместе с атомами углерода, к которым они присоединены, образуют необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил, такой как транс-3',4' аналоги, где R3 и R5 вместе образуют гетероалкилен (например, - (СН2)b1O(СН2)b2O(СН2)b3-, где каждое из b1, b2 и b3 независимо равно целому числу от 0 до 3).

[00159] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), R3 и один или более из R1', R, R2', R или R5 вместе образуют необязательно замещенный алкилен или необязательно замещенный гетероалкилен и, вместе с атомами углерода, к которым они присоединены, образуют необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил, R3 и один или более из R1', R, R2', R или R5 вместе образуют гетероалкилен (например, -(СН2)b1O(СН2)b2O(СН2)b3-, где каждое из b1, b2 и b3 независимо равно целому числу от 0 до 3).

[00160] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), R5 и один или более из R1', R, R2' или R вместе образуют необязательно замещенный алкилен или необязательно замещенный гетероалкилен и, вместе с атомами углерода, к которым они присоединены, образуют необязательно замещенный гетероциклил (например, бициклический, трициклический или тетрациклический гетероциклил, R5 и один или более из R1', R, R2' или R вместе образуют гетероалкилен (например, -(СН2)b1O(СН2)b2O(СН2)b3-, где каждое из b1, b2 и b3 независимо равно целому числу от 0 до 3).

[00161] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)) каждый Y2 независимо представляет собой О, S или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил. В конкретных вариантах реализации Y2 представляет собой NRN1-, где RN1 представляет собой Н или необязательно замещенный алкил (например, С1-6алкил, такой как метил, этил, изопропил или н-пропил).

[00162] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), каждый Y3 независимо представляет собой О или S.

[00163] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), R1 представляет собой H; каждый R2 независимо представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси (например, -(CH2)s2(OCH2CH2)s1(CH2)s3OR', где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10) и R' представляет собой Н или С1-20алкил, например, где s2 равно 0, s1 равно 1 или 2, s3 равно 0 или 1, и R' представляет собой C1-6алкил); каждый Y2 независимо представляет собой О или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил (например, где RN1 представляет собой Н или необязательно замещенный алкил (например, С1-6алкил, такой как метил, этил, изопропил или н-пропил)); и каждый Y3 независимо представляет собой О или S (например, S). В дополнительных вариантах реализации R3 представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси. Еще в других вариантах реализации каждый Y1 независимо представляет собой О или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил (например, где RN1 представляет собой Н или необязательно замещенный алкил (например, C1-6алкил, такой как метил, этил, изопропил или н-пропил)); и каждый Y4 независимо представляет собой Н, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино.

[00164] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формул (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), каждый R1 независимо представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси (например, (CH2)s2(OCH2CH2)s1(CH2)s3OR', где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R' представляет собой Н или С1-20алкил, такой как, где s2 равно 0, s1 равно 1 или 2, s3 равно 0 или 1, и R' представляет собой C1-6алкил); R2 представляет собой Н; каждый Y2 независимо представляет собой О или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил (например, где RN1 представляет собой Н или необязательно замещенный алкил (например, С1-6алкил, такой как метил, этил, изопропил или н-пропил)); и каждый Y3 независимо представляет собой О или S (например, S). В дополнительных вариантах реализации R3 представляет собой Н, галоген (например, фтор), гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси (например, метокси или этокси) или необязательно замещенный алкоксиалкокси. Еще в других вариантах реализации каждый Y1 независимо представляет собой О или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил (например, где RN1 представляет собой Н или необязательно замещенный алкил (например, С1-6алкил, такой как метил, этил, изопропил или н-пропил)); и каждый Y4 независимо представляет собой Н, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси, необязательно замещенный алкоксиалкокси или необязательно замещенный амино.

[00165] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)) кольцо, содержащее U, находится в β-D (например, β-D-рибо) конфигурации.

[00166] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)) кольцо, содержащее U, находится в α-L (например, α-L-рибо) конфигурации.

[00167] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), один или более В не являются псевдоуридином (ψ) или 5-метил-цитидином (m5C). В некоторых вариантах реализации от приблизительно 10% до приблизительно 100% нуклеиновых оснований В не является ψ или m5C (например, от 10% до 20%, от 10% до 35%, от 10% до 50%, от 10% до 60%, от 10% до 75%, от 10% до 90%, от 10% до 95%, от 10% до 98%, от 10% до 99%, от 20% до 35%, от 20% до 50%, от 20% до 60%, от 20% до 75%, от 20% до 90%, от 20% до 95%, от 20% до 98%, от 20% до 99%, от 20% до 100%, от 50% до 60%, от 50% до 75%, от 50% до 90%, от 50% до 95%, от 50% до 98%, от 50% до 99%, от 50% до 100%, от 75% до 90%, от 75% до 95%, от 75% до 98%, от 75% до 99% и от 75% до 100% n в составе В не является ψ или m5C). В некоторых вариантах реализации В не является ψ или m5C.

[00168] В некоторых вариантах модифицированных нуклеиновых кислот или ммРНК (например, Формулы (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr)), если В представляет собой немодифицированное нуклеиновое основание, выбранное из цитозина, гуанина, урацила и аденина, то по меньшей мере один из Y1, Y2 или Y3 не является О.

[00169] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат модифицированную рибозу. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IIa)-(IIc):

, или или фармацевтически приемлемую соль или стереоизомер указанного соединения. В конкретных вариантах реализации U представляет собой О или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил (например, U представляет собой -СН2- или -СН-). В других вариантах реализации каждый из R1, R2, R3, R4 и R5 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует (например, каждый R1 и R2 независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил или необязательно замещенный алкокси; каждый R3 и R4 независимо представляет собой Н или необязательно замещенный алкил; и R5 представляет собой Н или гидрокси) и представляет собой одинарную связь или двойную связь.

[00170] В конкретных вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (IIb-1)-(IIb-2):

или или фармацевтически приемлемую соль или стереоизомер указанного соединения. В некоторых вариантах реализации U представляет собой О или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил (например, U представляет собой -СН2- или -СН-). В других вариантах реализации каждый из R1 и R2 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует (например, каждый R1 и R2 независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил или необязательно замещенный алкокси, например, Н, галоген, гидрокси, алкил или алкокси). В конкретных вариантах реализации R2 представляет собой гидрокси или необязательно замещенный алкокси (например, метокси, этокси или любой, раскрытый в настоящем документе).

[00171] В конкретных вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (IIc-1)-(IIc-4):

, , или или фармацевтически приемлемую соль или стереоизомер указанного соединения. В некоторых вариантах реализации U представляет собой О или C(RU)nu, где nu равно целому числу от 0 до 2, и каждый RU независимо представляет собой Н, галоген или необязательно замещенный алкил (например, U представляет собой -СН2- или -СН-). В некоторых вариантах реализации каждый из R1, R2 и R3 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный гидроксиалкокси, необязательно замещенный амино, азидо, необязательно замещенный арил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или отсутствует (например, каждый R1 и R2 независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил или необязательно замещенный алкокси, например, Н, галоген, гидрокси, алкил или алкокси; и каждый R3 независимо представляет собой Н или необязательно замещенный алкил)). В конкретных вариантах реализации R2 представляет собой необязательно замещенный алкокси (например, метокси или этокси или любой, раскрытый в настоящем документе). В конкретных вариантах реализации R1 представляет собой необязательно замещенный алкил, и R2 представляет собой гидрокси. В других вариантах реализации R1 представляет собой гидрокси, и R2 представляет собой необязательно замещенный алкил. В дополнительных вариантах реализации R3 представляет собой необязательно замещенный алкил.

[00172] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат ациклическую модифицированную рибозу. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IId)-(IIf):

, или или фармацевтически приемлемую соль или стереоизомер указанного соединения.

[00173] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат ациклический модифицированный гекситол. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IIg)-(IIj):

, , или или фармацевтически приемлемую соль или стереоизомер указанного соединения.

[00174] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат сахарный остаток, содержащий сокращенное или расширенное кольцо рибозы. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IIk)-(IIm):

, , или или фармацевтически приемлемую соль или стереоизомер указанного соединения, где каждый из R1', R, R2' и R независимо представляет собой Н, галоген, гидрокси, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси или отсутствует; и где комбинация R2' и R3 или комбинация R и R3 вместе может образовывать необязательно замещенный алкилен или необязательно замещенный гетероалкилен.

[00175] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат циклическую модифицированную рибозу. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IIn):

или фармацевтически приемлемую соль или стереоизомер указанного соединения, где R3' представляет собой О, S или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил и R представляет собой необязательно замещенный алкилен (например, -СН2-, -СН2СН2- или -СН2СН2СН2-) или необязательно замещенный гетероалкилен (например, -CH2NH-, -CH2CH2NH-, -СН2ОСН2- или -СН2СН2ОСН2-)(например, R3' представляет собой О и R представляет собой необязательно замещенный алкилен (например, -СН2-, -СН2СН2- или -СН2СН2СН2-))..

[00176] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит n связанных нуклеозидов Формулы (IIn-1)-(II-n2):

или или фармацевтически приемлемую соль или стереоизомер указанного соединения, где R3' представляет собой О, S или -NRN1-, где RN1 представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный арил, и R представляет собой необязательно замещенный алкилен (например, -СН2-, -СН2СН2- или -СН2СН2СН2-) или необязательно замещенный гетероалкилен (например, -CH2NH-, -CH2CH2NH-, -СН2ОСН2- или -СН2СН2ОСН2-) (например, R3' представляет собой О, и R представляет собой необязательно замещенный алкилен (например, -СН2-, -СН2СН2- или -СН2СН2СН2-)).

[00177] В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат модифицированную циклическую рибозу, которая образует тетрациклический гетероциклил. В некоторых вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат n связанных нуклеозидов Формулы (IIo):

или или фармацевтически приемлемую соль или стереоизомер указанного соединения, где R12a, R12c, Т1', Т, Т2', Т, V1 и V3 являются такими, как раскрыто в настоящем документе.

[00178] Любые формулы модифицированных нуклеиновых кислот или ммРНК могут включать одно или более нуклеиновых оснований, раскрытых в настоящем документе (например, Формулы (b1)-(b43)).

[00179] В одном варианте реализации данного изобретения раскрыты способы получения модифицированных нуклеиновых кислот или ммРНК, содержащих по меньшей мере один нуклеотид (например, молекулы ммРНК), где модифицированная нуклеиновая кислота содержит n нуклеозидов Формулы (Ia), как определено в настоящем документе:

, причем способ включает реакцию соединения Формулы (IIIa), как определено в настоящем документе:

,

с РНК-полимеразой и шаблоном кДНК.

[00180] В дополнительном варианте реализации данного изобретения раскрыты способы амплификации модифицированных нуклеиновых кислот или ммРНК, содержащих по меньшей мере один нуклеотид (например, молекулы ммРНК), причем способ включает: реакцию соединения Формулы (IIIa), как определено в настоящем документе, с праймером, шаблоном кДНК и РНК-полимеразой.

[00181] В одном варианте реализации данного изобретения раскрыты способы получения модифицированных нуклеиновых кислот или ммРНК, содержащих по меньшей мере один нуклеотид (например, молекулы ммРНК), причем модифицированная нуклеиновая кислота содержит n нуклеозидов Формулы (Ia-1), как определено в настоящем документе:

,

и, при этом, способ включает реакцию соединения Формулы (IIIa-1), как определено в настоящем документе:

, с РНК-полимеразой и шаблоном кДНК.

[00182] В дополнительном варианте реализации данного изобретения раскрыты способы амплификации модифицированных нуклеиновых кислот или ммРНК, содержащих по меньшей мере один нуклеотид (например, молекулы ммРНК), причем способ включает реакцию соединения Формулы (IIIa-1), как определено в настоящем документе, с праймером, шаблоном кДНК и РНК-полимеразой.

[00183] В одном варианте реализации данного изобретения раскрыты способы получения модифицированной мРНК, содержащей по меньшей мере один нуклеотид (например, молекулы ммРНК), где полинуклеотид содержит n нуклеозидов Формулы (Ia-2), как определено в настоящем документе:

,

причем способ включает реакцию соединения Формулы (IIIa-2), как определено в настоящем документе:

, с РНК-полимеразой и шаблоном кДНК.

[00184] В дополнительном варианте реализации данного изобретения раскрыты способы амплификации модифицированной мРНК, содержащей по меньшей мере один нуклеотид (например, молекулы ммРНК), причем способ включает

[00185] реакцию соединения Формулы (IIIa-2), как определено в настоящем документе, с праймером, шаблоном кДНК и РНК-полимеразой.

[00186] В некоторых вариантах реализации реакция может быть повторена от 1 до приблизительно 7000 раз. В любом из вариантов реализации, раскрытых в настоящем документе, В может быть нуклеиновым основанием Формулы (b1)-(b43).

[00187] Модифицированные нуклеиновые кислоты и ммРНК необязательно могут содержать 5' и/или 3' фланкирующие участки, которые раскрыты в настоящем документе.

Модифицированные молекулы РНК (например, ммРНК)

[00188] Настоящее изобретение также включает строительные блоки молекул модифицированной РНК (ммРНК), например, модифицированные рибонуклеозиды, модифицированные рибонуклеотиды. Например, указанные ммРНК могут быть пригодны для получения модифицированных нуклеиновых кислот или ммРНК по изобретению.

[00189] В некоторых вариантах реализации молекула строительного блока представлена Формулами (IIIa) или (IIIa-1):

, или фармацевтически приемлемой солью или стереоизомером указанного соединения, где заместители являются такими, как раскрыто в настоящем документе (например, для Формулы (Ia) и (Ia-1)) и, где, если В представляет собой немодифицированное нуклеиновое основание, выбранное из цитозина, гуанина, урацила и аденина, то по меньшей мере один из Y1, Y2 или Y3 не является О.

[00190] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в модифицированную нуклеиновую кислоту или ммРНК, представлена Формулами (IVa)-(IVb):

или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации Формулы (IVa) или (IVb) объединены с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации Формулы (IVa) или (IVb) объединены с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации Формулы (IVa) или (IVb) объединены с модифицированным гуанином (например, любая из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации Формулы (IVa) или (IVb) объединены с модифицированным аденином (например, любая из формул (b18)-(b20) и (b41)-(b43)).

[00191] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (IVc)-(IVk):

, , , , , , , , , или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации одна из Формул (IVc)-(IVk) объединена с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации одна из Формул (IVc)-(IVk) объединена с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации одна из Формул (IVc)-(IVk) объединена с модифицированным гуанином (например, любой из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации одна из Формул (IVc)-(IVk) объединена с модифицированным аденином (например, любой из формул (b18)-(b20) и (b41)-(b43)).

[00192] В других вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (Va) или (Vb):

или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)).

[00193] В других вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (IXa)-(IXd):

, , или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации одна из Формул (IXa)-(IXd) объединена с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации одна из Формул (IXa)-(IXd) объединена с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации одна из Формул (IXa)-(IXd) объединена с модифицированным гуанином (например, любой из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации одна из Формул (IXa)-(IXd) объединена с модифицированным аденином (например, любой из формул (b18)-(b20) и (b41)-(b43)).

[00194] В других вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (IXe)-(IXg):

, или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации одна из Формул (IXe)-(IXg) объединена с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации одна из Формул (IXe)-(IXg) объединена с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации одна из Формул (IXe)-(IXg) объединена с модифицированным гуанином (например, любой из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации одна из Формул (IXe)-(IXg) объединена с модифицированным аденином (например, любой из формул (b18)-(b20) и (b41)-(b43)).

[00195] В других вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (IXh)-(IXk):

, , или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации одна из Формул (IXh)-(IXk) объединена с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации одна из Формул (IXh)-(IXk) объединена с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации одна из Формул (IXh)-(IXk) объединена с модифицированным гуанином (например, любой из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации одна из Формул (IXh)-(IXk) объединена с модифицированным аденином (например, любой из формул (b18)-(b20) и (b41)-(b43)).

[00196] В других вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представлена Формулами (IXl)-(IXr):

, , ,

, или или фармацевтически приемлемой солью или стереоизомером указанного соединения, где каждое из r1 и r2 независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5) и В является таким, как раскрыто в настоящем документе (например, любой из (b1)-(b43)). В конкретных вариантах реализации одна из Формул (IXl)-(IXr) объединена с модифицированным урацилом (например, любой из формул (b1)-(b9), (b21)-(b23) и (b28)-(b31), такой как формула (b1), (b8), (b28), (b29) или (b30)). В конкретных вариантах реализации одна из Формул (IXl)-(IXr) объединена с модифицированным цитозином (например, любой из формул (b10)-(b14), (b24), (b25) и (b32)-(b36), такой как формула (b10) или (b32)). В конкретных вариантах реализации одна из Формул (IXl)-(IXr) объединена с модифицированным гуанином (например, любой из формул (b15)-(b17) и (b37)-(b40)). В конкретных вариантах реализации одна из Формул (IXl)-(IXr) объединена с модифицированным аденином (например, любой из формул (b18)-(b20) и (b41)-(b43)).

[00197] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулы модифицированных нуклеиновых кислот или ммРНК, может быть выбрана из группы, состоящей из:

, ,, , , , , , , , и или фармацевтически приемлемой соли или стереоизомера указанных соединений, где каждое r независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5).

[00198] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, может быть выбрана из группы, состоящей из:

, , , , , , и или фармацевтически приемлемой соли или стереоизомера указанных соединений, где каждое r независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5), и s1 является таким, как раскрыто в настоящем документе.

[00199] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в нуклеиновую кислоту (например, РНК, мРНК или ммРНК), представляет собой модифицированный уридин (например, выбранный из группы, состоящей из:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , и или фармацевтически приемлимой соли или стереоизомера указанных соединений, где Y1, Y3, Y4, Y6 и r являются такими, как раскрыто в настоящем документе (например, каждое г независимо равно целому числу от 0 до 5, в том числе, от 0 до 3, от 1 до 3 или от 1 до 5)).

[00200] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представляет собой модифицированный цитидин (например, выбранный из группы, состоящей из:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , и или фармацевтически приемлемой соли или стереоизомера указанных соединений, где Y1, Y3, Y4, Y6 и r являются такими, как раскрыто в настоящем документе (например, каждое г независимо равно целому числу от 0 до 5, в том числе, от 0 до 3, от 1 до 3 или от 1 до 5)). Например, молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, может представлять собой:

или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где каждое г независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5).

[00201] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представляет собой модифицированный аденозин (например, выбранный из группы, состоящей из:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , и или фармацевтически приемлемой соли или стереоизомера указанных соединений, где Y1, Y3, Y4, Y6 и r являются такими, как раскрыто в настоящем документе (например, каждое r независимо равно целому числу от 0 до 5, такому как от 0 до 3, от 1 до 3 или от 1 до 5)).

[00202] В некоторых вариантах реализации молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, представляет собой модифицированный гуанозин (например, выбранный из группы, состоящей из:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , и или фармацевтически приемлемой соли или стереоизомера указанных соединений, где Y1, Y3, Y4, Y6 и r являются такими, как раскрыто в настоящем документе (например, каждое г независимо равно целому числу от 0 до 5, такому как от 0 до 3, от 1 до 3 или от 1 до 5)).

[00203] В некоторых вариантах реализации химическая модификация может включать замену группы С в положении С-5 кольца (например, для пиримидинового нуклеозида, такого как цитозин или урацил) N (например, замена группы >СН в положении С-5 группой >NRN1, где RN1 представляет собой Н или необязательно замещенный алкил). Например, молекула ммРНК, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, может представлять собой:

или или или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где каждое r независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5).

[00204] В другом варианте реализации химическая модификация может включать замену водорода в положении С-5 цитозина галогеном (например, Br, Cl, F или I) или необязательно замещенным алкилом (например, метилом). Например, молекула ммРНК, которая может быть введена в модифицированную нуклеиновую кислоту или ммРНК, может представлять собой:

или или или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где каждое r независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5).

[00205] Еще в одном варианте реализации химическая модификация может включать конденсированное кольцо, которое образуют NH2 в положении С-4 и атом углерода в положении С-5. Например, молекула строительного блока, которая может быть введена в молекулу модифицированной нуклеиновой кислоты или ммРНК, может представлять собой:

или фармацевтически приемлемую соль или стереоизомер указанных соединений, где каждое г независимо равно целому числу от 0 до 5 (например, от 0 до 3, от 1 до 3 или от 1 до 5).

Модификации сахара

[00206] Модифицированные нуклеозиды и нуклеотиды (например, молекулы строительных блоков), которые могут быть введены в модифицированную нуклеиновую кислоту или ммРНК (например, РНК или мРНК, как раскрыто в настоящем документе), могут быть модифицированы при остатке сахара рибонуклеиновой кислоты. Например, 2' гидроксильная группа (ОН) может быть модифицирована или заменена множеством различных заместителей. Примеры замещения в положении 2' включают, без ограничений, Н, галоген, необязательно замещенный C1-6алкил; необязательно замещенный C1-6алкокси; необязательно замещенный С6-10арилокси; необязательно замещенный С3-8циклоалкил; необязательно замещенный С3-8циклоалкокси; необязательно замещенный С6-10арилокси; необязательно замещенный С6-10арил-С1-6алкокси, необязательно замещенный С1-12(гетероциклил)окси; сахар (например, рибозу, пентозу или любой, раскрытый в настоящем документе); полиэтиленгликоль (ПЭГ), -O(СН2СН2О)nCH2CH2OR, где R представляет собой Н или необязательно замещенный алкил, и n равно целому числу от 0 до 20 (например, от 0 до 4, от 0 до 8, от 0 до 10, от 0 до 16, от 1 до 4, от 1 до 8, от 1 до 10, от 1 до 16, от 1 до 20, от 2 до 4, от 2 до 8, от 2 до 10, от 2 до 16, от 2 до 20, от 4 до 8, от 4 до 10, от 4 до 16 и от 4 до 20); циклические ("замкнутые") нуклеиновые кислоты (ЦНК), где 2'-гидроксил соединен C1-6 алкиленовым или C1-6 гетероалкиленовым мостиком с 4'-углеродом того же остатка рибозного сахара, при этом, примеры мостиков включают метилен, пропилен, эфирные или аминные мостики; аминоалкил, как определено в настоящем документе; аминоалкокси, как определено в настоящем документе; амино, как определено в настоящем документе; и аминокислоту, как определено в настоящем документе.

[00207] В общем, РНК содержит сахарную группу рибозы, которая представляет собой 5-членное кислородсодержащее кольцо. В качестве неограничивающего примера, модифицированные нуклеотиды содержат замену кислорода в рибозе (например, S, Se или алкиленом, таким как метилен или этилен); добавление двойной связи (например, для замены рибозы циклопентенилом или циклогексенилом); сужение кольца рибозы (например, с образованием 4-членного кольца циклобутана или оксетана); расширение кольца рибозы (например, с образованием 6- или 7-членного кольца, содержащего дополнительный атом углерода или гетероатом, например, как в ангидрогекситоле, алтритоле, манните, циклогексаниле, циклогексениле и морфолино, который также содержит фосфорамидатный скелет); полициклические формы (например, трицикло; и формы "с раскрытым циклом", такие как гликольнуклеиновая кислота (ГНК) (например, R-ГНК или S-ГНК, где рибоза заменена фрагментами гликоля, присоединенными к фосфодиэфирным связям), треозонуклеиновая кислота (ТНК, где рибоза заменена α-L-треофуранозил-(3'→2')) и пептиднуклеиновая кислота (ПНК, где 2-амино-этил-глициновые связи заменяют рибозу и фосфодиэфирный скелет). Сахарная группа также может содержать один или более атомов углерода с противоположной стереохимической конфигурацией, по сравнению с соответствующим атомом углерода в рибозе. Таким образом, молекула модифицированной нуклеиновой кислоты или ммРНК может содержать нуклеотиды, которые содержат, например, арабинозу, в качестве сахара.

Модификации нуклеинового основания

[00208] В настоящем документе раскрыты модифицированные нуклеозиды и нуклеотиды. Как раскрыто в настоящем документе "нуклеозид" определен как соединение, содержащее молекулу сахара (например, пентозу или рибозу) или ее производное в сочетании с органическим основанием (например, пуриновым или пиримидиновым) или его производным. Как раскрыто в настоящем документе, "нуклеотид" определен как нуклеозид, содержащий фосфатную группу. Модифицированные нуклеотиды (например, модифицированная мРНК) могут быть синтезированы любым пригодным способом, как раскрыто в настоящем документе (например, химическим, ферментным или рекомбинантным для введения одного или более модифицированных или неприродных нуклеозидов).

[00209] Спаривание модифицированных нуклеотидных оснований охватывает не только стандартные пары оснований аденозин-тимин, аденозин-урацил или гуанозин-цитозин, но также пары оснований, образованные между нуклеотидами и/или модифицированными нуклеотидами, содержащими нестандартные или модифицированные основания, где реорганизация доноров водородной связи и акцептором водородной связи позволяет образование водородных связей между нестандартным основанием и стандартным основанием или между двумя комплементарными структурами нестандартных оснований. Одним из примеров такого спаривания нестандартных оснований является спаривание оснований между модифицированными нуклеотидами инозина и аденина, цитозина или урацила.

[00210] Модифицированные нуклеозиды и нуклеотиды могут содержать модифицированное нуклеиновое основание. Примеры нуклеиновых оснований, найденных в РНК, включают, без ограничений, аденин, гуанин, цитозин и урацил. Примеры нуклеиновых оснований, найденных в ДНК. включают, без ограничений, аденин, гуанин, цитозин и тимин. Указанные нуклеиновые основания могут быть модифицированы или полностью заменены с получением молекул модифицированных нуклеиновых кислот или ммРНК с улучшенными свойствами, например, устойчивостью к нуклеазам посредством разрушения связывания с основным партнером по взаимодействию бороздок. В Табл. 1 ниже приведены химические «поверхности» каждого из канонических нуклеотидов. Круги обозначают атомы, из которых состоят соответствующие химические участки.

[00211] В некоторых вариантах реализации В представляет собой модифицированный урацил. В качестве примера, модифицированный урацил включает соединения Формул (b1)-(b5):

, , , или , или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00212] представляет собой одинарную или двойную связь;

[00213] каждый из Т1', Т, Т2' и Т независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкокси или необязательно замещенный тиоалкокси, или комбинация Т1' и Т или комбинация Т2' и Т вместе (например, как в Т2) образуют О (оксо), S (тио) или Se (селено);

[00214] каждый из V1 и V2 независимо представляет собой О, S, N(RVb)nv или C(RVb)nv, где nv равно целому числу от 0 до 2, и каждый независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный галогеналкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил), необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный ациламиноалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил), необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил или необязательно замещенный алкоксикарбонилалкокси (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как заместители, выбранные из (1)-(21), для алкила);

[00215] R10 представляет собой Н, галоген, необязательно замещенную аминокислоту, гидрокси, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный аминоалкил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный алкокси, необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиалкил или необязательно замещенный карбамоилалкил;

[00216] R11 представляет собой Н или необязательно замещенный алкил;

[00217] R12a представляет собой Н, необязательно замещенный алкил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил, необязательно замещенный карбоксиалкил (например, необязательно замещенный гидрокси), необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиаминоалкил или необязательно замещенный карбамоилалкил; и

[00218] R12c представляет собой Н, галоген, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси, необязательно замещенный амино, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил.

[00219] Другие примеры модифицированного урацила включают соединения Формул (b6)-(b9):

, , , или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00220] представляет собой одинарную или двойную связь;

[00221] каждый из Т1', Т, Т2' и Т независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкокси или необязательно замещенный тиоалкокси, или комбинация Т1' и Т вместе (например, как в Т1) или комбинация Т2' и Т вместе (например, как в Т2) образуют О (оксо), S (тио) или Se (селено), или каждый из Т1 и Т2 независимо представляет собой О (оксо), S (тио) или Se (селено);

[00222] каждый из W1 и W2 независимо представляет собой N(RWa)nw или C(RWa)nw, где nw равно целому числу от 0 до 2, и каждый RWa независимо представляет собой Н, необязательно замещенный алкил или необязательно замещенный алкокси;

[00223] каждый V3 независимо представляет собой О, S, N(RVa)nv или C(RVa)nv, где nv равно целому числу от 0 до 2, и каждый RVa независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил, необязательно замещенный алкокси, необязательно замещенный алкенилокси или необязательно замещенный алкинилокси, необязательно замещенный аминоалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил), необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный ациламиноалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил), необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилацил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкил (например, необязательно замещенный гидрокси и/или О-защитной группой), необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиаминоалкил или необязательно замещенный карбамоилалкил (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкила), и где RVa и R12c, вместе с атомами углерода, к которым они присоединены, могут образовывать необязательно замещенный циклоалкил, необязательно замещенный арил или необязательно замещенный гетероциклил (например, 5- или 6-членное кольцо);

[00224] R12a представляет собой Н, необязательно замещенный алкил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный карбоксиалкил (например, необязательно замещенный гидрокси и/или О-защитной группой), необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиаминоалкил, необязательно замещенный карбамоилалкил или отсутствует;

[00225] R12b представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный алкарил, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил, необязательно замещенную аминокислоту, необязательно замещенный алкоксикарбонилацил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкил (например, необязательно замещенный гидрокси и/или O-защитной группой), необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиаминоалкил или необязательно замещенный карбамоилалкил,

[00226] где комбинация R12b и Т1' или комбинация R12b и R12c могут быть объединены с образованием необязательно замещенного гетероциклила; и

[00227] R12c представляет собой Н, галоген, необязательно замещенный алкил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси, необязательно замещенный амино, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил.

[00228] Другие примеры модифицированного урацила включают соединения Формул (b28)-(b31):

, , или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00229] каждый из Т1 и Т2 независимо представляет собой О (оксо), S (тио) или Se (селено);

[00230] каждый RVb' и RVbʺ независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный галогеналкил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил), необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный ациламиноалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил), необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилацил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкил (например, необязательно замещенный гидрокси и/или О-защитной группой), необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиаминоалкил или необязательно замещенный карбамоилалкил (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкила) (например, RVb' представляет собой необязательно замещенный алкил, необязательно замещенный алкенил или необязательно замещенный аминоалкил, например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил);

[00231] R12a представляет собой Н, необязательно замещенный алкил, необязательно замещенный карбоксиаминоалкил, необязательно замещенный аминоалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил), необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил; и

[00232] R12b представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил (например, например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил),

[00233] необязательно замещенный алкоксикарбонилацил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиалкил или необязательно замещенный карбамоилалкил.

[00234] В конкретных вариантах реализации Т1 представляет собой О (оксо) и Т2 представляет собой S (тио) или Se (селено). В других вариантах реализации Т1 представляет собой S (тио) и Т2 представляет собой О (оксо) или Se (селено). В некоторых вариантах реализации RVb' представляет собой Н, необязательно замещенный алкил или необязательно замещенный алкокси.

[00235] В других вариантах реализации каждый R12a и R12b независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил или необязательно замещенный гидроксиалкил. В конкретных вариантах реализации R12a представляет собой Н. В других вариантах реализации R12a и R12b оба представляют собой Н.

[00236] В некоторых вариантах реализации каждый RVb' в R12b независимо представляет собой необязательно замещенный аминоалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил или сульфоалкил), необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил или необязательно замещенный ациламиноалкил (например, замещенный N-защитной группой, такой как любая, раскрытая в настоящем документе, например, трифторацетил). В некоторых вариантах реализации амино и/или алкил в необязательно замещенном аминоалкиле замещен одним или более из необязательно замещенного алкила, необязательно замещенного алкенила, необязательно замещенного сульфоалкила, необязательно замещенного карбокси (например, замещенного О-защитной группой), необязательно замещенного гидрокси (например, замещенного О-защитной группой), необязательно замещенного карбоксиалкила (например, замещенного O-защитной группой), необязательно замещенного алкоксикарбонилалкила (например, замещенного О-защитной группой) или N-защитной группой. В некоторых вариантах реализации необязательно замещенный аминоалкил замещен необязательно замещенным сульфоалкилом или необязательно замещенным алкенилом. В конкретных вариантах реализации R12a и RVbʺ оба представляют собой Н. В конкретных вариантах реализации Т1 представляет собой О (оксо), и Т2 представляет собой S (тио) или Se (селено).

[00237] В некоторых вариантах реализации RVb' представляет собой необязательно замещенный алкоксикарбонилалкил или необязательно замещенный карбамоилалкил.

[00238] В конкретных вариантах реализации необязательный заместитель для R12a, R12b, R12c или RVa представляет собой группу полиэтиленгликоля (например, -(CH2)s2(OCH2CH2)s1(CH2)s3OR', где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R' представляет собой Н или С1-20алкил); или группу амино-полиэтиленгликоля (например, -NRN1(CH2)s2(CH2CH2O)s1(CH2)s3NRN1, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и каждый RN1 независимо представляет собой водород или необязательно замещенный C1-6алкил).

[00239] В некоторых вариантах реализации В представляет собой модифицированный цитозин. В качестве примера, модифицированный цитозин включает соединения (b10)-(b14):

, , , или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00240] каждый из Т3' и Т независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкокси или необязательно замещенный тиоалкокси, или комбинация Т3' и T вместе (например, как в Т3) образует О (оксо), S (тио) или Se (селено);

[00241] каждый V4 независимо представляет собой О, S, N(RVc)nv или C(RVc)nv, где nv равно целому числу от 0 до 2, и каждый RVc независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил или необязательно замещенный алкинилокси (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкила), где комбинация R13b и RVc вместе может образовывать необязательно замещенный гетероциклил;

[00242] каждый V5 независимо представляет собой N(RVd)nv или C(RVd)nv, где nv равно целому числу от 0 до 2, и каждый RVd независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил или необязательно замещенный алкинилокси (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкила) (например, V5 представляет собой -СН или N);

[00243] каждый из R13a и R13b независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенный ацилоксиалкил, необязательно замещенный алкил или необязательно замещенный алкокси, где комбинация R13b и R14 вместе может образовывать необязательно замещенный гетероциклил;

[00244] каждый R14 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный галогеналкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил (например, замещенный О-защитной группой), необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный ацилоксиалкил, необязательно замещенный амино (например, -NHR, где R представляет собой Н, алкил, арил или фосфорил), азидо, необязательно замещенный арил, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкил; и

[00245] каждый из R15 и R16 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил или необязательно замещенный алкинил.

[00246] Другие примеры модифицированного цитозина включают соединения Формул (b32)-(b35):

, , или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00247] каждый из Т1 и Т3 независимо представляет собой О (оксо), S (тио) или Se (селено);

[00248] каждый из R13a и R13b независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенный ацилоксиалкил, необязательно замещенный алкил или необязательно замещенный алкокси, где комбинация R13b и R14 вместе может образовывать необязательно замещенный гетероциклил;

[00249] каждый R14 независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный галогеналкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил (например, замещенный О-защитной группой), необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный ацилоксиалкил, необязательно замещенный амино (например, -NHR, где R представляет собой Н, алкил, арил или фосфорил), азидо, необязательно замещенный арил, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил, необязательно замещенный аминоалкил (например, гидроксиалкил, алкил, алкенил или алкинил), необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил; и

[00250] каждый из R15 и R16 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил или необязательно замещенный алкинил (например, R15 представляет собой Н, и R16 представляет собой Н или необязательно замещенный алкил).

[00251] В некоторых вариантах реализации R15 представляет собой Н, и R16 представляет собой Н или необязательно замещенный алкил. В конкретных вариантах реализации R14 представляет собой Н, ацил или гидроксиалкил. В некоторых вариантах реализации R14 представляет собой галоген. В некоторых вариантах реализации R14 и R15 оба представляют собой Н. В некоторых вариантах реализации R15 и R16 оба представляют собой Н. В некоторых вариантах реализации каждый из R14 и R15 и R16 представляет собой Н. В дополнительных вариантах реализации каждый из R13a и R13b независимо представляет собой Н или необязательно замещенный алкил.

[00252] Другие неограничивающие примеры модифицированного цитозина включают соединения Формулы (b36):

или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00253] каждый R13b независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенный ацилоксиалкил, необязательно замещенный алкил или необязательно замещенный алкокси, где комбинация R13b и R14b вместе может образовывать необязательно замещенный гетероциклил;

[00254] каждый R14a и R14b независимо представляет собой Н, галоген, гидрокси, тиол, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный галогеналкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил (например, замещенный О-защитной группой), необязательно замещенный гидроксиалкенил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси, необязательно замещенный аминоалкокси, необязательно замещенный алкоксиалкокси, необязательно замещенный ацилоксиалкил, необязательно замещенный амино (например, -NHR, где R представляет собой Н, алкил, арил, фосфорил, необязательно замещенный аминоалкил или необязательно замещенный карбоксиаминоалкил), азидо, необязательно замещенный арил, необязательно замещенный гетероциклил, необязательно замещенный алкгетероциклил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил или необязательно замещенный аминоалкинил; и

[00255] каждый из R15 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил или необязательно замещенный алкинил.

[00256] В конкретных вариантах реализации R14b представляет собой необязательно замещенную аминокислоту (например, необязательно замещенный лизин). В некоторых вариантах реализации R14a представляет собой Н.

[00257] В некоторых вариантах реализации В представляет собой модифицированный гуанин. В качестве примера, модифицированные гуанины включают соединения Формул (b15)-(b17):

, или , фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00258] каждый из Т4’, Т4”, Т5’, Т5”, Т6’ и Т6” независимо представляет собой Н, необязательно замещенный алкил или необязательно замещенный алкокси, и где комбинация Т4’ и Т4” (например, как в Т4) или комбинация Т5’ и Т5” (например, как в Т5) или комбинация Т6’ и Т6” вместе (например, как в Т6) образуют О (оксо), S (тио) или Se (селено);

[00259] каждый из V5 и V6 независимо представляет собой О, S, N(RVd)nv или C(RVd)nv, где nv равно целому числу от 0 до 2, и каждый Rvd независимо представляет собой Н, галоген, тиол, необязательно замещенную аминокислоту, циано, амидин, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси, необязательно замещенный алкинилокси (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкил а), необязательно замещенный тиоалкокси или необязательно замещенный амино; и

[00260] каждый из R17, R18, R19a, R19b, R21, R22, R23 и R24 независимо представляет собой Н, галоген, тиол, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный тиоалкокси, необязательно замещенный амино или необязательно замещенную аминокислоту.

[00261] В качестве примера, модифицированный гуанозин включает соединения Формулы (b37)-(b40):

, , или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00262] каждый из Т4’ независимо представляет собой Н, необязательно замещенный алкил или необязательно замещенный алкокси, и каждый Т4 независимо представляет собой О (оксо), S (тио) или Se (селено);

[00263] каждый из R18, R19a, R19b и R21 независимо представляет собой Н, галоген, тиол, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный тиоалкокси, необязательно замещенный амино или необязательно замещенную аминокислоту.

[00264] В некоторых вариантах реализации R18 представляет собой Н или необязательно замещенный алкил. В дополнительных вариантах реализации Т4 представляет собой оксо. В некоторых вариантах реализации каждый из R19a и R19b независимо представляет собой Н или необязательно замещенный алкил.

[00265] В некоторых вариантах реализации В представляет собой модифицированный аденин. В качестве примера, модифицированный аденин включает соединения Формул (b18)-(b20):

, или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00266] каждый V7 независимо представляет собой О, S, N(RVe)nv или C(RVe)nv, где nv равно целому числу от 0 до 2, и каждый RVe независимо представляет собой Н, галоген, необязательно замещенную аминокислоту, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный алкенилокси или необязательно замещенный алкинилокси (например, необязательно замещенный любым заместителем, раскрытым в настоящем документе, таким как выбранные из (1)-(21), для алкила);

[00267] каждый R25 независимо представляет собой Н, галоген, тиол, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный тиоалкокси или необязательно замещенный амино;

[00268] каждый из R26a и R26b независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный карбамоилалкил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкокси или группу полиэтиленгликоля (например, -(CH2)s2(OCH2CH2)s1(CH2)s3OR’, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R’ представляет собой Н или С1-20алкил); или группу амино-полиэтиленгликоля (например, -NRN1(CH2)s2(CH2CH2O)s1(CH2)s3NRN1, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и каждый RN1 независимо представляет собой водород или необязательно замещенный С1-6алкил);

[00269] каждый R27 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси или необязательно замещенный амино;

[00270] каждый R28 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил или необязательно замещенный алкинил; и

[00271] каждый R29 независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный карбамоилалкил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный алкокси или необязательно замещенный амино.

[00272] В качестве примера, модифицированный аденин включает соединения Формул (b41)-(b43):

, или или фармацевтически приемлемую соль или стереоизомер указанных соединений, где

[00273] каждый R25 независимо представляет собой Н, галоген, тиол, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный тиоалкокси или необязательно замещенный амино;

[00274] каждый из R26a и R26b независимо представляет собой Н, необязательно замещенный ацил, необязательно замещенную аминокислоту, необязательно замещенный карбамоилалкил, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный гидроксиалкил, необязательно замещенный гидроксиалкенил, необязательно замещенный гидроксиалкинил, необязательно замещенный алкокси или группу полиэтиленгликоля (например, -(CH2)s2(OCH2CH2)s1(CH2)S3OR’, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R’ представляет собой Н или С1-20алкил); или группу амино-полиэтиленгликоля (например, -NRN1(CH2)s2(CH2CH2O)s1(CH2)s3NRN1, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и каждый RN1 независимо представляет собой водород или необязательно замещенный С1-6алкил); и

[00275] каждый R27 независимо представляет собой Н, необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный алкокси, необязательно замещенный тиоалкокси или необязательно замещенный амино.

[00276] В некоторых вариантах реализации R26a представляет собой Н, и R26b представляет собой необязательно замещенный алкил. В некоторых вариантах реализации каждый из R26a и R26b независимо представляет собой необязательно замещенный алкил. В конкретных вариантах реализации R27 представляет собой необязательно замещенный алкил, необязательно замещенный алкокси или необязательно замещенный тиоалкокси. В других вариантах реализации R25 представляет собой необязательно замещенный алкил. необязательно замещенный алкокси или необязательно замещенный тиоалкокси.

[00277] В конкретных вариантах реализации необязательный заместитель для R26a, R26b или R29 представляет собой группу полиэтиленгликоля (например, -(CH2)s2(OCH2CH2)s1(CH2)s3OR’, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и R’ представляет собой Н или С1-20алкил); или группу амино-полиэтиленгликоля (например, -NRN1(CH2)s2(CH2CH2O)s1(CH2)s3NRN1, где s1 равно целому числу от 1 до 10 (например, от 1 до 6 или от 1 до 4), каждое из s2 и s3 независимо равно целому числу от 0 до 10 (например, от 0 до 4, от 0 до 6, от 1 до 4, от 1 до 6 или от 1 до 10), и каждый RN1 независимо представляет собой водород или необязательно замещенный С1-6алкил).

[00278] В некоторых вариантах реализации В может быть представлен Формулой (b21):

, где X12 независимо представляет собой О, S, необязательно замещенный алкилен (например, метилен) или необязательно замещенный гетероалкилен, ха равно целому числу от 0 до 3, a R12a и Т2 являются такими, как раскрыто в настоящем документе.

[00279] В некоторых вариантах реализации В может быть представлен Формулой (b22):

, где R10’ независимо представляет собой необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный арил, необязательно замещенный гетероциклил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный алкокси, необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиалкил или необязательно замещенный карбамоилалкил и R11, R12a, Т1 и Т2 являются такими, как раскрыто в настоящем документе.

[00280] В некоторых вариантах реализации В может быть представлен Формулой (b23):

, где R10 представляет собой необязательно замещенный гетероциклил (например, необязательно замещенный фурил, необязательно замещенный тиенил или необязательно замещенный пирролил), необязательно замещенный арил (например, необязательно замещенный фенил или необязательно замещенный нафтил) или любой заместитель, раскрытый в настоящем документе (например, для R10); и где R11 (например, Н или любой заместитель, раскрытый в настоящем документе), R12a (например, Н или любой заместитель, раскрытый в настоящем документе), Т1 (например, оксо или любой заместитель, раскрытый в настоящем документе) и Т2 (например, оксо или любой заместитель, раскрытый в настоящем документе) являются такими, как раскрыто в настоящем документе.

[00281] В некоторых вариантах реализации В может быть представлен Формулой (b24):

, где R14’ независимо представляет собой необязательно замещенный алкил, необязательно замещенный алкенил, необязательно замещенный алкинил, необязательно замещенный арил, необязательно замещенный гетероциклил, необязательно замещенный алкарил, необязательно замещенный алкгетероциклил, необязательно замещенный аминоалкил, необязательно замещенный аминоалкенил, необязательно замещенный аминоалкинил, необязательно замещенный алкокси, необязательно замещенный алкоксикарбонилалкил, необязательно замещенный алкоксикарбонилалкенил, необязательно замещенный алкоксикарбонилалкинил, необязательно замещенный алкоксикарбонилалкокси, необязательно замещенный карбоксиалкокси, необязательно замещенный карбоксиалкил или необязательно замещенный карбамоилалкил, и R13a, R13b, R15 и T3 являются такими, как раскрыто в настоящем документе.

[00282] В некоторых вариантах реализации В может быть представлен Формулой (b25):

, где R14' представляет собой необязательно замещенный гетероциклил (например, необязательно замещенный фурил, необязательно замещенный тиенил или необязательно замещенный пирролил), необязательно замещенный арил (например, необязательно замещенный фенил или необязательно замещенный нафтил) или любой заместитель, раскрытый в настоящем документе (например, для R14 или R14'); и где R13a (например, Н или любой заместитель, раскрытый в настоящем документе), R13b (например, Н или любой заместитель, раскрытый в настоящем документе), R15 (например, Н или любой заместитель, раскрытый в настоящем документе) и Т3 (например, оксо или любой заместитель, раскрытый в настоящем документе) являются такими, как раскрыто в настоящем документе.

[00283] В некоторых вариантах реализации В представляет собой нуклеиновое основание, выбранное из группы, состоящей из: цитозина, гуанина, аденина и урацила. В некоторых вариантах реализации В может представлять собой:

или .

[00284] В некоторых вариантах реализации модифицированное нуклеиновое основание представляет собой модифицированный урацил. В качестве примера, нуклеиновые основания и нуклеозиды, содержащие модифицированный урацил, включают псевдоуридин (ψ), пиридин-4-он рибонуклеозид, 5-аза-уридин, 6-аза-уридин, 2-тио-5-аза-уридин, 2-тио-уридин (s2U), 4-тио-уридин (s4U), 4-тио-псевдоуридин, 2-тио-псевдоуридин, 5-гидрокси-уридин (ho5U), 5-аминоаллил-уридин, 5-галоген-уридин (например, 5-йод-уридин или 5-бром-уридин), 3-метил-уридин (m3U), 5-метокси-уридин (mo5U), уридин 5-оксиуксусную кислоту (cmo5U), уридин 5-оксиуксусной кислоты метиловый эфир (mcmo5U), 5-карбоксиметил-уридин (cm5U), 1-карбоксиметил-псевдоуридин, 5-карбоксигидроксиметил-уридин (chm5U), 5-карбоксигидроксиметил-уридина метиловый эфир (mchm5U), 5-метоксикарбонилметил-уридин (mcrn5U), 5-метоксикарбонилметил-2-тио-уридин (mcm5s2U), 5-аминометил-2-тио-уридин (nm5s2U), 5-метиламинометил-уридин (mnm5U), 5-метиламинометил-2-тио-уридин (mnm5s2U), 5-метиламинометил-2-селено-уридин (mnm5se2U), 5-карбамоилметил-уридин (ncm5U), 5-карбоксиметиламинометил-уридин (cmnm5U), 5-карбоксиметиламинометил-2-тио-уридин (cmnm5s2U), 5-пропинил-уридин, 1-пропинил-псевдоуридин, 5-тауринометил-уридин (τm3U), 1-тауринометил-псевдоуридин, 5-тауринометил-2-тио-уридин (τm5s2U), 1-тауринометил-4-тио-псевдоуридин, 5-метил-уридин (m5U, т.е., содержащий нуклеиновое основание дезокситимин), 1-метил-псевдоуридин (m1ψ), 5-метил-2-тио-уридин (m5s2U), 1-метил-4-тио-псевдоуридин (m1s4ψ), 4-тио-1-метил-псевдоуридин, 3-метил-псевдоуридин (m3ψ), 2-тио-1-метил-псевдоуридин, 1-метил-1-дезаза-псевдоуридин, 2-тио-1-метил-1-дезаза-псевдоуридин, дигидроуридин (D), дигидропсевдоуридин, 5,6-дигидроуридин, 5-метил-дигидроуридин (m3D), 2-тио-дигидроуридин, 2-тио-дигидропсевдоуридин, 2-метокси-уридин, 2-метокси-4-тио-уридин, 4-метокси-псевдоуридин, 4-метокси-2-тио-псевдоуридин, N1-метил-псевдоуридин, 3-(3-амино-3-карбоксипропил)уридин (acp3U), 1-метил-3-(3-амино-3-карбоксипропил)псевдоуридин (аср3ψ), 5-(изопентениламинометил)уридин (inm5U), 5-(изопентениламинометил)-2-тио-уридин (inm5s2U), α-тио-уридин, 2'-O-метил-уридин (Um), 5,2'-O-диметил-уридин (m5Um), 2’-O-метил-псевдоуридин (ψm), 2-тио-2'-O-метил-уридин (s2Um), 5-метоксикарбонилметил-2’-O-метил-уридин (mcm5Um), 5-карбамоилметил-2'-O-метил-уридин (ncm5Um), 5-карбоксиметиламинометил-2'-O-метил-уридин (cmnm5Um), 3,2'-O-диметил-уридин (m3Um), 5-(изопентениламинометил)-2’-O-метил-уридин (inm5Um), 1-тио-уридин, дезокситимидин, 2'-F-ара-уридин, 2'-F-уридин, 2'-ОН-ара-уридин, 5-(2-карбометоксивинил)уридин и 5-[3-(1-Е-пропениламино)уридин.

[00285] В некоторых вариантах реализации модифицированное нуклеиновое основание представляет собой модифицированный цитозин. В качестве примера, нуклеиновые основания и нуклеозиды, содержащие модифицированный цитозин, включают 5-аза-цитидин, 6-аза-цитидин, псевдоизоцитидин, 3-метил-цитидин (m3C), N4-ацетил-цитидин (ас4С), 5-формил-цитидин (f5C), N4-метил-цитидин (m4C), 5-метил-цитидин m5C), 5-галоген-цитидин (например, 5-йод-цитидин), 5-гидроксиметил-цитидин (hm5C), 1-метил-псевдоизоцитидин, пирроло-цитидин, пирроло-псевдоизоцитидин, 2-тио-цитидин (s2C), 2-тио-5-метил-цитидин, 4-тио-псевдоизоцитидин, 4-тио-1-метил-псевдоизоцитидин, 4-тио-1-метил-1-дезаза-псевдоизоцитидин, 1-метил-1-дезаза-псевдоизоцитидин, зебуларин, 5-аза-зебуларин, 5-метил-зебуларин,5-аза-2-тио-зебуларин, 2-тио-зебуларин, 2-метокси-цитидин, 2-метокси-5-метил-цитидин, 4-метокси-псевдоизоцитидин, 4-метокси-1-метил-псевдоизоцитидин, лизидин (k2C), α-тио-цитидин, 2'-O-метил-цитадин (Cm), 5,2'-O-диметил-цитидин (m5Cm), N4-ацетил-2'-O-метил-цитидин (ac4Cm), N4,2'-O-диметил-цитидин (m4Cm), 5-формил-2'-O-метил-цитидин (f5Cm), N4,N4,2'-O-триметил-цитидин (m42Cm), 1-тио-цитидин, 2'-F-ара-цитидин, 2'-F-цитидин и 2'-ОН-ара-цитидин.

[00286] В некоторых вариантах реализации модифицированное нуклеиновое основание представляет собой модифицированный аденин. В качестве примера, нуклеиновые основания и нуклеозиды, содержащие модифицированный аденин, включают 2-амино-пурин, 2,6-диаминопурин, 2-амино-6-галоген-пурин (например, 2-амино-6-хлор-пурин), 6-галоген-пурин (например, 6-хлор-пурин), 2-амино-6-метил-пурин, 8-азидо-аденозин, 7-дезаза-аденин, 7-дезаза-8-аза-аденин, 7-дезаза-2-амино-пурин, 7-дезаза-8-аза-2-амино-пурин, 7-дезаза-2,6-диаминопурин, 7-дезаза-8-аза-2,6-диаминопурин, 1-метил-аденозин (m1A), 2-метил-аденин (m2A), N6-метил-аденозин (m6A), 2-метилтио-N6-метил-аденозин (ms2m6A), N6-изопентенил-аденозин (i6A), 2-метилтио-N6-изопентенил-аденозин (ms2i6A), N6-(цис-гидроксиизопентенил)аденозин (io6A), 2-метилтио-N6-(цис-гидроксиизопентенил)аденозин (ms2io6A), N6-глицинилкарбамоил-аденозин (g6A), N6-треонилкарбамоил-аденозин (t6A), N6-метил-N6-треонилкарбамоил-аденозин (m6t6A), 2-метилтио-N6-треонилкарбамоил-аденозин (ms2g6A), N6,N6-диметил-аденозин (m62A), N6-гидроксинорвалилкарбамоил-аденозин (hn6A), 2-метилтио-N6-гидроксинорвалилкарбамоил-аденозин (ms2hn6A), N6-ацетил-аденозин (ас6А), 7-метил-аденин, 2-метилтио-аденин, 2-метокси-аденин, α-тио-аденозин, 2'-O-метил-аденозин (Am), N6,2'-O-диметил-аденозин (m6Am), N6,N6,2'-O-триметил-аденозин (m62Am), 1,2'-O-диметил-аденозин (m1Am), 2'-O-рибозиладенозин (фосфат) (Ar(р)), 2-амино-N6-метил-пурин, 1-тио-аденозин, 8-азидо-аденозин, 2'-F-ара-аденозин, 2'-F-аденозин, 2'-ОН-ара-аденозин и N6-(19-амино-пентаоксанонадецил)-аденозин.

[00287] В некоторых вариантах реализации модифицированное нуклеиновое основание представляет собой модифицированный гуанин. В качестве примера, нуклеиновые основания и нуклеозиды, содержащие модифицированный гуанин, включают инозин (I), 1-метил-инозин (m1I), виозин (imG), метилвиозин (mimG), 4-дезметил-виозин (imG-14) изовиозин (imG2), вибутозин (yW), пероксивибутозин (o2yW), гидроксивибутозин (OHyW), недомодифицированный гидроксивибутозин (OHyW*), 7-дезаза-гуанозин, квеуозин (Q), эпоксиквеуозин (oQ), галактозил-квеуозин (galQ), маннозил-квеуозин (manQ), 7-циано-7-дезаза-гуанозин (preQ0), 7-аминометил-7-дезаза-гуанозин (preQ1), археозин (G+), 7-дезаза-8-аза-гуанозин, 6-тио-гуанозин, 6-тио-7-дезаза-гуанозин, 6-тио-7-дезаза-8-аза-гуанозин, 7-метил-гуанозин (m7G), 6-тио-7-метил-гуанозин, 7-метил-инозин, 6-метокси-гуанозин, 1-метил-гуанозин (m1G), N2-метил-гуанозин (m2G), N2,N2-диметил-гуанозин (m22G), N2,7-диметил-гуанозин (m2,7G), N2,N2,7-диметил-гуанозин (m2,2,7G), 8-оксо-гуанозин, 7-метил-8-оксо-гуанозин, 1-метил-6-тиогуанозин, N2-метил-6-тио-гуанозин, N2,N2-диметил-6-тио-гуанозин, α-тио-гуанозин, 2'-O-метил-гуанозин (Gm), N2-метил-2'-O-метил-гуанозин (m2Gm), N2,N2-диметил-2'-O-метил-гуанозин (m22Gm), 1-метил-2'-O-метил-гуанозин (m1Gm), N2,7-диметил-2'-O-метил-гуанозин (m2,7Gm), 2'-O-метил-инозин (Im), 1,2'-O-диметил-инозин (m1Im), 2'-O-рибозилгуанозин (фосфат) (Gr(p)), 1-тио-гуанозин, O6-метил-гуанозин, 2'-F-ара-гуанозин и 2'-F-гуанозин.

[00288] Нуклеиновое основание в составе нуклеотида может быть независимо выбрано из пуринового, пиримидинового аналога пурина или пиримидина. Например, каждое из нуклеиновых оснований может быть независимо выбрано из аденина, цитозина, гуанина, урацила или гипоксантина. В другом варианте реализации нуклеиновое основание также может включать, например, природные и синтетические производные основания, в том числе, пиразоло[3,4-d]пиримидины, 5-метилцитозин (5-me-С), 5-гидроксиметил цитозин, ксантин, гипоксантин, 2-аминоаденин, 6-метил- и другие алкильные производные аденина и гуанина, 2-пропил и другие алкильные производные аденина и гуанина, 2-тиоурацил, 2-тиотимин и 2-тиоцитозин, 5-пропинил урацил и цитозин, 6-азо урацил, цитозин и тимин, 5-урацил (псевдоурацил), 4-тиоурацил, 8-галоген (например, 8-бром), 8-амино, 8-тиол, 8-тиоалкил, 8-гидроксил и другие 8-замещенные аденины и гуанины, 5-галоген, конкретно 5-бром, 5-трифторметил и другие 5-замещенные урацилы и цитозины, 7-метилгуанин и 7-метиладенин, 8-азагуанин и 8-азааденин, дезазагуанин, 7-дезазагуанин, 3-дезазагуанин, дезазааденин, 7-дезазааденин, 3-дезазааденин, пиразоло[3,4-d]пиримидин, имидазо[1,5-а]1,3,5 триазиноны, 9-дезазапурины, имидазо[4,5-d]пиразины, тиазоло[4,5-d]пиримидины, пиразин-2-оны, 1,2,4-триазин, пиридазин; и 1,3,5-триазин. Если нуклеотиды изображены с использованием сокращения A, G, С, Т или U, каждая буква обозначает характерное основание и/или его производные, например, А включает аденин или аналоги аденина, например, 7-дезаза аденин).

Модификации межнуклеозидной связи

[00289] Модифицированные нуклеозиды и нуклеотиды, которые могут быть введены в молекулу модифицированной нуклеиновой кислоты или ммРНК, могут содержать модифицированную межнуклеозидную связь (например, фосфатный скелет). Фосфатные группы скелета могут быть модифицированы заменой одного или более атомов кислорода различными заместителями. Кроме того, в модифицированных нуклеозидах и нуклеотидах все немодифицированные фосфатные группы могут быть заменены модифицированным фосфатом, как раскрыто в настоящем документе. Примеры модифицированных фосфатных групп включают, без ограничений, фосфоротиоат, фосфороселенаты, боранофосфаты, боранофосфатные эфиры, фосфонаты водорода, фосфорамидаты, фосфородиамидаты, алкил- или арилфосфонаты и фосфотриэфиры. В фосфородитиоатах оба атома кислорода, не образующие связи, заменены атомами серы. Фосфатный линкер также может быть модифицирован посредством замены атома кислорода, образующего связь, атомом азота (мостиковые фосфорамидаты), серы (мостиковые фосфоротиоаты) и углерода (мостиковые метилен-фосфонаты).

[00290] Раскрыт α-тиозамещенный фосфатный фрагмент для обеспечения стабильности полимеров РНК и ДНК посредством неприродных фосфоротиоатных связей в скелете. Фосфоротиоатным ДНК и РНК присуща устойчивость к действию нуклеаз и, следовательно, более длинный период полувыведения из клеточной среды. Ожидается, молекулы модифицированных нуклеиновых кислот или ммРНК, содержащие фосфоротиоатные связи, также будут уменьшать природный иммунный ответ посредством более слабого связывания/активации иммунных молекул природных клеток.

[00291] В конкретных вариантах реализации модифицированный нуклеозид включает альфа-тио-нуклеозид (например, 5'-O-(1-тиофосфат)-аденозин, 5'-O-(1-тиофосфат)-цитидин (α-тио-цитидин), 5'-O-(1-тиофосфат)-гуанозин, 5'-O-(1-тиофосфат)-уридин или 5'-O-(1-тиофосфат)-псевдоуридин).

Комбинации модифицированных сахаров, нуклеиновых оснований и межнуклеозидных связей

[00292] Модифицированные нуклеиновые кислоты и ммРНК по изобретению могут содержать комбинацию изменений сахара, нуклеинового основания и/или межнуклеозидной связи. Указанные комбинации могут включать любую одну или более модификаций, раскрытых в настоящем документе. В качестве примера, любой из нуклеотидов, раскрытых в Формулах (Ia), (Ia-1)-(Ia-3), (Ib)-(If), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl) и (IXa)-(IXr) настоящего документа, может быть объединен с любым из нуклеиновых оснований, раскрытых в настоящем документе (например, в Формулах (b1)-(b43) или любой другой, раскрытой в настоящем документе).

Синтез молекул модифицированных нуклеиновых кислот и ммРНК

[00293] Молекулы модифицированных нуклеиновых кислот и ммРНК для применения в соответствии с изобретением могут быть получены в соответствии с любой пригодной методикой, как раскрыто в настоящем документе. Модифицированные нуклеозиды и нуклеотиды, используемые в синтезе молекул модифицированных нуклеиновых кислот и ммРНК, раскрытых в настоящем документе, могут быть получены из легко доступных исходных материалов с применением следующих общих способов и методик. В случаях, где приведены типичные или предпочтительные условия процесса (например, значения температуры реакции, длительности, молярные соотношения реагентов, растворители, давление, и т.д.), квалифицированный специалист сможет оптимизировать и разработать дополнительные условия способа. Оптимальные условия реакции могут варьировать для используемых конкретных реагентов или растворителя, и такие условия могут быть определены специалистом в данной области с помощью шаблонных методик оптимизации.

[00294] Протекание способов, раскрытых в настоящем документе, можно контролировать в соответствии с любым пригодным методом, известным из уровня техники. Например, образование продукта можно контролировать спектроскопическими средствами, такими как спектроскопия ядерного магнитного резонанса (например, 1Н или 13С), ИК-спектроскопия, спектрофотометрия (например, в УФ-видимой области) или масс-спектрометрия, или хроматография, например, высокоэффективная жидкостная хроматографии (ВЭЖХ) или тонкослойная хроматография.

[00295] Получение молекул модифицированных нуклеиновых кислот и ммРНК по данному изобретению может включать введение и удаление защитных группы для различных химических групп. Необходимость во введении и удалении защитных групп, а также выбор пригодных защитных групп могут быть легко определены специалистом в данной области. Химия защитных групп описана, например, в Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, которая включена в настоящий документ в полном объеме посредством ссылки.

[00296] Реакции в способах, раскрытых в настоящем документе, могут быть проведены в подходящих растворителях, которые могут быть легко выбраны специалистом в области органического синтеза. Пригодными растворителями могут быть в значительной степени не реагирующие с исходными материалами (реагентами), промежуточными соединениями или продуктами при температурах, при которых проходят реакции, т.е., температурах, которые могут варьировать от температуры замерзания растворителя до температуры кипения растворителя. Конкретная реакция может быть проведена в одном растворителе или смеси более чем одного растворителя. В зависимости от конкретной стадии реакции, могут быть выбраны пригодные растворители для конкретной стадии реакции.

[00297] Разделение рацемических смесей модифицированных нуклеозидов и нуклеотидов может быть осуществлено любым из многочисленных способов, известных из уровня техники. Пример способа включает фракционную перекристаллизацию с применением "хиральной разделяющей кислоты", которая представляет собой оптически активную, солеобразующую органическую кислоту. Пригодные разделяющие агенты для способов фракционной перекристаллизации представляют собой, например, оптически активные кислоты, такие как D- и L-формы винной кислоты, диацетилвинной кислоты, дибензоилвинной кислоты, манделовой кислоты, яблочной кислоты, молочной кислоты или различных оптически активных сульфокамфорных кислот. Кроме того, разделение рацемических смесей может быть осуществлено элюацией на колонке, заполненной оптически активным разделяющим агентом {например, динитробензоилфенилглицином). Пригодные композиции растворителей для элюации могут быть определены специалистом в данной области.

[00298] Модифицированные нуклеозиды и нуклеотиды (например, молекулы строительных блоков) могут быть получены в соответствии с методами синтеза, раскрытыми в Ogata et al., J. Org. Chem. 74:2585-2588 (2009); Purmal et al., Nucl. Acids Res. 22(1): 72-78, (1994); Fukuhara et al., Biochemistry, 1(4): 563-568 (1962); и Xu et al., Tetrahedron, 48(9):1729-1740 (1992), каждая из которых включена в полном объеме посредством ссылки.

[00299] Модифицированная нуклеиновая кислота и ммРНК по изобретению не обязательно должны быть однородно модифицированы по всей длине молекулы. Например, один или более или все типы нуклеотидов (например, пуриновые или пиримидиновые или любой один или более или все из A, G, U, С) могут быть или не быть однородно модифицированы в полинуклеотиде по изобретению или в указанном предварительно определенном участке его последовательности. В некоторых вариантах реализации модифицированы все нуклеотиды X в полинуклеотиде по изобретению (или в указанном участке его последовательности), причем X может представлять собой любой из нуклеотидов A, G, U, С или любую из комбинаций A+G, A+U, А+С, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C или A+G+C.

[00300] Различные модификации Сахаров, модификации нуклеотидов и/или межнуклеозидных связей (например, в структурах скелета) могут присутствовать в различных положениях модифицированной нуклеиновой кислоты или ммРНК. Среднему специалисту в данной области будет понятно, что аналоги нуклеотидов или другая модификация(и) могут находиться в любом положении(ях) модифицированной нуклеиновой кислоты или ммРНК, таким образом, что функция модифицированной нуклеиновой кислоты или ммРНК по существу не снижается. Кроме того, модификация может представлять собой 5'- или 3'-концевую модификацию. Модифицированная нуклеиновая кислота или ммРНК может содержать от приблизительно 1% до приблизительно 100% модифицированных нуклеотидов, или любой процент в указанном интервале (например, от 1% до 20%, от 1% до 25%, от 1% до 50%, от 1% до 60%, от 1% до 70%, от 1% до 80%, от 1% до 90%, от 1% до 95%, от 10% до 20%, от 10% до 25%, от 10% до 50%, от 10% до 60%, от 10% до 70%, от 10% до 80%, от 10% до 90%, от 10% до 95%, от 10% до 100%, от 20% до 25%, от 20% до 50%, от 20% до 60%, от 20% до 70%, от 20% до 80%, от 20% до 90%, от 20% до 95%, от 20% до 100%, от 50% до 60%, от 50% до 70%, от 50% до 80%, от 50% до 90%, от 50% до 95%, от 50% до 100%, от 70% до 80%, от 70% до 90%, от 70% до 95%, от 70% до 100%., от 80% до 90%, от 80% до 95%, от 80% до 100%, от 90% до 95%, от 90% до 100% и от 95% до 100%).

[00301] В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК содержит модифицированный пиримидин (например, модифицированный урацил/уридин или модифицированный цитозин/цитидин). В некоторых вариантах реализации урацил или уридин в молекуле модифицированной нуклеиновой кислоты или ммРНК может быть заменен от приблизительно 1% до приблизительно 100%. модифицированного урацила или модифицированного уридина (например, от 1% до 20%, от 1% до 25%, от 1% до 50%, от 1% до 60%, от 1% до 70%, от 1% до 80%, от 1% до 90%, от 1% до 95%, от 10% до 20%, от 10% до 25%, от 10% до 50%, от 10% до 60%, от 10% до 70%, от 10% до 80%, от 10% до 90%, от 10% до 95%, от 10% до 100%., от 20% до 25%, от 20% до 50%, от 20% до 60%, от 20% до 70%, от 20% до 80%, от 20% до 90%, от 20% до 95%, от 20% до 100%, от 50% до 60%, от 50% до 70%, от 50% до 80%, от 50% до 90%, от 50% до 95%, от 50% до 100%, от 70% до 80%, от 70% до 90%, от 70% до 95%, от 70% до 100%, от 80% до 90%, от 80% до 95%, от 80% до 100%, от 90% до 95%, от 90%. до 100%. и от 95% до 100% модифицированного урацила или модифицированного уридина). Модифицированный урацил или уридин может быть заменен соединением с единственной уникальной структурой или множеством соединений различной структуры (например, 2, 3, 4 или более уникальных структур, как раскрыто в настоящем документе). В некоторых вариантах реализации цитозин или цитидин в молекуле модифицированной нуклеиновой кислоты или ммРНК может быть заменен от приблизительно 1% до приблизительно 100% модифицированного цитозина или модифицированного цитидина (например, от 1% до 20%, от 1% до 25%, от 1% до 50%, от 1% до 60%, от 1% до 70%, от 1% до 80%, от 1% до 90%, от 1% до 95%, от 10% до 20%, от 10% до 25%, от 10% до 50%, от 10% до 60%, от 10% до 70%, от 10% до 80%, от 10% до 90%, от 10% до 95%, от 10% до 100%, от 20% до 25%, от 20% до 50%, от 20% до 60%, от 20% до 70%, от 20% до 80%, от 20% до 90%, от 20% до 95%, от 20% до 100%, от 50% до 60%, от 50% до 70%, от 50% до 80%, от 50% до 90%, от 50% до 95%, от 50% до 100%, от 70% до 80%, от 70% до 90%, от 70% до 95%, от 70% до 100%, от 80% до 90%, от 80% до 95%, от 80% до 100%, от 90% до 95%, от 90% до 100% и от 95% до 100%) модифицированного цитозина или модифицированного цитидина). Модифицированный цитозин или цитидин могут быть заменены соединением с единственной уникальной структурой или множеством соединений различной структуры (например, 2, 3, 4 или более уникальных структур, как раскрыто в настоящем документе).

[00302] В некоторых вариантах реализации настоящий документ раскрывает способы синтеза модифицированной нуклеиновой кислоты или ммРНК, в том числе, n связанных нуклеозидов Формулы (Ia-1):

, которые включают:

[00303] а) реакцию нуклеотида Формулы (IV-1):

[00304] с фосфорамидитным соединением Формулы (V-1):

,

[00305] где Y9 представляет собой Н, гидрокси, фосфорил, пирофосфат, сульфат, амино, тиол, необязательно замещенную аминокислоту или пептид (например, содержащий от 2 до 12 аминокислот); каждый Р1, Р2 и P3 независимо представляет собой пригодную защитную группу; и обозначает твердую подложку;

[00306] с получением модифицированной нуклеиновой кислоты или ммРНК Формулы (VI-1):

и

[00307] б) окисление или сульфуризацию модифицированной нуклеиновой кислоты или ммРНК Формулы (V) с получением модифицированной нуклеиновой кислоты или ммРНК Формулы (VII-1):

[00308] в) удаление защитных групп с получением модифицированной нуклеиновой кислоты или ммРНК Формулы (Ia).

[00309] В некоторых вариантах реализации стадии а) и б) повторяют от 1 до приблизительно 10000 раз. В некоторых вариантах реализации способы дополнительно включают нуклеотид (например, молекулу строительного блока), выбранный из группы, состоящей из: аденозина, цитозина, гуанозина и урацила. В некоторых вариантах реализации нуклеиновое основание может быть пиримидиновым основанием или его производным. В некоторых вариантах реализации модифицированная нуклеиновая кислота или ммРНК является способной к трансляции.

[00310] Другие компоненты модифицированных нуклеиновых кислот и ммРНК необязательны, но являются предпочтительными в некоторых вариантах реализации. Например, раскрыт 5'-нетранслируемый участок (НТУ) и/или 3'НТУ, причем один из них или оба могут независимо содержать одну или более различных модификаций нуклеозидов. В таких вариантах реализации модификации нуклеозидов также могут присутствовать в транслируемом участке. Кроме того, раскрыты модифицированные нуклеиновые кислоты и ммРНК, содержащие последовательность Козака.

[00311] В качестве примера, синтез модифицированных нуклеотидов, которые содержатся в модифицированной нуклеиновой кислоте или ммРНК, например, РНК или мРНК, раскрыт на Схемах 1-11 ниже. На Схеме 1 раскрыт общий способ фосфорилирования нуклеозидов, включая модифицированные нуклеозиды.

[00312] Различные защитные группы могут использоваться для контроля реакции. Например, на Схеме 2 раскрыто применение нескольких стадий введения и удаления защитных групп, чтобы способствовать фосфорилированию в положении 5' сахара, скорее чем гидроксильных групп в положениях 2' и 3'.

[00313] Модифицированные нуклеотиды могут быть синтезированы любым пригодным способом. На Схемах 3, 4 и 7 раскрыты примеры способов синтеза модифицированных нуклеотидов, содержащих модифицированное пуриновое нуклеиновое основание; и на Схемах 5 и 6 раскрыты примеры способов синтеза модифицированных нуклеотидов, содержащих модифицированный псевдоуридин или псевдоизоцитидин, соответственно.

[00314] На Схемах 8 и 9 раскрыт пример синтеза модифицированных нуклеотидов. На Схеме 10 раскрыт неограничивающий биокаталитический способ получения нуклеотидов.

[00315] На Схеме 11 раскрыт пример синтеза модифицированного урацила, в котором положение N1 модифицировано R12b, как раскрыто где-либо в другом месте, и положение 5' рибозы фосфорилировано. Т1, Т2, R12a, R12b и r являются такими, как раскрыто в настоящем документе. Раскрытый способ синтеза, а также его оптимизированные версии могут применяться для модификации других пиримидиновых нуклеиновых оснований и пуриновых нуклеиновых оснований (см., например, Формулы (b1)-(b43)) и/или для введения одной или более фосфатных групп (например, в положение 5' сахара). Кроме того, указанная реакция алкилирования может применяться для введения одной или более необязательно замещенных алкилъных групп в любую реакционноспособную группу (например, аминогруппу) любого нуклеинового основания, раскрытую в настоящем документе (например, аминогруппы в уотсон-криковском спаривании оснований для цитозина, урацила, аденина и гуанина).

Комбинации нуклеотидов в ммРНК

[00316] Дополнительные примеры модифицированных нуклеотидов и комбинаций модифицированных нуклеотидов раскрыты в Табл. 2 ниже. Указанные комбинации модифицированных нуклеотидов могут применяться для получения модифицированных нуклеиновых кислот или ммРНК по изобретению. Если не указано иное, модифицированные нуклеотиды могут полностью заменять природные нуклеотиды в модифицированных нуклеиновых кислотах или ммРНК по изобретению. В качестве неограничивающего примера, природный нуклеотид уридин может быть заменен модифицированным нуклеозидом, раскрытом в настоящем документе. В другом неограничивающем примере природный нуклеотид уридин может быть частично заменен (например, приблизительно 0,1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или 99,9%) по меньшей мере одним из модифицированных нуклеозидов, раскрытых в настоящем документе.

Таблица 2
Модифицированный нуклеотид Комбинация модифицированных нуклеотидов
α-Тио-цитидин α-Тио-цитидин/5-йод-уридин
α-Тио-цитидин/N1-метил-псевдо-уридин
α-Тио-цитидин/α-тио-уридин
α-Тио-цитидин/5-метил-уридин
α-Тио-цитидин/псевдо-уридин
Приблизительно 50% цитозина представляет собой α-тио-цитидин
Псевдоизоцитидин Псевдоизоцитидин/5-йод-уридин
Псевдоизоцитидин/N1-метил-псевдоуридин
Псевдоизоцитидин/α-тио-уридин
Псевдоизоцитидин/5-метил-уридин
Псевдоизоцитидин/псевдоуридин
Приблизительно 25% цитозина представляет собой псевдоизоцитидин

Псевдоизоцитадин/приблизительно 50% уридина представляет собой N1-метил-псевдоуридин, и приблизительно 50% уридина представляет собой псевдоуридин
Псевдоизоцитидин/приблизительно 25% уридина представляет собой N1-метил-псевдо уридин, и приблизительно 25% уридина представляет собой псевдоуридин
Пирроло-цитидин Пирроло-цитидин/5-йод-уридин
Пирроло-цитидин/N1-метил-псевдоуридин
Пирроло-цитидин/α-тио-уридин
Пирроло-цитидин/5-метил-уридин
Пирроло-цитидин/псевдоуридин
Приблизительно 50% цитозина представляет собой пирроло-цитидин
5-Метил-цитидин 5-Метил-цитидин/5-йод-уридин
5-Метил-цитидин/N1-метил-псевдоуридин
5-Метил-цитидин/α-тио-уридин
5-Метил-цитидин/5-метил-уридин
5-Метил-цитидин/псевдоуридин
Приблизительно 25% цитозина представляет собой 5-метил-цитидин
Приблизительно 50% цитозина представляет собой 5-метил-цитидин
5-Метил-цитидин/5-метокси-уридин
5-Метил-цитидин/5-бром-уридин
5-Метил-цитидин/2-тио-уридин
5-Метил-цитидин/приблизительно 50% уридина представляет собой 2-тио-уридин
Приблизительно 50% уридина представляет собой 5-метил-цитидин/приблизительно 50% уридина представляет собой 2-тио-уридин
N4-Ацетил-цитидин N4-Ацетил-цитидин/5-йод-уридин
N4-Ацетил-цитидин/N1-метил-псевдоуридин
N4-Ацетил-цитидин/α-тио-уридин
N4-Ацетил-цитидин/5-метил-уридин
N4-Ацетил-цитидин/псевдоуридин
Приблизительно 50% цитозина представляет собой N4-ацетил-цитидин
Приблизительно 25% цитозина представляет собой N4-ацетил-цитидин
N4-Ацетил-цитидин/5-метокси-уридин
N4-Ацетил-цитидин/5-бром-уридин
N-Ацетил-цитидин/2-тио-уридин
Приблизительно 50% цитозина представляет собой N4-ацетил-цитидин/приблизительно 50% уридина представляет собой 2-тио-уридин

[00317] Дополнительные примеры комбинаций модифицированных нуклеотидов раскрыты в Табл. 3 ниже. Указанные комбинации модифицированных нуклеотидов могут применяться для получения молекул модифицированной нуклеиновой кислоты или ммРНК по изобретению.

Таблица 3
Модифицированный нуклеотид Комбинация модифицированных нуклеотидов
Модифицированный цитидин, содержащий одно или более нуклеиновых оснований Формулы (b10) Модифицированный цитидин, содержащий (b 10)/псевдоуридин
Модифицированный цитидин, содержащий (b10)/N1-метил-псевдоуридин
Модифицированный цитидин, содержащий (b10)/5-метокси-уридин
Модифицированный цитидин, содержащий (b10)/5-метил-уридин
Модифицированный цитидин, содержащий (b10)/5-бром-уридин
Модифицированный цитидин, содержащий (b10)/2-тио-уридин
Приблизительно 50% цитидина заменено модифицированным цитидином (b10)/приблизительно 50% уридина представляет собой 2-тио-уридин
Модифицированный цитидин, содержащий одно или более нуклеиновых оснований Формулы (b32) Модифицированный цитидин, содержащий (b32)/псевдоуридин
Модифицированный цитидин, содержащий (b32)/N1-метил-псевдоуридин
Модифицированный цитидин, содержащий (b32)/5-метокси-уридин
Модифицированный цитидин, содержащий (b32)/5-метил-уридин
Модифицированный цитидин, содержащий (b32)/5-бром-уридин
Модифицированный цитидин, содержащий (b32)/2-тио-уридин
Приблизительно 50% цитидина заменено модифицированным цитидином (b32)/приблизительно 50% уридина представляет собой 2-тио-уридин
Модифицированный уридин, содержащий одно или более нуклеиновых оснований Формулы (b1) Модифицированный уридин, содержащий (b1)N4-ацетил-цитидин
Модифицированный уридин, содержащий (b1)/5-метил-цитидин
Модифицированный уридин, содержащий одно или более нуклеиновых оснований Формулы (b8) Модифицированный уридин, содержащий (b8)/N4-ацетил-цитидин
Модифицированный уридин, содержащий (b8)/5-метил-цитидин
Модифицированный уридин, содержащий одно или более нуклеиновых Модифицированный уридин, содержащий (b28)/N4-ацетил-цитидин
Модифицированный уридин, содержащий (b28)/5-метил-цитидин

оснований Формулы (b28)
Модифицированный уридин, содержащий одно или более нуклеиновых оснований Формулы (b29) Модифицированный уридин, содержащий (b29)/N4-ацетил-цитидин
Модифицированный уридин, содержащий (b29)/5-метил-цитидин
Модифицированный уридин, содержащий одно или более нуклеиновых оснований Формулы (b30) Модифицированный уридин, содержащий (b30)/N4-ацетил-цитидин
Модифицированный уридин, содержащий (b30)/5-метил-цитидин

[00318] В некоторых вариантах реализации по меньшей мере 25% цитозина заменено соединением Формул (b10)-(b14) (например, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95% или приблизительно 100%).

[00319] В некоторых вариантах реализации по меньшей мере 25% урацила заменено соединением Формул (b1)-(b9) (например, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95% или приблизительно 100%).

[00320] В некоторых вариантах реализации по меньшей мере 25% цитозина заменено соединением Формул (b10)-(b14), и по меньшей мере 25% урацила заменено соединением Формул (b1)-(b9) (например, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 50%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 75%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 85%, по меньшей мере приблизительно 90%, по меньшей мере приблизительно 95% или приблизительно 100%).

Синтез молекул модифицированных нуклеиновых кислот

[00321] Молекулы модифицированных нуклеиновых кислот для применения в соответствии с настоящим документом могут быть получены в соответствии с любой пригодной методикой, в том числе, без ограничений, транскрипцией in vitro, например, химическим синтезом и ферментным синтезом, или ферментным и химическим расщеплением in vitro прекурсора, и т.д. Методы синтеза РНК известны из уровня техники (см., например, Gait, M.J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, DC: IRL Press, 1984; и Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications, Methods in Molecular Biology, v. 288 (Clifton, NJ.) Totowa, N.J.: Humana Press, 2005; обе из которых включены в данное описание посредством ссылки).

[00322] Молекулы модифицированных нуклеиновых кислот, раскрытые в настоящем документе, могут быть получены из легко доступных исходных материалов с применением следующих общих способов и методик. Следует понимать, что в случаях, где приведены типичные или предпочтительные условия процесса (например, значения температуры реакции, длительности, молярные соотношения реагентов, растворители, давление, и т.д.), другие условия способа также могут применяться, если не указано иное. Оптимальные условия реакции могут варьировать для используемых конкретных реагентов или растворителя, и такие условия могут быть определены специалистом в данной области с помощью шаблонных методик оптимизации.

[00323] Протекание способов, раскрытых в настоящем документе, можно контролировать в соответствии с любым пригодным методом, известным из уровня техники. Например, образование продукта можно контролировать спектроскопическими средствами, такими как спектроскопия ядерного магнитного резонанса (например, Н1 или 13С), ИК-спектроскопия, спектрофотометрия (например, в УФ-видимой области) или масс-спектрометрия, или хроматография, например, высокоэффективная жидкостная хроматография (ВЭЖХ) или тонкослойная хроматография.

[00324] Получение молекул модифицированных нуклеиновых кислот может включать введение и удаление защитных групп для различных химических групп.Необходимость во введении и удалении защитных групп, а также выбор пригодных защитных групп могут быть легко определены специалистом в данной области. Химия защитных групп описана, например, в Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, которая включена в настоящий документ в полном объеме посредством ссылки.

[00325] Реакции в способах, раскрытых в настоящем документе, могут быть проведены в подходящих растворителях, которые могут быть легко выбраны специалистом в области органического синтеза. Пригодными растворителями могут быть в значительной степени не реагирующие с исходными материалами (реагентами), промежуточными соединениями или продуктами при температурах, при которых проходят реакции, т.е., температурах, которые могут варьировать от температуры замерзания растворителя до температуры кипения растворителя. Конкретная реакция может быть проведена в одном растворителе или смеси более чем одного растворителя. В зависимости от конкретной стадии реакции, могут быть выбраны пригодные растворители для конкретной стадии реакции.

[00326] Разделение рацемических смесей молекул модифицированных нуклеиновых кислот может быть осуществлено любым из многочисленных способов, известных из уровня техники. Пример способа включает, без ограничений, фракционную перекристаллизацию с применением "хиральной разделяющей кислоты", которая представляет собой оптически активную, солеобразующую органическую кислоту. Пригодные разделяющие агенты для способов фракционной перекристаллизации представляют собой, например, оптически активные кислоты, такие как D- и L-формы винной кислоты, диацетилвинной кислоты, дибензоилвинной кислоты, манделовой кислоты, яблочной кислоты, молочной кислоты или различных оптических активных сульфокамфорных кислот. Кроме того, разделение рацемических смесей может быть осуществлено элюацией на колонке, заполненной оптически активным разделяющим агентом (например, динитробензоилфенилглицином). Пригодные композиции растворителей для элюации могут быть определены специалистом в данной области.

[00327] Молекулы модифицированных нуклеиновых кислот не обязательно должны быть однородно модифицированы по всей длине молекулы. Различные модификации нуклеиновой кислоты и/или структур скелета могут присутствовать в различных положениях нуклеиновой кислоты. Среднему специалисту в данной области будет понятно, что аналоги нуклеотидов или другая модификация(и) могут находиться в любом положении(ях) нуклеиновой кислоты, таким образом, что функция нуклеиновой кислоты по существу не снижается. Кроме того, модификация может представлять собой 5'- или 3'-концевую модификацию. Нуклеиновые кислоты могут содержать по меньшей мере один модифицированный нуклеотид и максимум 100% модифицированных нуклеотидов, или любой процент в указанном интервале, например, по меньшей мере 5% модифицированных нуклеотидов, по меньшей мере 10% модифицированных нуклеотидов, по меньшей мере 25% модифицированных нуклеотидов, по меньшей мере 50% модифицированных нуклеотидов, по меньшей мере 80% модифицированных нуклеотидов или по меньшей мере 90% модифицированных нуклеотидов. Например, нуклеиновые кислоты могут содержать модифицированный пиримидин, такой как урацил или цитозин. В некоторых вариантах реализации по меньшей мере 5%, по меньшей мере 10%, по меньшей мере 25%, по меньшей мере 50%, по меньшей мере 80%, по меньшей мере 90% или 100% урацила в нуклеиновой кислоте может быть заменено модифицированным урацилом. Модифицированный урацил может быть заменен соединением с единственной уникальной структурой или множеством соединений различной структуры (например, 2, 3, 4 или более уникальных структур). В некоторых вариантах реализации по меньшей мере 5%, по меньшей мере 10%, по меньшей мере 25%, по меньшей мере 50%, по меньшей мере 80%, по меньшей мере 90% или 100% цитозина в нуклеиновой кислоте может быть заменено модифицированным цитозином. Модифицированный цитозин может быть заменен соединением с единственной уникальной структурой или множеством соединений различной структуры (например, 2, 3, 4 или более уникальных структур).

[00328] В общем, наименьшая длина модифицированной мРНК, в настоящем документе "ммРНК," согласно настоящему документу может быть длиной последовательности мРНК, достаточной для кодирования дипептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования трипептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования тетрапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования пентапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования гексапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования гептапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования октапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования нонапептида. В другом варианте реализации длина последовательности мРНК может быть достаточной для кодирования декапептида.

[00329] Примеры дипептидов, которые могут кодироваться последовательностями молекул модифицированной нуклеиновой кислоты, включают, без ограничений, карнозин и анзерин.

[00330] В дополнительном варианте реализации длина мРНК может составлять более 30 нуклеотидов. В другом варианте реализации длина молекулы РНК может составлять более 35 нуклеотидов (например, по меньшей мере или более чем приблизительно 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, 4000 и 5000 нуклеотидов).

Пример свойств молекул модифицированных нуклеиновых кислот

Партнеры по взаимодействию основных бороздок

[00331] Молекулы модифицированных нуклеиновых кислот, например, модифицированной мРНК (ммРНК), раскрытых в настоящем документе, могут нарушать взаимодействие с распознающими рецепторами, которые обнаруживают и реагируют на РНК-лиганды посредством взаимодействия, например, связывания, с поверхностью большой бороздки нуклеотида или нуклеиновой кислоты. Таким образом, РНК-лиганды, содержащие молекулы модифицированных нуклеотидов или модифицированных нуклеиновых кислот, как раскрыто в настоящем документе, уменьшают взаимодействие с партнерами по связыванию большой бороздки, и, таким образом, снижают природный иммунный ответ или экспрессию и секрецию провоспалительных цитокинов, или оба.

[00332] Примеры партнеров взаимодействия большой бороздки, например, связывания, включают, без ограничений, следующие нуклеазы и геликазы. В пределах мембран, TLR (Toll-подобные рецепторы) 3, 7 и 8 могут реагировать на одно- и двухцепочечную РНК. В цитоплазме, члены суперсемейства 2 класса DEX(D/H) геликаз и АТФаз могут распознавать РНК для инициации противовирусных реакций. Указанные геликазы включают RIG-I (индуцируемый ретиноевой кислотой ген I) и MDA5 (ассоциированный с дифференцировкой меланомы ген 5). Другие примеры включают лабораторию генетики и физиологии 2 (LGP2), белки, содержащие домен HIN-200 или белки, содержащие домен геликазы.

Предупреждение или уменьшение активации природного клеточного иммунного ответа с помощью молекул модифицированных нуклеиновых кислот

[00333] Молекулы модифицированных нуклеиновых кислот, например, ммРНК, раскрытые в настоящем документе, уменьшают природный иммунный ответ в клетке. Термин «природный иммунный ответ» включает клеточный ответ на экзогенные нуклеиновые кислоты, в том числе, без ограничений, одноцепочечные нуклеиновые кислоты, в общем, вирусного или бактериального происхождения, который включает индукцию экспрессии и высвобождения цитокинов, конкретно интерферонов, и гибель клетки. Кроме того, синтез белка может снижаться в ходе природного клеточного иммунного ответа. Хотя предпочтительной является элиминация природного иммунного ответа в клетке, в настоящем документе предлагается модифицированная мРНК, которая в значительной степени снижает иммунный ответ, в том числе, проведение сигнала интерферона, не вызывая полной элиминации такого ответа. В некоторых вариантах реализации иммунный ответ может быть снижен на 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99,9% или более чем 99,9%, по сравнению с иммунным ответом, индуцируемым соответствующей немодифицированной молекулой нуклеиновой кислоты. Такое снижение может быть измерено по уровню экспрессии или активности интерферонов Типа 1 или экспрессии регулируемых интерфероном генов, таких как toll-подобные рецепторы (например, TLR7 и TLR8). Кроме того, снижение природного иммунного ответа может быть измерено по уменьшению гибели клеток после введения одной или более доз модифицированной РНК в популяцию клеток; например, гибель клеток уменьшается на 10%, 25%, 50%, 75%, 85%, 90%, 95% или более чем 95%, по сравнению с гибелью клеток, наблюдаемой в случае соответствующей немодифицированной молекулы нуклеиновой кислоты. Более того, может погибнуть менее 50%, 40%, 30%, 20%, 10%, 5%, 1%, 0,1%, 0,01% или менее чем 0,01% клеток, которые контактировали с модифицированными молекулами нуклеиновой кислоты.

[00334] В настоящем документе раскрывается повторное введение (например, трансфекция) модифицированных молекул нуклеиновой кислоты в популяцию клеток-мишеней, например, in vitro, ex vivo или in vivo. Стадия контакта с популяцией клеток может повторяться один или более раз (например, 2, 3, 4, 5 или более 5 раз). В некоторых вариантах реализации стадия контакта популяции клеток с модифицированными молекулами нуклеиновой кислоты может повторяться достаточное количество раз для достижения предварительно определенной эффективности трансляции белка в популяции клеток. С учетом сниженной цитотоксичности для популяции клеток-мишеней посредством модификации нуклеиновой кислоты, такие повторные трансфекции будут возможными для различных типов клеток.

[00335] Модифицированные нуклеиновые кислоты по изобретению, содержащие комбинацию модификаций, раскрытых в настоящем документе, могут обладать превосходящими свойствами, что делает из более пригодными в качестве терапевтических средств.

[00336] Было определено, что модель «все или ничего» в данной области крайне недостаточна для описания биологических феноменов, связанных с терапевтической пригодностью модифицированной мРНК. Авторами настоящего изобретения обнаружено, что для усовершенствования белковых продуктов можно рассмотреть природу модификации или комбинации модификаций, процент модификации и обзор более чем одного цитокина или показателя для определения профиля эффективности и риска для конкретной модифицированной мРНК.

[00337] В одном аспекте изобретения, способы определения эффективности модифицированной мРНК, по сравнению с немодифицированной, включают измерение и анализ одного или более цитокинов, экспрессия которых запускается введением экзогенной нуклеиновой кислоты по изобретению. Полученные значения сравнивают с введением немодифицированной нуклеиновой кислоты или стандартным показателем, таким как цитокиновый ответ, PolyIC, R-848 или другой стандарт, известный из уровня техники.

[00338] Один из примеров стандартного показателя, разработанного в настоящем изобретении, представляет собой меру соотношения уровня или количества кодируемого полипептида (белка), продуцированного в клетке, ткани или организме, и уровня или количества одного или более (или панели) цитокинов, экспрессия которых запускается в клетке, ткани или организме в результате введения или контакта с модифицированной нуклеиновой кислотой. Такие соотношения в настоящем документе обозначаются как Соотношение Белок:Цитокин или Соотношение «БЦ». Чем выше соотношение БЦ, тем более эффективна модифицированная нуклеиновая кислота (полинуклеотид, кодирующий измеряемый белок). Предпочтительные Соотношения БЦ, по цитокину, в настоящем изобретении могут составлять свыше 1, свыше 10, свыше 100, свыше 1000, свыше 10000 или более. Модифицированные нуклеиновые кислоты с более высоким Соотношением БЦ, чем у модифицированной нуклеиновой кислоты другого или немодифицированного конструкта, являются предпочтительными.

[00339] Соотношение БЦ может быть дополнительно уточнено с учетом процента модификаций в полинуклеотиде. Например, может быть определена выработка белка, нормализованная к 100% модифицированной нуклеиновой кислоты, как функция цитокина (или риск) или профиль цитокина.

[00340] В одном варианте реализации настоящего изобретения раскрыт способ определения, посредством химических реакций, цитокинов или процента модификации, относительной эффективности любого конкретного модифицированного полинуклеотида, путем сравнения Соотношения БЦ модифицированной нуклеиновой кислоты (полинуклеотида).

Активация иммунного ответа: Вакцины

[00341] В одном варианте реализации настоящего изобретения молекулы мРНК могут применяться для индукции или провоцирования иммунного ответа в организме. Молекулы мРНК для введения могут кодировать иммуногенный пептид или полипептид, и могут кодировать более одного такого пептида или полипептида.

[00342] Дополнительно, некоторые модифицированные нуклеозиды или их комбинации, при введении в модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению, активизируют природный иммунный ответ.Такие активизирующие молекулы пригодны в качестве адъювантов, в сочетании с полипептидами и/или другими вакцинами. В некоторых вариантах реализации активизирующие молекулы содержат транслируемый участок, который кодирует последовательность полипептида, пригодную в качестве вакцины, таким образом, предлагая свойство самоадъюванта.

[00343] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК по изобретению могут кодировать иммуногенное средство. Введение модифицированных молекул нуклеиновой кислоты и/или ммРНК, кодирующих иммуногенное средство, может активизировать иммунный ответ. В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты и/или ммРНК, кодирующие иммуногенное средство, могут быть доставленным к клеткам, чтобы запустить множественные пути природного ответа (см. Международную публикацию WO 2012006377; включена в настоящий документ в полном объеме посредством ссылки). В качестве другого неограничивающего примера, модифицированные молекулы нуклеиновой кислоты и ммРНК по настоящему изобретению, кодирующие иммуногенное средство, могут быть введены позвоночному животному в дозе, достаточно большой, чтобы быть иммуногенной для позвоночного животного (см. Международную публикацию WO 2012006372 и WO 2012006369; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00344] Модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут кодировать последовательность полипептида для вакцины, и могут дополнительно содержать ингибитор. Ингибитор может ослаблять представление антигена и/или подавлять различные пути, известные из уровня техники. В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут применяться для вакцины в комбинации с ингибитором, который может ослабить представление антигена (см. Международные публикации WO 2012089225 и WO 2012089338; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00345] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут представлять собой самореплицирующуюся РНК. Молекулы самореплицирующейся РНК могут повышать эффективность доставки РНК и экспрессию соответствующего генного продукта. В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК могут содержать по меньшей мере одну модификацию, раскрытую в настоящем документе и/или известную из уровня техники. В одном варианте реализации самореплицирующаяся РНК может быть сконструирована таким образом, что самореплицирующаяся РНК не будет индуцировать выработки, инфекционных вирусных частиц. В качестве неограничивающего примера, самореплицирующаяся РНК может быть сконструирована способами, раскрытыми в Публикации США US 20110300205 и Международной публикации WO 2011005799, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00346] В одном варианте реализации самореплицирующиеся модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут кодировать белок, который может вызывать иммунный ответ.В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты и/или ммРНК могут представлять собой самореплицирующуюся мРНК, которая может кодировать по меньшей мере один антиген (см. Публикацию США US 20110300205 и Международную публикацию WO 2011005799; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00347] В одном варианте реализации самореплицирующиеся модифицированные нуклеиновые кислоты или ммРНК по изобретению могут быть введены в состав способами, раскрытыми в настоящем документе или известными в данной области. В качестве неограничивающего примера, самореплицирующаяся РНК может быть ведена в состав для доставки способами, раскрытыми в Geall et al (Nonviral delivery of self-amplifying RNA vaccines, PNAS 2012; PMID:22908294; включена в настоящий документ в полном объеме посредством ссылки).

[00348] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК по настоящему изобретению могут кодировать амфифильные и/или иммуногенные амфифильные пептиды.

[00349] В одном варианте реализации состав на основе модифицированных молекул нуклеиновой кислоты или ммРНК по настоящему изобретению может дополнительно содержать амфифильный и/или иммуногенный амфифильный пептид. В качестве неограничивающего примера, модифицированная молекула нуклеиновой кислоты или ммРНК, содержащая амфифильный и/или иммуногенный амфифильный пептид, может быть введена в состав, как описано в Публикации США US 20110250237 и Международных публикациях WO 2010009277 и WO 2010009065; каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00350] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и ммРНК по настоящему изобретению могут быть иммуностимуляторами. В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты и ммРНК могут кодировать полноразмерную или часть положительно-смысловой или отрицательно-смысловой цепи РНК вирусного генома (см. Международную публикацию WO 2012092569 и Публикацию США US 20120177701, каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В другом неограничивающем примере, иммуностимулирующие модифицированные молекулы нуклеиновой кислоты или ммРНК по настоящему изобретению могут быть введены в состав вместе со вспомогательным веществом для последующего введения, как описано в настоящем документе и/или известно из уровня техники (см. Международную публикацию WO 2012068295 и Публикацию США US 20120213812, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00351] В одном варианте реализации ответ на вакцину, созданную в соответствии со способами, раскрытыми в настоящем документе, может быть усилен добавлением различных соединений с целью индукции терапевтического эффекта. В качестве неограничивающего примера, в состав вакцины может входить пептид, связывающийся с МНС II, или пептид с последовательностью, подобной связывающемуся с МНС II пептиду (см. Международные публикации WO 2012027365, WO 2011031298 и Публикации США US 20120070493, US 20110110965, каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В качестве другого примера, в состав вакцины могут входить модифицированные никотиновые соединения, которые могут вызывать у субъекта реакцию в форме антител к остатку никотина (см. Международную публикацию WO 2012061717 и Публикацию США US 20120114677, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

Варианты полипептидов

[00352] Модифицированные молекулы нуклеиновой кислоты кодируют полипептиды, например, различные полипептиды, которым свойственна некоторая степень идентичности последовательности референтного полипептида. Термин «идентичность", как известно из уровня техники, обозначает взаимоотношения между последовательностями двух или более пептидов, определенное путем сравнения последовательностей. Кроме того, в уровне техники "идентичность" обозначает степень родства последовательностей пептидов, определяемую по количеству совпадений между цепями из двух или более остатков аминокислот.Идентичность измеряется процентом идентичных совпадений между меньшей из двух или более последовательностей при выравнивании промежутков (если они присутствуют) с помощью конкретной математической модели или компьютерной программы (т.е., «алгоритмов»). Идентичность родственных пептидов может быть легко вычислена известными способами. Такие способы включают, без ограничений, раскрытые в Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; и Carillo et al., SIAM J. Applied Math. 48, 1073 (1988); все из которых включены в настоящий документ в полном объеме посредством ссылки.

[00353] В некоторых вариантах реализации, вариант полипептида может обладать такой же или сходной активностью с референтным полипептидом. Альтернативно, вариант может обладать измененной активностью (например, увеличенной или уменьшенной) относительно референтного полипептида. В общем, последовательность вариантов конкретного полинуклеотида или полипептида согласно настоящему документу будет по меньшей мере приблизительно на 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или более идентичной последовательности конкретного референтного полинуклеотида или полипептида, по данным программ выравнивания последовательностей и параметров, раскрытых в настоящем документе и известных специалистам из уровня техники.

[00354] Специалисту в данной области будет понятно, что фрагменты белка, функциональные домены белка и гомологичные белки также рассматриваются как находящиеся в пределах контекста настоящего документа. Например, в настоящем документе раскрывается любой белковый фрагмент референтного белка (что означает последовательность полипептида, которая по меньшей мере на 1 остаток аминокислоты короче последовательности референтного полипептида, но в других отношениях является идентичной) длиной 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 или более 100 аминокислот.В качестве другого примера, любой белок, который содержит последовательность длиной около 20, около 30, около 40, около 50, или около 100 аминокислот, которая приблизительно на 40%, приблизительно на 50%, приблизительно на 60%, приблизительно на 70%, приблизительно на 80%, приблизительно на 90%, приблизительно на 95% или приблизительно на 100% идентична любой из последовательностей, раскрытых в настоящем документе, может использоваться в соответствии с настоящим документом. В некоторых вариантах реализации последовательность белка, которая используется в соответствии с настоящим документом, содержит 2, 3, 4, 5, 6, 7, 8, 9, 10, или более мутаций, как проиллюстрировано в любой из последовательностей, раскрытых или процитированных в настоящем документе.

Комплексы полипептид-нуклеиновая кислота

[00355] Надлежащая трансляция белка включает физическую агрегацию целого ряда полипептидов и нуклеиновых кислот, связанных с мРНК. В настоящем документе раскрыты комплексы белок-нуклеиновая кислота, содержащие транслируемую мРНК с одной или более модификаций нуклеозидов (например, по меньшей мере две различные модификации нуклеозидов) и один или более полипептидов, связанных с мРНК. В общем, белки предложены в количестве, эффективном для предупреждения или уменьшения природного иммунного ответа клетки, в которую введен комплекс.

Нетранслируемые модифицированные молекулы нуклеиновой кислоты

[00356] Как раскрыто в настоящем документе, предложены мРНК, содержащие в существенной мере нетранслируемые последовательности. Такие мРНК при введении субъекту могут быть эффективными в качестве вакцины. Кроме того, раскрыто, что субъект, которому вводят вакцину, может быть млекопитающим, более предпочтительно человеком, и наиболее предпочтительно пациентом.

[00357] Также раскрыты модифицированные молекулы нуклеиновой кислоты, которые содержат один или более некодирующих участков. Такие модифицированные молекулы нуклеиновой кислоты, в общем, не транслируются, но способны к связыванию и секвестрации одного или более трансляционных компонентов аппарата клетки, такого как рибосомальный белок или транспортная РНК (тРНК), таким образом, эффективно снижая экспрессию белка в клетке. Модифицированная молекула нуклеиновой кислоты может содержать ядрышковую РНК небольшого размера (мяРНК), микро-РНК (микро-РНК), малую интерферирующую РНК (миРНК) или РНК, взаимодействующую по piwi-типу (piwi-взаимодействующая РНК).

Фармацевтические составы

Препарат, введение, доставка и дозы

[00358] В настоящем изобретении раскрываются составы и комплексы на основе модифицированных нуклеиновых кислот и ммРНК в комбинации с одним или более фармацевтически приемлемых вспомогательных веществ. Фармацевтические составы могут необязательно содержать одну или более дополнительных активных субстанций, например терапевтически и/или профилактически активные субстанции. Общие соображения касательно лекарственной формы и/или производства фармацевтических агентов можно найти, например, в Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (включен в настоящий документ в полном объеме посредством ссылки).

[00359] В некоторых вариантах реализации составы вводят людям, пациентам-людям или субъектам. Для целей настоящего документа, выражение «активный ингредиент», в общем, обозначает модифицированные нуклеиновые кислоты и ммРНК для введения, как раскрыто в настоящем документе.

[00360] Хотя описания фармацевтических составов, раскрытых в настоящем документе, главным образом, относятся к фармацевтическим составам, которые пригодны для введения человеку, специалисту будет понято, что такие составы, в общем, пригодны для введений любому другому животному, например, негуманоидным животным, например, негуманоидным млекопитающим. Модификация фармацевтических составов, пригодных для введения человеку, с целью получения составов, пригодных для введения различным животным, хорошо изучена, и средний ветеринарный фармаколог может разработать и/или осуществить такую модификацию в пределах шаблонного экспериментирования, если оно необходимо. Субъекты, которым предполагается вводить фармацевтические составы, включают, без ограничений, человека и/или других приматов; млекопитающих, в том числе, разводимых в коммерческих целях млекопитающих, таких как крупный рогатый скот, свиньи, лошади, овцы, кошки, собаки, мыши и/или крысы; и/или птиц, в том числе, разводимых в коммерческих целях птиц, таких как домашняя птица, куры, утки, гуси и/или индюки.

[00361] Препараты фармацевтических составов, раскрытых в настоящем документе, могут быть получены любым способом, известным, или который будет в будущем разработан в области фармакологии. В общем, такие способы получения включают стадию сочетания активного ингредиента со вспомогательным веществом и/или одним или более других дополнительных ингредиентов, а затем, при необходимости и/или желании, разделения, формирования и/или упаковки продукта в желательную одно-или многодозовую упаковку.

[00362] Фармацевтический состав в соответствии с изобретением может быть получен, упакован и/или продан в нерасфасованном виде, в виде однодозовой формы и/или в виде множества однодозовых форм. В настоящем документе «единица дозы» обозначает дискретное количество фармацевтического состава, содержащее предварительно определенное количество активного ингредиента. Количество активного ингредиента, в общем, соответствует дозе активного ингредиента для введения субъекту и/или подходящей части такой дозы, например, половине или трети такой дозы.

[00363] Относительные количества активного ингредиента, фармацевтически приемлемого вспомогательного вещества и/или любых дополнительных ингредиентов в фармацевтическом составе в соответствии с изобретением будут варьировать, в зависимости от вида, размеров и/или состояния здоровья субъекта, получающего лечение, и дополнительно будут зависеть от предполагаемого способа введения состава. В качестве примера, состав может содержать от 0,1% до 100%, например, 0,5-50%, 1-30%, 5-80%, по меньшей мере 80% масс активного ингредиента.

Препараты

[00364] Модифицированная нуклеиновая кислота и ммРНК по изобретению может быть введена в состав с использованием одного или более вспомогательных веществ для: (1) повышения стабильности; (2) увеличения трансфекции клеток; (3) обеспечения контролируемого или замедленного высвобождения (например, из препарата депо модифицированной нуклеиновой кислоты или ммРНК); (4) изменения распределения в биологической системе (например, нацеливания модифицированной нуклеиновой кислоты или ммРЫК на конкретные ткани или типы клеток); (5) увеличения трансляции кодируемого белка in vivo; и/или (6) изменения профиля высвобождения кодируемого белка in vivo. В дополнение к традиционным вспомогательным веществам, таким как любые и все растворители, дисперсионные среды, разбавители или другие жидкие носители, диспергирующие или суспендирующие агенты, поверхностно-активные агенты, агенты для поддержания изотоничности, загустители или эмульгаторы, консерванты; вспомогательные вещества по настоящему изобретению могут включать, без ограничений, липидоиды (липидоподобные материалы), липосомы, наночастицы липидов, полимеры, липоплексы (самособирающиеся комплексы из катионных липидов и ДНК), наночастицы со структурой ядро/оболочка, пептиды, белки, трансфицированные модифицированной нуклеиновой кислотой или ммРНК клетки (например, для пересадки субъекту), гиалуронидазу, имитаторы наночастиц и их комбинации. Соответственно, препараты по изобретению могут содержать одно или более вспомогательных веществ, каждое в количестве, которое в совокупности повышает стабильность модифицированной нуклеиновой кислоты или ммРНК, увеличивает трансфекцию клетки модифицированной нуклеиновой кислотой или ммРНК, увеличивает экспрессию модифицированной нуклеиновой кислоты или кодируемого ммРНК белка и/или изменяет профиль высвобождения модифицированной нуклеиновой кислоты или кодируемых ммРНК белков. Кроме того, модифицированные нуклеиновые кислоты и ммРНК по настоящему изобретению могут быть введены в препарат с использованием самособирающихся наночастиц нуклеиновой кислоты.

[00365] Препараты фармацевтических составов, раскрытых в настоящем документе, могут быть получены любым способом, известным или который будет в будущем разработан в области фармакологии. В общем, такие способы получения включают стадию сочетания активного ингредиента со вспомогательным веществом и/или одним или более других дополнительных ингредиентов.

[00366] Фармацевтический состав в соответствии с настоящим документом может быть получен, упакован и/или продан в нерасфасованном виде, в виде однодозовой формы и/или в виде множества однодозовых форм. В настоящем документе «единица дозы» обозначает дискретное количество фармацевтического состава, содержащее предварительно определенное количество активного ингредиента. Количество активного ингредиента, в общем, соответствует дозе активного ингредиента для введения субъекту и/или подходящей части такой дозы, в том числе, без ограничений, половине или трети такой дозы.

[00367] Относительные количества активного ингредиента, фармацевтически приемлемого вспомогательного вещества и/или любых дополнительных ингредиентов в фармацевтическом составе в соответствии с настоящим документом могут варьировать, в зависимости от вида, размеров и/или состояния здоровья субъекта, получающего* лечение, и дополнительно будут зависеть от предполагаемого способа введения состава. В качестве примера, состав может содержать от 0,1% до 99% масс активного ингредиента.

[00368] В некоторых вариантах реализации препараты модифицированной мРНК, раскрытые в настоящем документе, могут содержать по меньшей мере одну модифицированную мРНК. Препараты могут содержат 1, 2, 3, 4 или 5 модифицированных мРНК. В одном варианте реализации препарат содержит по меньшей мере три модифицированных мРНК, кодирующие белки. В одном варианте реализации препарат содержит по меньшей мере пять модифицированных мРНК, кодирующих белки.

[00369] Фармацевтические препараты могут дополнительно содержать фармацевтически приемлемое вспомогательное вещество, которое, в соответствии с настоящим документом, включает, без ограничений, любые и все растворители, дисперсионные среды, разбавители или другой жидкий носитель, диспергирующие или суспендирующие агенты, поверхностно-активные агенты, агенты для поддержания изотоничности, загустители или эмульгаторы агентов, консерванты и т.п., в соответствии с конкретной желательной лекарственной формой. Различные вспомогательные вещества для получения фармацевтических составов и методы получения составов известны из уровня техники (см. Remington: The Science and Practice of Pharmacy, 21st Edition, A.R. Gennaro, Lippincott, Williams & Wilkins, Baltimore, MD, 2006; включено в настоящий документ в полном объеме посредством ссылки). Использование обычной среды вспомогательного вещества может быть предусмотрено в контексте настоящего документа, за исключением случаев, когда какая-либо обычная среда вспомогательного вещества может быть несовместима с субстанцией или ее производными, например, оказывает какое-либо нежелательное биологическое влияние или вступает в другое нежелательное взаимодействие с любым другим компонентом(ами) фармацевтического состава.

[00370] В некоторых вариантах реализации размер наночастицы липида может быть увеличен и/или уменьшен. Изменение размера частицы может способствовать противодействию биологической реакции, такой как, без ограничений, воспаление, или может усиливать биологический эффект модифицированной мРНК, вводимой млекопитающим.

[00371] Фармацевтически приемлемые вспомогательные вещества, используемые в производстве фармацевтических составов, включают, без ограничений, инертные разбавители, поверхностно-активные вещества и/или эмульгаторы, консерванты, буферизующие вещества, смазывающие вещества и/или масла. Такие вспомогательные вещества необязательно могут входить в состав фармацевтических препаратов по изобретению.

Липидоиды

[00372] Синтез липидоидов подробно описан, и препараты, содержащие такие соединения, особенно пригодны для доставки модифицированных молекул нуклеиновой кислоты или ммРНК (см. Mahon et al., Bioconjug Chem. 2010 21:1448-1454; Schroeder et al., J Intern Med. 2010 267:9-21; Akinc et al., Nat Biotechnol. 2008 26:561-569; Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869; Siegwart et al., Proc Natl Acad Sci USA. 2011 108:12996-3001; все из которых включены в настоящий документ в полном объеме).

[00373] Хотя указанные липидоиды использовали для эффективной доставки молекул двухцепочечной миРНК грызунам и негуманоидным приматам (см. Akinc et al., Nat Biotechnol. 2008 26:561-569; Frank-Kamenetsky et al., Proc Natl Acad Sci USA. 2008 105:11915-11920; Akinc et al., Mol Ther. 2009 17:872-879; Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869; Leuschner et al., Nat Biotechnol. 2011 29:1005-1010; все из которых включены в настоящий документ в полном объеме), в настоящем документе раскрывается препарат на их основе и их применение для доставки модифицированных молекул одноцепочечной нуклеиновой кислоты или ммРНК. Могут быть получены комплексы, мицеллы, липосомы или частицы, содержащие указанные липидоиды, и, следовательно, можно осуществить эффективную доставку модифицированных молекул нуклеиновой кислоты или ммРНК, доказательством чего будет выработка кодируемого белка, после инъекции липидоидного препарата путем местного и/или системного введения. Липидоидные комплексы модифицированных молекул нуклеиновой кислоты или ммРНК можно вводить различными способами, в том числе, без ограничений, внутривенноым, внутримышечным или подкожным способами.

[00374] На доставку нуклеиновых кислот in vivo могут повлиять многие параметры, в том числе, без ограничений, состав препарата, природа частицы пегилирования, степень нагрузки, соотношение олигонуклеотида и липида, а также биофизические параметры, например, без ограничений, размер частицы (Akinc et al., Mol Ther. 2009 17:872-879; включена в настоящий документ в полном объеме посредством ссылки). В качестве примера, небольшие изменения длины якорной цепи поли(этиленгликоля) (ПЭГ) липидов могут приводить к значительному влиянию на эффективность in vivo. Препараты с различным липидоидами, в том числе, без ограничений, пента[3-(1-лауриламинопропионил)]-триэтилентетрамина гидрохлоридом (TETA-5LAP; или 98N12-5, см. Murugaiah et al., Analytical Biochemistry, 401:61 (2010); включена в настоящий документ в полном объеме посредством ссылки), С12-200 (в том числе, его производные и варианты),и MD1, могут быть протестированы на предмет активности in vivo.

[00375] Липидоид, который в настоящем документе носит название «98N12-5», раскрыт Akinc et al., Mol Ther. 2009 17:872-879, которая включена в полном объеме посредством ссылки (см. Фиг. 1).

[00376] Липидоид, который в настоящем документе носит название «С12-200», раскрыт Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869 и Liu and Huang, Molecular Therapy. 2010 669-670 (см. Фиг. 1); оба из которых включены в настоящий документ в полном объеме посредством ссылки. Препараты липидоидов могут содержать частицы, содержащие 3, 4 или более компонентов, в дополнение к модифицированным молекулам нуклеиновых кислот или ммРНК. В качестве примера, препараты с некоторыми липидоидами, включают, без ограничений, 98N12-5, и могут содержать 42% липидоида, 48% холестерина и 10% ПЭГ (длина цепи алкила С14). В качестве другого примера, препараты с некоторыми липидоидами, включают, без ограничений, С12-200, и могут содержать 50% липидоида, 10% дистероилфосфатидилхолина, 38,5% холестерины и 1,5% ПЭГ-ДМГ.

[00377] В одном варианте реализации модифицированная молекула нуклеиновой кислоты или ммРНК, введенная в состав с липидоидом для системного внутривенного введения, может быть нацелена на печень. Например, конечный оптимизированный препарат для внутривенного введения, содержащий модифицированную молекулу нуклеиновой кислоты или ммРНК, и содержащий липиды с молярным составом 42% 98N12-5, 48% холестерина и 10% ПЭГ-липида, с конечным массовым соотношением приблизительно общих липидов и модифицированной нуклеиновой кислоты или ммРНК 7,5:1, и длиной цепи алкила С14 в ПЭГ-липиде, со средним размером частицы грубо 50-60 нм, может приводить к распределению более 90% препарата в печени (см., Akinc et al., Mol Ther. 2009 17:872-879; включена в настоящий документ в полном объеме посредством ссылки). В другом примере, препарат для внутривенного введения, содержащий липидоид С12-200 (см. предварительную заявку США 61/175770 и опубликованную международную заявку WO 2010129709, каждая из которых включена в настоящий документ в полном объеме посредством ссылки), который может содержать молярное соотношение С12-200/дистероилфосфатидилхолин/холестерин/ПЭГ-ДМГ 50:10:38,5:1,5, с массовым соотношением общих липидов и модифицированной молекулы нуклеиновой кислоты или ммРНК 7:1 и средним размером частицы 80 нм, может быть эффективным для доставки модифицированной молекулы нуклеиновой кислоты или ммРНК к гепатоцитам (см., Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869; включена в настоящий документ в полном объеме посредством ссылки). В другом варианте реализации препарат, содержащий липидоид MD1, может применяться для эффективной доставки модифицированной молекулы нуклеиновой кислоты или ммРНК к гепатоцитам in vivo. Характеристики оптимизированных липидоидньгх препаратов для внутримышечного или подкожного введения могут значительно варьировать, в зависимости от типа клетки-мишени и способности препаратов диффундировать сквозь внеклеточный матрикс в кровоток. Хотя размер частицы менее 150 нм может быть желательным для эффективной доставки в гепатоцит за счет размера эндотелиальных фенестр (см., Akinc et al., Mol Ther. 2009 17:872-879; включена в настоящий документ в полном объеме посредством ссылки), применение модифицированных молекул нуклеиновой кислоты или ммРНК в липидоидньгх препаратах с целью доставки препарата к клеткам других типов, включая, без ограничений, эндотелиальные клетки, миелоидные клетки и мышечные клетки, может не быть в такой же степени ограничено размером. Сообщалось о применении липидоидньгх препаратов для доставки миРНК in vivo в другие клетки, кроме гепатоцитов, например, миелоидные клетки и эндотелий (см. Akinc et al., Nat Biotechnol. 2008 26:561-569; Leuschner et al., Nat Biotechnol. 2011 29:1005-1010; Cho et al. Adv. Funct. Mater. 2009 19:3112-3118; 8th International Judah Folkman Conference, Cambridge, MA, October 8-9, 2010; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Для эффективной доставки в миелоидные клетки, такие как моноциты, препараты липидоидов могут содержать компоненты в подобном молярном соотношении. Различные соотношения липидоидов и других компонентов, включая, без ограничений, дистероилфосфатидилхолин, холестерин и ПЭГ-ДМГ, могут использоваться для оптимизации препарата модифицированной нуклеиновой кислоты или ммРНК с целью доставки в другие типы клеток, в том числе, без ограничений, гепатоциты, миелоидные клетки, мышечные клетки и т.п. Например, молярное соотношение компонентов может включать, без ограничений, 50% С12-200, 10% дистероилфосфатидилхолина, 38,5% холестерина и 1,5% ПЭГ-ДМГ (см. Leuschner et al., Nat Biotechnol 2011 29:1005-1010; включена в настоящий документ в полном объеме посредством ссылки). Применение липидоидных препаратов для локализованной доставки нуклеиновых кислот в клетки (например, без ограничений, жировые клетки и мышечные клетки) подкожным или внутримышечным способом может не требовать всех компонентов препарата, желательных для системной доставки, и таким образом, может включать только липидоид и модифицированную молекулу нуклеиновой кислоты или ммРНК.

[00378] Комбинации различных липидоидов могут применяться для повышения эффективности направляемой модифицированной молекулой нуклеиновой кислоты или ммРНК выработки белка, поскольку липидоиды могут способствовать увеличению трансфекции клетки модифицированной молекулой нуклеиновой кислоты или ммРНК и/или увеличивать трансляцию кодируемого белка (см. Whitehead et al., Mol. Ther. 2011, 19:1688-1694, включена в настоящий документ в полном объеме посредством ссылки).

Липосомы, липотексы, и наночастицы липидов

[00379] Модифицированные молекулы нуклеиновой кислоты и ммРНК по изобретению могут быть введены в состав с использованием одной или более липосом, липоплексов или липидных наночастиц. В одном варианте реализации фармацевтические составы модифицированной молекулы нуклеиновой кислоты или ммРНК содержат липосомы. Липосомы представляют собой искусственно полученные пузырьки, которые могут в основном состоять из двойного слоя липидов и могут применяться в качестве носителя для доставки при введении питательных веществ и фармацевтических составов. Липосомы могут быть различных размеров, например, без ограничений, многослойный пузырек (МЛП), диаметр которого может составлять сотни нанометров, и который может содержать серию концентрических двойных слоев, разделенных узкими водными отсеками, одноячейковый пузырек небольшого размера (ОЯП), диаметр которого может составлять менее 50 нм, и однослойный пузырек большого размера (ОБП), диаметр которого может составлять от 50 до 500 нм. Конструкция липосомы может, содержать, без ограничений, опсонины или лиганды, для улучшения прикрепления липосом к пораженной ткани или активизации событий, таких как, без ограничений, эндоцитоз. Липосомы могут иметь низкое или высокое значение рН с целью улучшения доставки фармацевтических составов.

[00380] Образование липосом может зависеть от физико-химических характеристик, например, без ограничений, содержащегося в липосоме фармацевтического состава и ингредиентов липосомы, природы среды, в которой диспергируются липидные пузырьки, эффективной концентрации содержащейся в липосоме субстанции и ее потенциальной токсичности, любых дополнительных процессов, вовлеченных в нанесение и/или доставку пузырьков, масштаба оптимизации, полидисперсности и срока хранения пузырьков для предусмотренного применения, а также воспроизводимости от одной серии к другой и возможности крупномасштабного производства безопасных и эффективных липосомальных продуктов.

[00381] В одном варианте реализации фармацевтические составы, раскрытые в настоящем документе, могут содержать, без ограничений, липосомы, например, липосомы, образованные из 1,2-диолеилокси-N,N-диметиламинопропана (ДОДМА), липосомы DiLa2 от Marina Biotech (Ботелл, Вашингтон), 1,2-дилинолеилокси-3-диметиламинопропан (ДЛин-ДМА), 2,2-дилинолеил-4-(2-диметиламиноэтил)-[1,3]-диоксолан (ДЛин-KC2-ДМА), и МС3 (US 20100324120; включена в настоящий документ в полном объеме посредством ссылки), и липосомы, которые могут доставлять низкомолекулярные лекарственные средства, например, без ограничений, DOXIL® от Janssen Biotech, Inc. (Хоршем, Пенсильвания). В одном варианте реализации фармацевтические составы, раскрытые в настоящем документе, могут содержать, без ограничений, липосомы, например, полученные в результате синтеза стабилизированных частиц плазмида-липид (СЧПЛ) или стабилизированной частицы нуклеиновая кислота-липид (СЧНКЛ), которые были раскрыты ранее и продемонстрировали свою пригодность для доставки олигонуклеотидов in vitro и in vivo (см. Wheeler et al. Gene Therapy. 1999 6:271-281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature. 2006 441:111-114; Heyes et al. J Contr Rel. 2005 107:276-287; Semple et al. Nature Biotech. 2010 28:172-176; Judge et al. J Clin Invest. 2009 119:661-673; deFougerolles Hum Gene Ther. 2008 19:125-132; все из которых включены в настоящий документ в полном объеме). Оригинальный способ производства Wheeler et al. методом диализа против поверхностно-активного вещества, который позже был усовершенствован Jeffs et al., носит названия метода самопроизвольного образования пузырька. Препараты липосом состоят из 3-4 липидных компонентов в дополнение к модифицированной молекуле нуклеиновой кислоты или ммРНК. В качестве примера, липосома может содержать, без ограничений, 55% холестерина, 20% дистероилфосфатидилхолина (ДСФХ), 10% ПЭГ-С-ДСГ и 15% 1,2-диолеилокси-N,N-диметиламинопропана (ДОДМА), как раскрыто Jeffs et al. В качестве другого примера, некоторые препараты липосом могут содержать, без ограничений, 48% холестерина, 20% ДСФХ, 2% ПЭГ-С-ДМА, и 30% катионного липида, где катионный липид может представлять собой 1,2-дистеарилокси-N,N-диметиламинопропан (ДСДМА), ДОДМА, ДЛин-ДМА или 1,2-дилиноленилокси-3-диметиламинопропан (ДЛенДМА), как раскрыто Heyes et al.

[00382] В одном варианте реализации фармацевтические составы могут содержать липосомы, сформированные для доставки ммРНК, которая может кодировать по меньшей мере одно иммуногенное средство. ммРНК может быть инкапсулирована в липосому и/или она может содержаться в водном ядре, которое затем может быть инкапсулировано в липосому (см. Международные публикации WO 2012031046, WO 2012031043, WO 2012030901 и WO 2012006378; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В другом варианте реализации ммРНК, которая может кодировать иммуногенное средство, может быть введена в катионную эмульсию масло-в-воде, где частица эмульсии содержит масляное ядро и катионный липид, способный взаимодействовать с ммРНК, фиксирующий молекулу на частице эмульсии (см. Международную публикацию WO 2012006380; включена в настоящий документ в полном объеме посредством ссылки). Еще в одном варианте реализации липидный препарат может содержать по меньшей мере катионный липид, липид, способный увеличивать трансфекцию, и по меньшей мере один липид, содержащий гидрофильную концевую группу, соединенную с липидным фрагментом (Международная публикация WO 2011076807 и Публикация США №20110200582; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В другом варианте реализации модифицированная мРНК, кодирующая иммуногенное средство, может быть введена в липидный пузырек, который может содержать поперечные связи между двумя содержащими функциональные группы слоями липида (см. Публикацию США 20120177724, включена в настоящий документ в полном объеме посредством ссылки).

[00383] В одном варианте реализации модифицированная мРНК может быть введена в липидный пузырек, который может содержать поперечные связи между двумя содержащими функциональные группы слоями липида.

[00384] В одном варианте реализации модифицированная мРНК может быть введена в липид-поликатионный комплекс.Образование липид-поликатионного комплекса может быть осуществлено способами, известными из уровня техники, и/или как раскрыто в Публикации США №20120178702, которая включена в настоящий документ в полном объеме посредством ссылки. В качестве неограничивающего примера, поликатион может содержать катионный пептид или полипептид, например, без ограничений, полилизин, полиорнитин и/или полиаргинин и катионные пептиды, раскрытые в Международной публикации WO 2012013326; включена в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации модифицированная мРНК может быть введена в липид-поликатионный комплекс, который может дополнительно содержать нейтральный липид, например, без ограничений, холестерин или диолеоилфосфатидилэтаноламин (ДОФЭ).

[00385] На липосомальный препарат может повлиять, без ограничений, выбор катионного компонента липида, степень катионного насыщения липида, природа пегилирования, соотношение всех компонентов и биофизических параметров, таких как размер. В одном из примеров Semple et al. (Semple et al. Nature Biotech. 2010 28:172-176; включена в настоящий документ в полном объеме посредством ссылки), липосомальный препарат состоял из 57,1% катионного липида, 7,1% дипальмитоилфосфатидилхолина, 34,3% холестерина и 1,4% ПЭГ-С-ДМА. В качестве другого примера, модификация состава катионного липида могла бы обеспечить более эффективную доставку миРНК в различные антигенпрезентующие клетки (Basha et al. Mol Ther. 2011 19:2186-2200; включена в настоящий документ в полном объеме посредством ссылки).

[00386] В некоторых вариантах реализации соотношение ПЭГ в препаратах липидной наночастицы (ЛНЧ) может быть увеличено или уменьшено, и/или длина углеродной цепи ПЭГ-липида может быть модифицирована с С14 до С18, с целью изменения фармакокинетики и/или распределения в биологической системе препаратов ЛНЧ. В качестве неограничивающего примера, препараты ЛНЧ могут содержать 1-5% молярного соотношения липида ПЭГ-С-ДМПО, по сравнению с катионным липидом, ДСФХ и холестерином. В другом варианте реализации ПЭГ-С-ДМПО может быть заменен ПЭГ-липидом, например, без ограничений, ПЭГ-ДСГ (1,2-дистеароил-sn-глицерин, метоксиполиэтиленгликоль) или ПЭГ-ДПГ (1,2-дипальмитоил-sn-глицерин, метоксиполиэтиленгликоль). В качестве катионного липида может быть выбран любой липид, известный из уровня техники, например, без ограничений, ДЛин-МС3-ДМА, ДЛин-ДМА, С12-200 и ДЛин-KC2-ДМА.

[00387] В одном варианте реализации катионный липид может быть выбран, без ограничений, из катионного липида, раскрытого в Международных публикациях WO 2012040184, WO 2011153120, WO 2011149733, WO 2011090965, WO 2011043913, WO 2011022460, WO 2012061259, WO 2012054365, WO 2012044638, WO 2010080724, WO 201021865 и WO 2008103276, патентах США №№7893302, 7404969 и 8283333, и Патентных публикациях США №№ US 20100036115 и US 20120202871; каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации катионный липид может быть выбран, без ограничений, из формулы А, раскрытой в Международных публикациях WO 2012040184, WO 2011153120, WO 2011149733, WO 2011090965, WO 2011043913, WO 2011022460, WO 2012061259, WO 2012054365 и WO 2012044638; каждая из которых включена в настоящий документ в полном объеме посредством ссылки. Еще в одном варианте реализации катионный липид может быть выбран, без ограничений, из формулы CLI-CLXXIX Международной публикации WO 2008103276, формулы CLI-CLXXIX патента США №7893302, формулы CLI-CLXXXXII патента США №7404969 и формулы I-VI Патентной публикации США №US 20100036115; каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В качестве неограничивающего примера, катионный липид может быть выбран из (20Z,23Z)-N,N-диметилнонакоза-20,23-диен-10-амина, (17Z,20Z)-N,N-диметилгексакоза-17,20-диен-9-амина, (1Z,19Z)-N5N диметилпентакоза-16,19-диен-8-амина, (13Z,16Z)-N,N-диметилдокоза-13,16-диен-5-амина, (12Z,15Z)-N,N-диметиленэйкоза-12,15-диен-4-амина, (14Z,17Z)-N,N-диметилтрикоза-14,17-диен-6-амина, (15Z,18Z)-N,N-диметилтетракоза-15,18-диен-7-амина, (18Z,21Z)-N,N-диметилгептакоза-18,21-диен-10-амина, (15Z,18Z)-N,N-диметилтетракоза-15,18-диен-5-амина, (14Z,17Z)-N,N-диметилтрикоза-14,17-диен-4-амина, (19Z,22Z)-N,N-диметилоктакоза-19,22-диен-9-амина, (18Z,21Z)-N,N-диметилгептакоза-18,21-диен-8-амина, (17Z,20Z)-N,N-диметилгексакоза-17,20-диен-7-амина, (16Z,19Z)-N,N-диметилпентакоза-16,19-диен-6-амина, (22Z,25Z)-N,N-диметилгетриаконта-22,25-диен-10-амина, (21Z,24Z)-N,N-диметилтриаконта-21,24-диен-9-амина, (18Z)-N,N-диметилгептакоз-18-ен-10-амина, (17Z)-N,N-диметилгексакоз-17-ен-9-амина, (19Z,22Z)-N,N-диметилоктакоза-19,22-диен-7-амина, N,N-диметилгептакозан-10-амина, (20Z,23Z)-N-этил-N-метилнонакоза-20,23-диен-10-амина, 1-[(11Z, 14Z)-1-нонилэйкоза-11,14-диен-1-ил]пирролидина, (20Z)-N,N-диметилгептакоз-20-ен-10-амина, (15Z)-N,N-диметилгептакоз-15-ен-10-амина, (14Z)-N,N-диметилнонакоз-14-ен-10-амина, (17Z)-N,N-диметилнонакоз-17-ен-10-амина, (24Z)-N,N-диметилтритриаконт-24-ен-10-амина, (20Z)-N,N-диметилнонакоз-20-ен-10- амина, (22Z)-N,N-диметилгентриаконт-22-ен-10-амина, (16Z)-N,N-диметилпентакоз-16-ен-8-амина, (12Z,15Z)-N,N-диметил-2-нонилгеникоза-12,15-диен-1-амина, (13Z,16Z)-N,N-диметил-3-нонилдокоза-13,16-диен-1-амина, N,N-диметил-1-[(1S,2R)-2-октилциклопропил]гептадекан-8-амина, 1-[(1S,2R)-2-гексилциклопропил]-N,N-диметилнонадекан-10-амина, N,N-диметил-1-[(1S,2R)-2-октилциклопропил]нонадекан-10-амина, N,N-диметил-21-[(1S,2R)-2-октилциклопропил]геникоза-10-амина, N,N-диметил-1-[(1S,2S)-2-{[(1R,2R)-2-пентилциклопропил]метил}циклопропил]нонадекан-10-амина, N,N-диметил-1-[(1S,2R)-2-октилциклопропил]гексадекан-8-амина, N,N-диметил-[(1R,2S)-2-ундецилциклопропил]тетрадекан-5-амина, N,N-диметил-3-{7-[(1S,2R)-2-октилциклопропил]гептил}додекан-1-амина, 1-[(1R,2S)-2-гептилциклопропил]-N,N-диметилоктадекан-9-амина, 1-[(1S,2R)-2-децилциклопропил]-N,N-диметилпентадекан-6-амина, N,N-диметил-1-[(1S,2R)-2-октилциклопропил]пентадекан-8-амина, R-N,N-диметил-1-[(9Z,12Z)-октадека-9,12-диен-1-илокси]-3-(октилокси)пропан-2-амина, S-N,N-диметил-1-[(9Z,12Z)-октадека-9,12-диен-1-илокси]-3-(окталокси)пропан-2-амина, 1-{2-[(9Z,12Z)-октадека-9,12-диен-1-илокси]-1-[(октилокси)метил]этил}пирролидина, (2S)-N,N-диметил-1-[(9Z,12Z)-октадека-9,12-диен-1-илокси]-3-[(5Z)-окт-5-ен-1-илокси]пропан-2-амина, 1-{2-[(9Z,12Z)-октадека-9,12-диен-1-илокси]-1-[(октилокси)метил]этил}азетидина, (2S)-1-(гексилокси)-N,N-диметил-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-2-амина, (2S)-1-(гептилокси)-N,N-диметил-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-2-амина, N,N-диметил-1-(нонилокси)-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-2-амина, N,N-диметил-1-[(9Z)-октадек-9-ен-1-илокси]-3-(октилокси)пропан-2-амина; (2S)-N,N-диметил-1-[(6Z,9Z,12Z)-октадека-6,9,12-триен-1-илокси]-3-(октилокси)пропан-2-амина, (2S)-1-[(11Z,14Z)-эйкоза-11,14-диен-1-илокси]-N,N-диметил-3-(пентилокси)пропан-2-амина, (2S)-1-(гексилокси)-3-[(11Z,14Z)-эйкоза-11,14-диен-1-илокси]-N,N-диметилпропан-2-амина, 1-[(11Z,14Z)-эйкоза-11,14-диен-1-илокси]-N,N-диметил-3-(октилокси)пропан-2-амина, 1-[(13Z,16Z)-докоза-13,16-диен-1-илокси]-N,N-диметил-3-(октилокси)пропан-2-амина, (2S)-1-[(13Z,16Z)-докоза-13,16-диен-1-илокси]-3-(гексилокси)-N,N-диметилпропан-2-амина, (2S)-1-[(13Z)-докоз-13-ен-1-илокси]-3-(гексилокси)-N,N-диметилпропан-2-амина, 1-[(13Z)-докоз-13-ен-1-илокси]-N,N-диметил-3-(октилокси)пропан-2-амина, 1-[(9Z)-гексадек-9-ен-1-илокси]-N,N-диметил-3-(октилокси)пропан-2-амина, (2R)-N,N-диметил-Н(1-метилоктил)окси]-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-2-амина, (2R)-1-[(3,7-диметилоктил)окси]-N,N-диметил-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-2-амина, N,N-диметил-1-(октилокси)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-пентилциклопропил]метил}циклопропил]октил}окси)пропан-2-амина, N,N-диметил-1-{[8-(2-октилциклопропил)октил]окси}-3-(октилокси)пропан-2-амина и (11E,20Z,23Z)-N,N-диметилнонакоза-11,20,2-триен-10-амина или фармацевтически приемлемой соли или стереоизомера указанных соединений.

[00388] В одном варианте реализации катионный липид может быть синтезирован способами, известными из уровня техники, и/или как раскрыто в Международных публикациях WO 2012040184, WO 2011153120, WO 2011149733, WO 2011090965, WO 2011043913, WO 2011022460, WO 2012061259, WO 2012054365, WO 2012044638, WO 2010080724 и WO 201021865; каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00389] В одном варианте реализации препарат ЛНЧ может содержать ПЭГ-к-ДМПО с молярным соотношением липида 3%. В другом варианте реализации препарат ЛНЧ может содержать ПЭГ-к-ДМПО с молярным соотношением липида 1,5%.

[00390] В одном варианте реализации препарат ЛНЧ может содержать ПЭГ-ДМГ 2000 (1,2-димиристоил-sn-глицеро-3-фосфоэтаноламин-N-[метокси(полиэтиленгликоль)-2000). В одном варианте реализации препарат ЛНЧ может содержать ПЭГ-ДМГ 2000, катионный липид, известный из уровня техники, и по меньшей мере еще один компонент.В другом варианте реализации препарат ЛНЧ может содержать ПЭГ-ДМГ 2000, катионный липид, известный из уровня техники, ДСФХ и холестерин. В качестве неограничивающего примера, препарат ЛНЧ может содержать ПЭГ-ДМГ 2000, ДЛин-ДМА, ДСФХ и холестерин. В качестве другого неограничивающего примера, препарат ЛНЧ может содержать ПЭГ-ДМГ 2000, ДЛин-ДМА, ДСФХ и холестерин в молярном соотношении 2:40:10:48 (см., например, Geall et al., Nonviral delivery of self-amplifying RNA vaccines, PNAS 2012; PMID: 22908294; включен в настоящий документ в полном объеме посредством ссылки).

[00391] В одном варианте реализации препарат ЛНЧ может быть получен способами, раскрытыми в Международных публикациях №№ WO 2011127255 или WO 2008103276, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В качестве неограничивающего примера, модифицированная РНК, раскрытая в настоящем документе, может быть инкапсулирована в препараты ЛНЧ, как раскрыто в WO 2011127255 и/или WO 2008103276; каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В качестве другого неограничивающего примера, модифицированная РНК, раскрытая в настоящем документе, может быть введена в наночастицу для парентеральной доставки, как раскрыто в Публикации США №20120207845; включена в настоящий документ в полном объеме посредством ссылки.

[00392] В одном варианте реализации препараты ЛНЧ, раскрытые в настоящем документе, могут содержать поликатионную композицию. В качестве неограничивающего примера, поликатионная композиция может быть выбрана из формул 1-60 Патентной публикации США № US 20050222064; включена в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации препараты ЛНЧ, содержащие поликатионную композицию, могут применяться для доставки модифицированной РНК, раскрытой в настоящем документе, in vivo и/или in vitro.

[00393] В одном варианте реализации препараты ЛНЧ, раскрытые в настоящем документе, могут дополнительно содержать молекулу, повышающую проницаемость. Неограничивающие примеры молекул, повышающих проницаемость, раскрыты в Патентной публикации США № US 20050222064; включена в настоящий документ в полном объеме посредством ссылки.

[00394] В одном варианте реализации фармацевтические составы могут быть введены в липосомы, такие как, без ограничений, липосомы DiLa2 (Marina Biotech, Ботелл, Вашингтон), SMARTICLES® (Marina Biotech, Ботелл, Вашингтон), липосомы на основе нейтрального ДОФХ (1,2-диолеоил-sn-глицеро-3-фосфохолин) (например, доставка миРНК при раке яичника (Landen et al. Cancer Biology & Therapy 2006 5(12)1708-1713); включена в настоящий документ в полном объеме посредством ссылки) и покрытые гиалуронаном липосомы (Quiet Therapeutics, Израиль).

[00395] Препараты наночастицы могут представлять собой углеводную наночастицу, содержащую углеводный носитель и модифицированную молекулу нуклеиновой кислоты (например, ммРНК). В качестве неограничивающего примера, углеводный носитель может включать, без ограничений, модифицированный ангидридом фитогликоген или материал типа гликогена, фитогликоген октенилсукцинат, фитогликоген бета-декстрин, модифицированный ангидридом фитогликоген бета-декстрин. (См., например, Международную Публикацию WO 2012109121; включена в настоящий документ в полном объеме посредством ссылки).

[00396] Препараты липидных наночастиц могут быть улучшены путем замены катионного липида поддающимся биологическому разложению катионным липидом, который известен как быстро элиминирующаяся липидная наночастица (бэЛНЧ). Ионизируемые катионные липиды, например, без ограничений, ДЛинДМА, ДЛин-KC2-ДМА, и ДЛин-МС3-ДМА, продемонстрировали аккумуляцию в плазме и тканях с течением времени, и потенциально могут представлять собой источник токсичности. Быстрый метаболизм быстро элиминирующихся липидов может улучшить переносимость и терапевтический индекс липидных наночастиц на порядок величины от дозы 1 мг/кг до 10 мг/кг у крыс. Введение разрушаемой ферментом эфирной связи может улучшить разложение и профиль метаболизма катионного компонента, при сохранении активности препарата бэЛНЧ. Эфирная связь может быть внутренней, т.е., расположенной в пределах липидной цепи, или она может быть концевой, т.е., расположенной на конце липидной цепи. Внутренняя эфирная связь может заменять любой атом углерода в липидной цепи.

[00397] В одном варианте реализации внутренняя эфирная связь может быть расположена с любой стороны насыщенного атома углерода. Неограничивающие примеры бэЛНЧ включают:

, , и .

[00398] В одном варианте реализации иммунный ответ может быть вызван введением липидных наночастиц, которые могут содержать наномолекулу, полимер и иммуногенное средство. (Публикация США №20120189700 и Международная Публикация WO 2012099805; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Наномолекула может быть инкапсулирована в полимер или частично инкапсулирована в полимер. Иммуногенное средство может представлять собой рекомбинантный белок, модифицированную РНК раскрытую в настоящем документе. В одном варианте реализации липидные наночастицы могут быть сконструированы для применения в составе вакцины, например, без ограничений, против патогена.

[00399] Липидные наночастицы могут быть сконструированы таким образом, чтобы модифицировать поверхностные свойства частиц для проникновения липидных наночастиц сквозь барьер слизистой оболочки. Слизь расположена на ткани слизистой оболочки, например, без ограничений, ротовой полости (например, буккальная слизистая оболочка, слизистая оболочка пищевода и ткань миндалевидной железы), глаза, желудочно-кишечного тракта (например, желудка, тонкого кишечника, толстого кишечника, ободочной кишки, прямой кишки), носа, дыхательных путей (например, слизистая оболочка носа, глотки, трахеи и бронхов), мочеполового тракта (например, слизистая оболочка влагалища, шейки матки и уретры). Наночастицы размером более 10-200 нм, которые предпочтительны с точки зрения боле высокой эффективности инкапсуляции лекарственного средства и способности обеспечить контролируемую доставку широкого спектра лекарственных средств, считаются слишком большими для быстрой диффузии сквозь барьеры слизистой оболочки. Слизь беспрерывно секретируется, распределяется, выталкивается или расщепляется и рециклизуется таким образом, что большинство захваченных частиц могут быть удалены с ткани слизистой оболочки в течение секунд или нескольких часов. Крупные полимерные наночастицы (диаметром 200-500 нм), плотно покрытые низкомолекулярным полиэтиленгликолем (ПЭГ), диффундируют сквозь слизь всего в 4-6 раз медленнее, чем такие же частицы диффундируют в воде (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2):158-171; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Транспорт наночастиц можно определить с использованием скорости проникновения и/или методов флуоресцентной микроскопии, включая, без ограничений, восстановление флуоресценции после фотообесцвечивания (ВФПФ) и отслеживание множественных частиц с высоким разрешением (ОМЧ). В качестве неограничивающего примера, составы, которые могут проникать сквозь барьер слизистой оболочки, могут быть получены, как раскрыто в патенте США №8241670, включен в настоящий документ в полном объеме посредством ссылки.

[00400] Липидные наночастицы, сконструированные для проникновения сквозь слизь, могут содержать полимерный материал (т.е, полимерное ядро) и/или конъюгат полимер-витамин и/или три-блок-сополимер. Полимерный материал может включать, без ограничений, полиамины, полиэфиры, полиамиды, сложные полиэфиры, поликарбаматы, полимочевины, поликарбонаты, поли(стиролы), полиимиды, полисульфоны, полиуретаны, полиацетилены, полиэтилены, полиэтиленимины, полиизоцианаты, полиакрилаты, полиметакрилаты, полиакрилонитрилы и полиарилаты. Полимерный материал может быть биоразлагаемым и/или биосовместимым. Полимерный материал может быть дополнительно облучен. В качестве неограничивающего примера, полимерный материал может быть облучен гамма-лучами (См, например, Международную заявку WO 201282165, включена в настоящий документ в полном объеме посредством ссылки). Неограничивающие примеры конкретных полимеров включают поли(капролактон) (ПКЛ), этиленвинилацетатный полимер (ЭВА), поли(молочную кислоту) (ПМК), поли(L-молочную кислоту) (ПЛМК), поли(гликолевую кислоту) (ПГК), поли(молочную кислоту-со-гликолевую кислоту) (ПМГК), поли(L-молочную кислоту-со-гликолевую кислоту) (ПЛМГК), поли(D,L-лактид) (ПДЛЛ), поли(L-лактид) (ПЛМК), поли(D,L-лактид-со-капролактон), поли(D,L-лактид-со-капролактон-со-гликолид), поли(D,L-лактид-со-ПАО-со-D,L-лактид), поли(D,L-лактид-со-РРО-со-D,L-лактид), полиалкилцианоакралат, полиуретан, поли-L-лизин (ПЛЛ), гидроксипропилметакрилат (ГПМА), полиэтиленгликоль, поли-L-глютаминовую кислоту, поли(гидроксикислоты), полиангидриды, полиортоэфиры, поли(эфирамиды), полиамиды, поли(эфирэфиры), поликарбонаты, полиалкилены, такие как полиэтилен и полипропилен, полиалкиленгликоли, такие как поли(этиленгликоль) (ПЭГ), полиалкиленоксиды (ПАО), полиалкилентерефталаты, такие как поли(этилентерефталат), поливиниловые спирты (ЛВС), поливиниловые эфиры, поливиниловые сложные эфиры, такие как поли(винилацетат), поливинилгалогениды, такие как поли(винилхлорид) (ПВХ), поливинилпирролидон, полисилоксаны, полистирол (ПС), полиуретаны, дериватизированную целлюлозу, например, алкилцеллюлозу, гидроксиапкилцеллюлозу, эфиры целлюлозы, сложные эфиры целлюлозы, нитроцеллюлозу, гидроксипропилцеллюлозу, карбоксиметилцеллюлозу, полимеры акриловых кислот, такие как поли(метил(мет)акрилат) (ПММА), поли(этил(мет)акрилат), поли(бутил(мет)акрилат), поли(изобутил(мет)акрилат), поли(гексил(мет)акрилат), поли(изодецил(мет)акрилат), поли(лаурил(мет)акрилат), поли(фенил(мет)акрилат), поли(метилакрилат), поли(изопропилакрилат), поли(изобутилакрилат), поли(октадецилакрилат), и сополимеры и их смеси, полидиоксанон и его сополимеры, полигидроксиалканоаты, полипропиленфумарат, полиоксиметилен, полоксамеры, поли(орто)эфиры, поли(масляную кислоту), поли(валериановую кислоту), поли(лактид-со-капролактон) и триметиленкарбонат, поливинилпирролидон. Липидные наночастицы могут быть покрыты или соединены с сополимером, например, без ограничений, блок-сополимером и (поли(этиленгликоль))-(поли(пропиленоксид))-(поли(этиленгликоль))триблок-сополимером (см. например, Публикации США 20120121718 и 20100003337 и патент США №8263665; каждый из которых включен в настоящий документ в полном объеме посредством ссылки). Сополимер может представлять собой полимер, который, в общем, расценивается как безопасный (ВРКБ), и образование липидных наночастиц может происходить таким образом, что новые химические молекулы не образуются. Например, липидные наночастицы могут содержать полоксамеры, покрывающие наночастицы ПМГК, без образования новых химических молекул, которые по-прежнему могут быстро проникать сквозь слизь, вырабатываемую человеком (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; включена в настоящий документ в полном объеме посредством ссылки).

[00401] Витамин в конъюгате полимер-витамин может быть витамином Е. Витаминная часть конъюгата может быть заменена другими пригодными компонентами, такими как, без ограничений, витамин А, витамин Е, другие витамины, холестерин, гидрофобный фрагмент или гидрофобный компонент других поверхностно-активных веществ (например, цепи стерола, жирные кислоты, углеводородные цепи и цепи алкиленоксида).

[00402] Липидная наночастица, сконструированная для проникновения сквозь слизь, может содержать модифицирующие поверхность агенты, например, без ограничений, ммРНК, анионные белки (такие как альбумин телячьей сыворотки), поверхностно-активные вещества (такие как катионные поверхностно-активные вещества, например, диметилдиоктадецил-аммония бромид), сахара или производные Сахаров (например, циклодекстрин), нуклеиновые кислоты, полимеры (например, гепарин, полиэтиленгликоль и полоксамер), муколитические агенты (например, N-ацетилцистеин, полынь обыкновенная, бромелаин, папаин, клеродендрум, ацетилцистеин, бромгексин, карбоцистеин, эпразинон, месна, амброксол, собрерол, домиодол, летостеин, степронин, тиопронин, гелзолин, тимозин β4 дорназа альфа, нелтенексин, эрдостеин) и различные ДНКазы, включая рчДНКазу. Модифицирующий поверхность агент может быть внедрен или сцеплен с поверхностью частицы или расположен (например, посредством нанесения покрытия, адсорбции, образования ковалентной связи или другого процесса) на поверхности липидной наночастицы. (См., например, Публикации США 20100215580 и 20080166414; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00403] Проникающие сквозь слизь липидные наночастицы могут содержать по меньшей мере одну ммРНК, раскрытую в настоящем документе. ммРНК может быть инкапсулирована в липидную наночастицу и/или расположена на поверхности частицы. ммРНК может быть ковалентно присоединена к липидным наночастицам. Препараты проникающих сквозь слизь липидных наночастиц могут содержать множество наночастиц. Кроме того, препараты могут содержать частицы, которые способны взаимодействовать со слизью и модифицировать структурные и/или адгезивные свойства окружающей слизи для уменьшения мукоадгезии, что может увеличить доставку проникающих сквозь слизь липидных наночастиц в ткань слизистой оболочки.

[00404] В одном варианте реализации модифицированную молекулу нуклеиновой кислоты или ммРНК вводят в липоплекс, например, без ограничений, система ATUPLEX™, система DACC, система DBTC и другая технология миРНК-липоплекс от Silence Therapeutics (Лондон, Великобритания), STEMFECT™ от STEMGENT® (Кембридж, Массачусетс), а также целевая и нецелевая доставка нуклеиновых кислот на основе полиэтиленимина (ПЭИ) или протамина (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180-188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA. 2007 6;104:4095-4100; deFougerolles Hum Gene Ther. 2008 19:125-132; все из которых включены в настоящий документ в полном объеме посредством ссылки).

[00405] В одном варианте реализации такие препараты дополнительно могут быть разработаны, или составы могут быть модифицированы таким образом, что они пассивно или активно нацелены на различные типы клеток in vivo, включая, без ограничений, гепатоциты, иммунные клетки, опухолевые клетки, эндотелиальные клетки, презентующие антиген клетки и лейкоциты (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133; все из которых включены в настоящий документ в полном объеме посредством ссылки). Один из примеров пассивного нацеливания препаратов на клетки печени включает препараты липидных наночастиц на основе Длин-ДМА, ДЛин-KC2-ДМА и ДЛин-MC3-ДМА, которые доказано связываются с аполипопротеином Е и способствуют связыванию и захвату таких препаратов гепатоцитами in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364; включена в настоящий документ в полном объеме посредством ссылки). Кроме того, препараты могут быть избирательно нацелены посредством экспрессии различных лигандов на их поверхности, например, без ограничений, фолат, трансферрин, N-ацетилгалактозамин (GalNAc), и подходов нацеливания с применением антител (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133; все из которых объединены в настоящем документе в полном объеме посредством ссылки).

[00406] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК вводят в твердую липидную наночастицу. Твердая липидная наночастица (ТЛН) может быть сферической, со средним диаметром от 10 до 1000 нм. ТЛН содержит матрицу твердого липидного ядра, которая может солюбилизировать липофильные молекулы, и может быть стабилизирована с помощью поверхностно-активных веществ и/или эмульгаторов. В дополнительном варианте реализации липидная наночастица может представлять собой самособирающуюся наночастицу липид-полимер (см. Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; включена в настоящий документ в полном объеме посредством ссылки).

[00407] Липосомы, липоплексы или липидные наночастицы могут использоваться для повышения эффективности модифицированных молекул нуклеиновой кислоты или направляемой ммРНК выработки белка, поскольку эти препараты могут обладать способностью увеличивать трансфекцию клетки модифицированной молекулой нуклеиновой кислоты или ммРНК; и/или увеличивать трансляцию кодируемого белка. Один из таких примеров включает применение липидной инкапсуляции, чтобы создать возможность эффективной системной доставки полиплекса ДНК плазмиды (Heyes et al., Mol Ther. 2007 15:713-720; включена в настоящий документ в полном объеме посредством ссылки). Кроме того, липосомы, липоплексы или липидные наночастицы могут применяться для повышения стабильности модифицированных молекул нуклеиновой кислоты или ммРНК.

[00408] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК по настоящему изобретению могут быть введены в состав для контролируемого высвобождения и/или целенаправленной доставки. В настоящем документе «контролируемое высвобождение» обозначает профиль высвобождения фармацевтического состава или соединения, который согласуется с конкретным характером высвобождения, чтобы обеспечить терапевтический результат.В одном варианте реализации модифицированные молекулы нуклеиновых кислот или ммРНК могут быть инкапсулированы в агент доставки, раскрытый в настоящем документе и/или известный из уровня техники, для контролируемого высвобождения и/или целенаправленной доставки. В настоящем документе термин «инкапсулировать» обозначает включить, окружить или упаковать. В связи с составом соединений по изобретению, инкапсуляция может быть существенной, полной или частичной. Термин «в существенной мере инкапсулированный» означает, что по меньшей мере свыше 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99,9, 99,9 или более 99,999% фармацевтического состава или соединения по изобретению может быть включено, окружено или упаковано в агент доставки. «Частичная инкапсуляция» означает, что менее 10, 10, 20, 30, 40 50 или менее фармацевтического состава или соединения по изобретению может быть включено, окружено или упаковано в агент доставки. Предпочтительно, степень инкапсуляции может быть определена путем измерения степени выхода или активности фармацевтического состава или соединения по изобретению, с использованием флуоресценции и/или снимка электронного микроскопа. Например, по меньшей мере 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99,9, 99,99 или более 99,99% фармацевтического состава или соединения по изобретению инкапсулировано в агенте доставки.

[00409] В одном варианте реализации состав с контролируемым высвобождением может содержать, без ограничений, три-блок-сополимеры. В качестве неограничивающего примера, состав может содержать два различных вида три-блок-сополимеров (Международные публикации №№ WO 2012131104 и WO 2012131106; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00410] В другом варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК могут быть инкапсулированы в липидную наночастицу или быстро элиминирующуюся липидную наночастицу, и липидные наночастицы или быстро элиминирующаяся липидная наночастица далее может быть инкапсулирована в полимер, гидрогель и/или хирургический герметик, раскрытый в настоящем документе и/или известный из уровня техники. В качестве неограничивающего примера, полимер, гидрогель или хирургический герметик может представлять собой ПМГК, этиленвинилацетат (ЭВА), полоксамер, GELSITE® (Nanotherapeutics, Inc. Алачуа, Флорида), HYLENEX® (Halozyme Therapeutics, Сан-Диего, Калифорния), хирургические герметики, такие как полимеры фибриногена (Ethicon Inc. Корнелия, Джорджия), TISSELL® (Baxter International, Inc, Дирфилд, Иллинойс), герметики на основе ПЭГ и COSEAL® (Baxter International, Inc, Дирфилд, Иллинойс).

[00411] В другом варианте реализации липидная наночастица может быть инкапсулирована в любой полимер, известный из уровня техники, который может образовывать гель при инъекционном введении субъекту. В качестве неограничивающего примера, липидная наночастица может быть инкапсулирована в полимерную матрицу, которая может быть биоразлагаемой.

[00412] В одном варианте реализации препарат модифицированных молекул нуклеиновой кислоты или ммРНК для контролируемого высвобождения и/или целенаправленной доставки может дополнительно содержать по меньшей мере один вид покрытия с контролируемым высвобождением. Покрытия с контролируемым высвобождением включают, без ограничений, OPADRY®, сополимер поливинилпирролидон/винилацетат, поливинилтшрролидон, гидроксипропилметилцеллюлозу, гидроксипропилцеллюлозу, гидроксиэтилцеллюлозу, EUDRAGIT RL®, EUDRAGIT RS® и производные целлюлозы, такие как водные дисперсии этилцеллюлозы (AQUACOAT® и SURELEASE®).

[00413] В одном варианте реализации препарат с контролируемым высвобождением и/или целенаправленной доставкой может содержать по меньшей мере один разлагаемый полиэфир, который может содержать поликатионные боковые цепи. Разлагаемые полиэфиры включают, без ограничений, поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый эфир) и их комбинации. В другом варианте реализации разлагаемые полиэфиры могут включать конъюгацию с ПЭГ с образованием пегилированного полимера.

[00414] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК по настоящему изобретению могут быть инкапсулированы в терапевтические наночастицы. Терапевтические наночастицы могут быть разработаны с применением способов, раскрытых в настоящем документе и известных из уровня техники, например, без ограничений, Международные публикации WO 2010005740, WO 2010030763, WO 2010005721, WO 2010005723, WO 2012054923, Публикации США №№ US 20110262491, US 20100104645, US 20100087337, US 20100068285, US 20110274759, US 20100068286 и US 20120288541 и патенты США №№8206747, 8293276, 8318208 и 8318211; каждый из которых включен в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации наночастицы терапевтического полимера могут быть идентифицированы способами, раскрытыми в Публикации США US 20120140790; включена в настоящий документ в полном объеме посредством ссылки.

[00415] В одном варианте реализации может быть создана терапевтическая наночастица для контролируемого высвобождения. В настоящем документе «контролируемое высвобождение» обозначает фармацевтический состав или соединение, которое соответствует скорости высвобождения на протяжении конкретного периода времени. Период времени может включать, без ограничений, часы, дни, недели, месяцы и годы. В качестве неограничивающего примера, наночастица с контролируемым высвобождением может содержать полимер и терапевтический агент, например, без ограничений, модифицированные молекулы нуклеиновой кислоты и ммРНК по настоящему изобретению (см. Международную публикацию №2010075072 и Публикации США №№ US 20100216804, US 20110217377 и US 20120201859, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00416] В одном варианте реализации могут быть созданы терапевтические наночастицы, специфичные в отношении мишени. В качестве неограничивающего примера, терапевтические наночастицы могут содержать кортикостероид (см. Международную публикацию WO 2011084518; включена в настоящий документ в полном объеме посредством ссылки). В одном варианте реализации могут быть созданы терапевтические наночастицы по настоящему изобретению, специфичные в отношении рака. В качестве неограничивающего примера, терапевтические наночастицы могут быть созданы в форме наночастиц, раскрытых в Международных публикациях WO 2008121949, WO 2010005726, WO 2010005725, WO 2011084521 и Публикациях США №№ US 20100069426, US 20120004293 и US 20100104655, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00417] В одном варианте реализации наночастицы по настоящему изобретению могут содержать полимерную матрицу. В качестве неограничивающего примера, наночастица может содержать 2 или более полимеров, например, без ограничений, полиэтилены, поликарбонаты, полиангидриды, полигидроксикислоты, полипропилфумараты, поликапролактоны, полиамиды, полиацетали, полиэфиры, сложные полиэфиры, поли(ортоэфиры), полицианоакрилаты, поливиниловые спирты, полиуретаны, полифосфазены, полиакрилаты, полиметакрилаты, полицианоакрилаты, полимочевины, полистиролы, полиамины, полилизин, поли (этил енимин), поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый эфир) или их комбинации.

[00418] В одном варианте реализации терапевтическая наночастица включает диблок-сополимер. В одном варианте реализации диблок-сополимер может содержать ПЭГ в сочетании с полимером, таким как, без ограничений, полиэтилены, поликарбонаты, полиангидриды, полигидроксикислоты, полипропилфумараты, поликапролактоны, полиамиды, полиацетали, полиэфиры, сложные полиэфиры, поли(ортоэфиры), полицианоакрилаты, поливиниловые спирты, полиуретаны, полифосфазены, полиакрилаты, полиметакрилаты, полицианоакрилаты, полимочевины, полистиролы, полиамины, полилизин, поли(этиленимин), поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый сложный эфир) или их комбинации.

[00419] В качестве неограничивающего примера терапевтическая наночастица содержит ПМГК-ПЭГ блок-сополимер (см. Публикацию США № US 20120004293 и патент США №8236330, каждый из которых включен в настоящий документ в полном объеме посредством ссылки). В другом неограничивающем примере терапевтическая наночастица представляет собой маскирующую наночастицу, содержащую диблок-сополимер ПЭГ и ПМК или ПЭГ и ПМГК (см. патент США №8246968; включен в настоящий документ в полном объеме посредством ссылки).

[00420] В одном варианте реализации терапевтическая наночастица может содержать поли-блок-сополимер (см, например, патенты США №№8263665 и 8287910; каждый из которых включен в настоящий документ в полном объеме посредством ссылки).

[00421] В одном варианте реализации блок-сополимеры, раскрытые в настоящем документе, могут быть введены в полиионный комплекс, содержащий неполимерную мицеллу и блок-сополимер. (См., например, Публикацию США №20120076836; включена в настоящий документ в полном объеме посредством ссылки).

[00422] В одном варианте реализации терапевтическая наночастица может содержать по меньшей мере один акриловый полимер. Акриловые полимеры включают, без ограничений, сополимеры акриловой кислоты, метакриловой кислоты, акриловой кислоты и метакриловой кислоты, метилметакрилата метилсодержащие сополимеры, этоксиэтилметакрилаты, цианоэтилметакрилат, аминоалкилметакрилатный сополимер, поли(акриловую кислоту), поли(метакриловую кислоту), полицианоакрилаты и их комбинации.

[00423] В одном варианте реализации терапевтические наночастицы могут содержать по меньшей мере один катионный полимер, раскрытый в настоящем документе и/или известный из уровня техники.

[00424] В одном варианте реализации терапевтические наночастицы могут содержать по меньшей мере один аминосодержащий полимер, например, без ограничений, полилизин, полиэтиленимин, поли(амидоамин)дендримеры, поли(бета-амино сложные эфиры) (см., например, патент США №8287849; включен в настоящий документ в полном объеме посредством ссылки) и их комбинации.

[00425] В одном варианте реализации терапевтические наночастицы могут содержать по меньшей мере один разлагаемый сложный полиэфир, который может содержать поликатионные боковые цепи. Разлагаемые сложные полиэфиры включают, без ограничений, поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый сложный эфир) и их комбинации. В другом варианте реализации разлагаемые сложные полиэфиры могут включать конъюгацию с ПЭГ с образованием пегилированного полимера.

[00426] В другом варианте реализации терапевтическая наночастица может включать конъюгацию по меньшей мере с одним нацеливающим лигандом. Нацеливающий лиганд может представлять собой любой лиганд, известный из уровня техники, такой как, без ограничений, моноклональное антитело (Kirpotin et al, Cancer Res. 2006 66:6732-6740; включена в настоящий документ в полном объеме посредством ссылки).

[00427] В одном варианте реализации терапевтическая наночастица может быть введена в водный раствор, который может применяться для целенаправленного воздействия на рак (см. Международную публикацию WO 2011084513 и Публикацию США № US 20110294717, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00428] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК могут быть инкапсулированы в, соединены с и/или ассоциированы с синтетическими наноносителями. Синтетические наноносители включают, без ограничений, раскрытые в Международных публикациях WO 2010005740, WO 2010030763, WO 201213501, WO 2012149252, WO 2012149255, WO 2012149259, WO 2012149265, WO 2012149268, WO 2012149282, WO 2012149301, WO 2012149393, WO 2012149405, WO 2012149411 и WO 2012149454 и Публикации США №№ US 20110262491, US 20100104645, US 20100087337 и US 20120244222, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. Синтетические наноносители могут быть созданы с применением способов, известных из уровня техники и/или раскрытых в настоящем документе,. В качестве неограничивающего примера, синтетические наноносители могут быть получены способами, раскрытыми в Международных публикациях WO 2010005740, WO 2010030763 и WO 201213501 и Публикациях США №№ US 20110262491, US 20100104645, US 20100087337 и US 20120244222, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В друтом варианте реализации препараты синтетических наноносителей могут быть лиофилизированы способами, раскрытыми в Международной публикации WO 2011072218 и патенте США №8211473; каждый из которых включен в настоящий документ в полном объеме посредством ссылки.

[00429] В одном варианте реализации синтетические наноносители могут содержать реакционноспособные группы для высвобождения модифицированных молекул нуклеиновой кислоты и/или ммРНК, раскрытых в настоящем документе, (см. Международную публикацию WO 20120952552 и Публикацию США № US 20120171229, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00430] В одном варианте реализации синтетические наноносители могут содержать иммуностимулятор с целью усиления иммунного ответа, вызванного доставкой синтетического наноносителя. В качестве неограничивающего примера, синтетический наноносителъ может содержать Th1 иммуностимулятор, который может усиливать базирующийся на Th1 ответ иммунной системы (см. Международную публикацию WO 2010123569 и Публикацию США № US 20110223201, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00431] В одном варианте реализации синтетические наноносители могут быть созданы для направленного высвобождения. В одном варианте реализации синтетический наноносителъ создан таким образом, чтобы высвобождать модифицированные молекулы нуклеиновой кислоты и/или ммРНК при конкретном значении рН и/или через желательный промежуток времени. В качестве неограничивающего примера, синтетическая наночастица может быть создана для высвобождения модифицированных молекул мРНК и/или ммРНК через 24 часа и/или при рН 4,5 (см. Международные публикации № WO 2010138193 и WO 2010138194 и Публикации США №№ US 20110020388 и US 20110027217, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00432] В одном варианте реализации синтетические наноносители могут быть созданы для контролируемого и/или беспрерывного высвобождения модифицированных молекул нуклеиновой кислоты и/или ммРНК, раскрытых в настоящем документе,. В качестве неограничивающего примера, синтетические наноносители для беспрерывного высвобождения могут быть созданы способами, известными из уровня техники, раскрытыми в настоящем документе и/или раскрытыми в Международной публикации № WO 2010138192 и Публикации США №20100303850, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00433] В одном варианте реализации синтетический наноноситель может быть создан для применения в качестве вакцины. В одном варианте реализации синтетический наноноситель может инкапсулировать по меньшей мере одну модифицированную молекулу нуклеиновой кислоты и/или ммРНК, которая кодирует по меньшей мере один антиген. В качестве неограничивающего примера, синтетический наноноситель может содержать по меньшей мере один антиген и вспомогательное вещество для лекарственной формы вакцины (см. Международную публикацию № WO 2011150264 и Публикацию США № US 20110293723, каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В качестве другого неограничивающего примера, лекарственная форма вакцины может содержать по меньшей мере 2 синтетических наноносителя с одинаковыми или разными антигенами и вспомогательным веществом (см. Международную публикацию № WO 2011150249 и Публикацию США № US 20110293701, каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Лекарственная форма вакцины может быть выбрана с применением способов, раскрытых в настоящем документе, известных из уровня техники и/или раскрытых в Международной публикации № WO 2011150258 и Публикации США № US 20120027806, каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00434] В одном варианте реализации синтетический наноноситель может содержать по меньшей мере одну модифицированную молекулу нуклеиновой кислоты и/или ммРНК, которая кодирует по меньшей мере один адъювант. В другом варианте реализации синтетический наноноситель может содержать по меньшей мере одну модифицированную молекулу нуклеиновой кислоты и/или ммРНК и адъювант. В качестве неограничивающего примера, синтетический наноноситель, содержащий адъювант, может быть создан способами, раскрытыми в Международной публикации № WO 2011150240 и Публикации США № US 20110293700, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00435] В одном варианте реализации синтетический наноноситель может инкапсулировать по меньшей мере одну модифицированную молекулу нуклеиновой кислоты и/или ммРНК, которая кодирует пептид, фрагмент или участок вируса. В качестве неограничивающего примера, синтетический наноноситель может содержать, без ограничений, наноносители, раскрытые в Международных публикациях № WO 2012024621, WO 201202629, WO 2012024632 и Публикациях США №№ US 20120064110, US 20120058153 и US 20120058154, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00436] В одном варианте реализации наночастица может быть оптимизирована для перорального введения. Наночастица может содержать по меньшей мере один катионный биополимер, например, без ограничений, хитозан или его производное. В качестве неограничивающего примера, наночастица может быть создана способами, раскрытыми в Публикации США №20120282343; включена в настоящий документ в полном объеме посредством ссылки.

Полимеры, биоразлагаемые наночастицы и наночастицы со структурой ядро/оболочка

[00437] Молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в составы с использованием природных и/или синтетических полимеров. Неограничивающие примеры полимеров, которые могут быть использованы для доставки включают, без ограничений, препараты DYNAMIC POLYCONJUGATE® (Arrowhead Research Corp., Пасадена, Калифорния) от MIRUS® Bio (Мэдисон, Висконсин) и Roche Madison (Мэдисон, Висконсин), полимерные препараты PHASERX™, такие как, без ограничений, SMARTT POLYMER TECHNOLOGY™ (Сиэтл, Вашингтон), DMRI/ДОФЭ, полоксамер, адъювант VAXFECTIN® от Vical (Сан-Диего, Калифорния), хитозан, циклодекстрин от Calando Pharmaceuticals (Пасадена, Калифорния), дендримеры и полимеры поли(молочной-со-гликолевой кислоты) (ПМГК), полимеры RONDEL™ (наночастицы для доставки иРНК/олигонуклеотида) (Arrowhead Research Corporation, Пасадена, Калифорния) и реагирующие на рН со-блок-полимеры, такие как, без ограничений, PHASERX™ (Сиэтл, Вашингтон).

[00438] Неограничивающий пример препарата хитозана включает ядро из положительно заряженного хитозана и наружную часть отрицательно заряженного субстрата (Публикация США №20120258176; включена в настоящий документ в полном объеме посредством ссылки). Хитозан включает, без ограничений, N-триметилхитозан, MOHO-N-карбоксиметилхитозан (КМХ), N-пальмитоилхитозан (НПХЗ), ЭДТА-хитозан, низкомолекулярный хитозан, производные хитозана или их комбинации.

[00439] В одном варианте реализации полимеры, используемые в данном изобретении, подвергают обработке с целью снижения и/или подавления присоединения нежелательных субстанций, таких как, без ограничений, бактерии, к поверхности полимера. Полимер может быть обработан способами, известными и/или раскрытыми в уровне техники и/или раскрытыми в Международной публикации № WO 2012150467, включена в настоящий документ в полном объеме посредством ссылки.

[00440] Неограничивающий пример препаратов ПМГК включает, без ограничений, инъекционный препарат депо ПМГК (например, ELIGARD®, который образуется при растворении ПМГК в 66% N-метил-2-пирролидоне (НМП), причем остальную часть составляют водный растворитель и лейпролид. После введения инъекцией, ПМГК и пептид лейпролида осаждается в подкожном пространстве).

[00441] Многие из указанных подходов с использованием полимеров продемонстрировали свою эффективность с точки зрения доставки олигонуклеотидов in vivo в цитоплазму клетки (обзор приведен в deFougerolles Hum Gen Ther. 2008 19:125-132; включена в настоящий документ в полном объеме посредством ссылки). Два подхода с использованием полимеров, которые дают робастную доставку нуклеиновых кислот in vivo, в данном случае малой интерферирующей РНК (миРНК), представляют собой динамические поликонъюгаты и наночастицы на основе циклодекстрина. В первом из указанных подходов для доставки используются динамические поликонъюгаты, и у мышей продемонстрирована эффективная доставка in vivo миРНК и молчащих мРНК с эндогенным нацеливанием на гепатоциты (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; включена в настоящий документ в полном объеме посредством ссылки). Данный конкретный подход представляет собой многокомпонентную полимерную систему, ключевые признаки которой включают мембрано-активный полимер, к которому посредством дисульфидной связи ковалентно присоединена нуклеиновая кислота, в данном случае миРНК, и где фрагменты ПЭГ (для маскировки заряда) и N-ацетилгалактозаминовые группы (для нацеливания на гепатоциты) присоединены посредством рН-чувствительных связей (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; включена в настоящий документ в полном объеме посредством ссылки). При связывании с гепатоцитом и вхождении в эндосому, полимерный комплекс разъединяется в среде с низким значением рН, причем полимер принимает на себя положительный заряд, что приводит к выходу из эндосомы и высвобождению миРНК из полимера в цитоплазме. Показано, что посредством замены N-ацетилгалактозаминовой группы на маннозную, можно изменить нацеливание с гепатоцитов, экспрессирующих асиалогликопротеиновый рецептор, на синусоидальный эндотелий и клетки Купфера. Другой подход с использованием полимера включает использование трансферрин-нацеленньгх циклодекстрин-содержащих поликатионных наночастиц. Указанные наночастицы продемонстрировали нацеленный сайленсинг генного продукта EWS-FLI1 в клетках опухоли саркомы Юинга, экспрессирующих рецептор трансферрина (Hu-Lieskovan et al., Cancer Res, 2005 65:8984-8982; включена в настоящий документ в полном объеме посредством ссылки), и миРНК, введенная в такие наночастицы, хорошо переносилась негуманоидными приматами (Heidel et al., Proc Natl Acad Sci USA 2007 104:5715-21; включена в настоящий документ в полном объеме посредством ссылки). Обе указанных стратегии доставки включают рациональные подходы с применением направленной доставки и механизмов выхода из эндосомы.

[00442] Полимерный препарат может позволять контролируемое или замедленное высвобождение модифицированных молекул нуклеиновой кислоты или ммРНК (например, после внутримышечной или подкожной инъекции). Модифицированный профиль высвобождения модифицированной молекулы нуклеиновой кислоты или ммРНК может приводить, например, к трансляции кодируемого белка на протяжении пролонгированного периода времени. Полимерный препарат также может применяться для повышения стабильности модифицированной молекулы нуклеиновой кислоты или ммРНК. Биоразлагаемые полимеры ране применялись для защиты других нуклеиновых кислот, кроме ммРНК, от разложения, и приводили к контролируемому высвобождению полезной нагрузки in vivo (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Sullivan et al., Expert Opin Drug Deliv. 2010 7:1433-1446; Convertine et al., Biomacromolecules. 2010 Oct 1; Chu et al., Acc Chem Res. 2012 Jan 13; Manganiello et al., Biomaterials. 2012 33:2301-2309; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Singha et al., Nucleic Acid Ther. 2011 2:133-147; deFougerolles Hum Gene Ther. 2008 19:125-132; Schaffert and Wagner, Gene Ther. 2008 16:1131-1138; Chaturvedi et al., Expert Opin Drug Deliv. 2011 8:1455-1468; Davis, Mol Pharm. 2009 6:659-668; Davis, Nature 2010 464:1067-1070; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00443] В одном варианте реализации фармацевтические составы могут представлять собой препараты с контролируемым высвобождением. В дополнительном варианте реализации препараты с контролируемым высвобождением могут быть предназначены для подкожного введения. Препараты с контролируемым высвобождением могут содержать, без ограничений, микросферы ПМГК, этиленвинилацетат (ЭВА), полоксамер, GELSITE® (Nanotherapeutics, Inc. Алачуа, Флорида), HYLENEX® (Halozyme Therapeutics, Сан-Диего, Калифорния), хирургические герметики, такие как полимеры фибриногена (Ethicon Inc. Корнелия, Джорджия), TISSELL® (Baxter International, Inc, Дирфилд, Иллинойс), герметики на основе ПЭГ и COSEAL® (Baxter International, Inc, Дирфилд, Иллинойс).

[00444] В качестве неограничивающего примера, модифицированная мРНК может быть введена в микросферы ПМГК путем получения микросфер ПМГК с регулируемой скоростью высвобождения (например, дни и недели) и инкапсуляции модифицированной мРНК в микросферы ПМГК, при сохранении целостности модифицированной мРНК в ходе процесса инкапсуляции. ЭВА представляют собой неразлагаемые в биологических системах, биосовместимые полимеры, которые широко применяются в доклинических исследованиях имплантов с контролируемым высвобождением (например, продукты с пролонгируемым высвобождением: глазной имплант с пилокарпином Ocusert при глаукоме или внутриматочное устройство Progestasert с контролируемым высвобождением прогестерона; системы трансдермальной доставки Testoderm, дурагезик и селегилин; катетеры). Полоксамер F-407 NF представляет собой гидрофильный, неионный поверхностно-активный триблок-сополимер полиоксиэтилен-полиоксипропилен-полиоксиэтилен, обладающий низкой вязкостью при температурах ниже 5°С и образующий плотный гель при температурах выше 15°С. Хирургические герметики на основе ПЭГ содержат два синтетических ПЭГ-компонента, смешиваемые в устройстве для доставки; они могут быть получены в течение 1 минуты, застывают в пределах 3 минут и реабсорбируются в пределах 30 дней. GELSITE® и природные полимеры способны образовывать гель in situ в месте введения. Показано, что они взаимодействуют с белковыми и пептидными терапевтическими средствами-кандидатами посредством ионного взаимодействия, с получением эффекта стабилизации.

[00445] Полимерные препараты также можно избирательно нацеливать посредством экспрессии различных лигандов, как проиллюстрировано на примере, без ограничений, фолата, трансферрина и N-ацетилгалактозамина (GalNAc) (Benoit et al., Biomacromolecules. 2011 12:2708-2714; Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Davis, Mol Pharm. 2009 6:659-668; Davis, Nature 2010 464:1067-1070; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00446] Молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в составы вместе с или в пределах полимерного соединения. Полимер может включать по меньшей мере один полимер, например, без ограничений, полиэтены, полиэтиленгликоль (ПЭГ), поли(1-лизин) (ПЛЛ), пересаженный на ПЛЛ ПЭГ, катионный липополимер, биоразлагаемый катионный липополимер, полиэтиленимин (ПЭИ), поперечно-сшитые разветвленные поли(алкиленимины), полиаминные производные, модифицированный полоксамер, биоразлагаемый полимер, эластичный биоразлагаемый полимер, биоразлагаемый блок-сополимер, биоразлагаемый статистический сополимер, биоразлагаемый полиэфирный сополимер, биоразлагаемый полиэфирный блок-сополимер, биоразлагаемый полиэфирный статистический блок-сополимер, поли-блок-сополимеры, линейный биоразлагаемый сополимер, поли[α-(4-аминобутил)-L-гликолевую кислоту) (ПАГК), биоразлагаемые поперечно-сшитые катионные поли-блок-сополимеры, поликарбонаты, полиангидриды, полигидроксикислоты, полипропилфумараты, поликапролактоны, полиамиды, полиацетали, полиэфиры, сложные полиэфиры, поли(ортоэфиры), полицианоакрилаты, поливиниловые спирты, полиуретаны, полифосфазены, полиакрилаты, полиметакрилаты, полицианоакрилаты, полимочевины, полистиролы, полиамины, полилизин, поли(этиленимин), поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый сложный эфир), акриловые полимеры, аминосодержащие полимеры, полимеры декстрана, полимеры производных декстрана или их комбинации.

[00447] В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут быть введены в состав с полимерным соединением ПЭГ, пересаженного на ПЛЛ, как раскрыто в патенте США №6177274; включен в настоящий документ в полном объеме посредством ссылки. Состав может применяться для трансфекции клеток in vitro или для доставки in vivo модифицированных молекул нуклеиновой кислоты и ммРНК. В другом примере, модифицированные молекулы нуклеиновой кислоты и ммРНК могут быть суспендированы в растворе или среде с катионным полимером, в сухом фармацевтическом составе или в растворе, который может быть высушен, как раскрыто в Публикациях США №№20090042829 и 20090042825; каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00448] В качестве другого неограничивающего примера, модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут быть введены в состав с ПМГК-ПЭГ блок-сополимером (см. Публикацию США № US 20120004293 и патент США №8236330, каждый из которых включен в настоящий документ в полном объеме посредством ссылки) или ПМГК-ПЭГ-ПМГК блок-сополимерами (см. патент США №6004573, включен в настоящий документ в полном объеме посредством ссылки). В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению могут быть введены в состав с диблок-сополимером ПЭГ и ПМК или ПЭГ и ПМГК (см. патент США №8246968; включен в настоящий документ в полном объеме посредством ссылки).

[00449] Полиаминное производное может использоваться для доставки молекул нуклеиновой кислоты и/или ммРНК, или для лечения и/или профилактики заболевания, или для введения в имплантируемое или вводимое инъекцией устройство (Публикация США №20100260817; включена в настоящий документ в полном объеме посредством ссылки). В качестве неограничивающего примера, фармацевтический состав может содержать модифицированные молекулы нуклеиновой кислоты и ммРНК, а также полиаминные производные, раскрытые в Публикации США №20100260817 (содержание которой включено в данное описание в полном объеме посредством ссылки). В качестве неограничивающего примера, модифицированные нуклеиновые кислоты или ммРНК по настоящему изобретению могут быть доставлены с использованием полиамидного полимера, например, без ограничений, полимера, содержащего 1,3-биполярное добавление полимера, полученного сочетанием углевод-диазидного мономера с диалкиновым фрагментом, содержащим олигоакрилаты (патент США №8236280; включен в настоящий документ в полном объеме посредством ссылки).

[00450] Молекулы модифицированных нуклеиновых кислот и/или ммРНК по изобретению могут быть введены в состав по меньшей мере с одним акриловым полимером. Акриловые полимеры включают, без ограничений, акриловую кислоту, метакриловую кислоту, сополимеры акриловой кислоты и метакриловой кислоты, метилметакрилатные сополимеры, этоксиэтилметакрилаты, цианоэтилметакрилат, аминоалкилметакрилатный сополимер, поли(акриловую кислоту), поли(метакриловую кислоту), полицианоакрилаты и их комбинации.

[00451] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК по настоящему изобретению могут быть введены в состав по меньшей мере с одним полимером и/или его производным, раскрытым в Международных публикациях № WO 2011115862, WO 2012082574 и WO 2012068187 и Публикации США №20120283427, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК по настоящему изобретению могут быть введены в состав с полимером формулы Z, как раскрыто в WO 2011115862; включена в настоящий документ в полном объеме посредством ссылки. В еще одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК могут быть введены в состав с полимером формулы Z, Z' или Zʺ как раскрыто в Международных публикациях WO 2012082574 или WO 2012068187, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. Полимеры, введенные в состав с модифицированными нуклеиновыми кислотами и/или модифицированными мРНК по настоящему изобретению, могут быть синтезированы способами, раскрытыми в Международных публикациях № WO 2012082574 или WO 2012068187, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00452] Составы на основе модифицированных молекул нуклеиновой кислоты и/или ммРНК по изобретению могут содержать по меньшей мере один аминосодержащий полимер, например, без ограничений, полилизин, полиэтиленимин, поли(амидоамин) дендримеры или их комбинации.

[00453] Например, модифицированные молекулы нуклеиновой кислоты и/или ммРНК по изобретению могут быть введены в фармацевтическое соединение, содержащее поли(алкиленимин), биоразлагаемый катионный липополимер, биоразлагаемый блок-сополимер, биоразлагаемый полимер или биоразлагаемый статистический сополимер, биоразлагаемый полиэфирный блок-сополимер, биоразлагаемый полиэфирный полимер, биоразлагаемый полиэфирный статистический сополимер, линейный биоразлагаемый сополимер, ПАГК, биоразлагаемый поперечно-сшитый катионный поли-блок-сополимер или их комбинации. Биоразлагаемый катионный липополимер может быть получен способами, известными из уровня техники и/или раскрытыми в патенте США №6696038, Заявках США №№20030073619 и 20040142474, каждая из которых включена в настоящий документ в полном объеме посредством ссылки. Поли(алкиленимин) может быть получен с применением способов, известных из уровня техники и/или раскрытых в Публикации США №20100004315, включена в настоящий документ в полном объеме посредством ссылки. Биоразлагаемый полимер, биоразлагаемый блок-сополимер, биоразлагаемый статистический сополимер, биоразлагаемый полиэфирный блок-сополимер, биоразлагаемый полиэфирный полимер или биоразлагаемый полиэфирный статистический сополимер может быть получен с применением способов, известных из уровня техники и/или раскрытых в патентах США №№6517869 и 6267987, содержание каждого из которых включено в настоящий документ в полном объеме посредством ссылки. Линейный биоразлагаемый сополимер может быть получен с применением способов, известных из уровня техники и/или раскрытых в патенте США №6652886. Полимер ПАГК может быть получен с применением способов, известных из уровня техники и/или раскрытых в патенте США №6217912; включен в настоящий документ в полном объеме посредством ссылки. Полимер ПАГК может быть сополимеризован с образованием сополимера или блок-сополимера с полимерами, такими как, без ограничений, поли-Ь-лизин, полиаргинин, полиорнитин, гистоны, авидин, протамины, полилактиды и поли(лактид-со-гликолиды). Биоразлагаемые поперечно-сшитые катионные поли-блок-сополимеры могут быть получены способами, известными из уровня техники и/или раскрытыми в патенте США №8057821 или Публикации США №2012009145, каждый из которых включен в настоящий документ в полном объеме посредством ссылки. Например, полиблок-сополимеры могут быть синтезированы с использованием блоков линейного полиэтиленимина (ЛПЭИ), конфигурация которых отличается от разветвленных полиэтилениминов. Затем состав или фармацевтический состав может быть получен способами, известными из уровня техники, раскрытыми в настоящем документе или раскрытыми в Публикации США №20100004315 или патентах США №№6267987 и 6217912, каждый из которых включен в настоящий документ в полном объеме посредством ссылки.

[00454] Молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в состав по меньшей мере с одним разлагаемым полиэфиром, который может содержать поликатионные боковые цепи. Разлагаемые полиэфиры включают, без ограничений, поли(сериновый сложный эфир), поли(L-лактид-со-L-лизин), поли(4-гидрокси-L-пролиновый сложный эфир) и их комбинации. В другом варианте реализации разлагаемые полиэфиры могут включать конъюгацию с ПЭГ с образованием пегилированного полимера.

[00455] Молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в состав по меньшей мере с одним полиэфиром, способным к образованию поперечно-сшитых связей. Полиэфиры, способные к образованию поперечно-сшитых связей, включают известные из уровня техники и раскрытые в Публикации США №20120269761, включена в настоящий документ в полном объеме посредством ссылки.

[00456] В одном варианте реализации полимеры, раскрытые в настоящем документе, могут быть конъюгированы с липид-концевым ПЭГ. В качестве неограничивающего примера, ПМГК может быть конъюгирован с липид-концевым ПЭГ с образованием ПМГК-ДСФЭ-ПЭГ. В качестве другого неограничивающего примера, конъюгаты ПЭГ для использования в данном изобретении представляют собой раскрытые в Международной публикации WO 2008103276; включена в настоящий документ в полном объеме посредством ссылки. Полимеры могут быть конъюгированы с использованием конъюгата лиганда, например, без ограничений, конъюгатов, раскрытых в патенте США №8273363; включен в настоящий документ в полном объеме посредством ссылки.

[00457] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК, раскрытые в настоящем документе, могут быть конъюгированы с другим соединением. Неограничивающие примеры конъюгатов раскрыты в патентах США №№7964578 и 7833992, каждый из которых включен в настоящий документ в полном объеме посредством ссылки. В другом варианте реализации модифицированные РНК по настоящему изобретению могут быть конъюгированы с конъюгатами формул 1-122, раскрытыми в патентах США №№7964578 и 7833992, каждый из которых включен в настоящий документ в полном объеме посредством ссылки. Модифицированные РНК, раскрытые в настоящем документе, могут быть конъюгированы с металлом, таким как, без ограничений, золото (см., например, Giljohann et al. Journ. Amer. Chem. Soc. 2009 131(6):2072-2073; включена в настоящий документ в полном объеме посредством ссылки). В другом варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК, раскрытые в настоящем документе, могут быть конъюгированы и/или инкапсулированы в наночастицы золота. (Международная публикация № WO 201216269 и Публикация США №20120302940; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

[00458] Как раскрыто в Публикации США №20100004313, которая включена в настоящий документ в полном объеме посредством ссылки, состав для доставки гена может содержать нуклеотидную последовательность и полоксамер. Например, модифицированная нуклеиновая кислота и ммРНК по настоящему изобретению могут использоваться в составе для доставки гена, содержащем полоксамер, как раскрыто в Публикации США №20100004313.

[00459] В одном варианте реализации полимерный препарат по настоящему изобретению может быть стабилизирован посредством контакта полимерного препарата, который может содержать катионный носитель, с катионным липополимером, который может быть ковалентно связан с холестерином и группами полиэтиленгликоля. Полимерный препарат может быть приведен в контакт с катионным липополимером с применением способов, раскрытых в Публикации США №20090042829; включена в настоящий документ в полном объеме посредством ссылки. Катионный носитель может включать, без ограничений, полиэтиленимин, поли(триметиленимин), поли(тетраметиленимин), полипропиленимин, аминогликозид-полиамин, дидезокси-диамино-b-циклодекстрин, спермин, спермидин, поли(2-диметиламино)этилметакрилат, поли(лизин), поли(гистидин), поли(аргинин), катионизированный желатин, дендримеры, хитозан, 1,2-диолеоил-3-триметиламмоний-пропан (ДОТАП), N-[1-(2,3-диолеоилокси)пропил]-N,N,N-триметиламмония хлорид (ДОТМА), 1-[2-(олеоилокси)этил]-2-олеил-3-(2-гидроксиэтил)имидазолиния хлорид (ДОТИМ), 2,3-диолеилокси-N-[2(сперминкарбоксамидо)этил]-N,N-диметил-1-пропанаминия трифторацетат (ДОСПА), 3B-[N-(N',N'-диметиламиноэтан)-карбамоил]холестерина гидрохлорид (ДК-холестерин HCl), дигептадециламидоглицил спермидин (ДОГС), N,N-дистеарил-N,N-диметиламмония бромид (ДДАБ), N-(1,2-димиристилоксипроп-3-ил)-N,N-диметил-N-гидроксиэтил аммония бромид (ДМПЭ), N,N-диолеил-N,N-диметиламмония хлорид ДОДАХ) и их комбинации.

[00460] Молекулы модифицированных нуклеиновых кислот и/или ммРНК по изобретению могут быть введены в полиплекс одного или более полимеров (Публикации США №№20120237565 и 20120270927; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В одном варианте реализации полиплекс содержит два или более катионных полимеров. Катионный полимер может содержать поли (этил енимин) (ПЭИ), например, линейный ПЭИ.

[00461] Кроме того, молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в наночастицу, с использованием комбинации полимеров, липидов и/или других биоразлагаемых агентов, таких как, без ограничений, кальция фосфат.Компоненты могут быть введены в структуру ядро-оболочка, с гибридной и/или послойной архитектурой, чтобы создать возможность тонкой настройки наночастицы с целью повышения эффективности доставки модифицированной молекулы нуклеиновой кислоты и ммРНК (Wang et al., Nat Mater. 2006 5:791-796; Fuller et al., Biomaterials. 2008 29:1526-1532; DeKoker et al., Adv Drug Deliv Rev. 2011 63:748-761; Endres et al., Biomaterials. 2011 32:7721-7731; Su et al., Mol Pharm. 2011 Jun 6;8(3):774-87; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В качестве неограничивающего примера, наночастица может содержать несколько полимеров, например, без ограничений, гидрофильно-гидрофобные полимеры (например, ПЭГ-ПМГК), гидрофобные полимеры (например, ПЭГ) и/или гидрофильные полимеры (Международная публикация № WO 20120225129; включена в настоящий документ в полном объеме посредством ссылки).

[00462] Продемонстрирована доставка модифицированных молекул нуклеиновой кислоты и ммРНК in vivo с помощью биоразлагаемых наночастиц кальция фосфата в сочетании с липидами и/или полимерами. В одном варианте реализации покрытая липидом наночастица кальция фосфата, которая дополнительно может содержать нацеливающий лиганд, такой как анизамид, может использоваться для доставки модифицированной молекулы нуклеиновой кислоты и ммРНК по настоящему изобретению. Например, для эффективной доставки миРНК в модели метастазов в легкие мыши применяли покрытую липидом наночастицу кальция фосфата (Li et al., J Contr Rel. 2010 142: 416-421; Li et al., J Contr Rel. 2012 158:108-114; Yang et al., Mol Ther. 2012 20:609-615; включены в настоящий документ в полном объеме посредством ссылки). Указанная система доставки объединяет направленную наночастицу и компонент, активизирующий выход из эндосомы, кальция фосфат, с целью повышения эффективности доставки миРНК.

[00463] В одном варианте реализации кальция фосфат с ПЭГ-полианион блок-сополимером может использоваться для доставки модифицированных молекул нуклеиновой кислоты и ммРНК (Kazikawa et al., J Contr Rel. 2004 97:345-356; Kazikawa et al., J Contr Rel. 2006 111:368-370; включены в настоящий документ в полном объеме посредством ссылки).

[00464] В одном варианте реализации полимер ПЭГ с переходящим зарядом (Pitella et al., Biomaterials. 2011 32:3106-3114) может использоваться для образования наночастицы с целью доставки модифицированных молекул нуклеиновой кислоты и ммРНК по настоящему изобретению. Полимер ПЭГ с переходящим зарядом может иметь преимущество перед ПЭГ-полианион блок-сополимером благодаря расщеплению на поликатион при кислых значениях рН, что активизирует выход из эндосомы.

[00465] При использовании наночастиц со структурой ядро-оболочка дополнительно акцентировался подход высокопроизводительного синтеза ядер из катионного поперечно-сшитого наногеля и различных оболочек (Siegwart et al., Proc Natl Acad Sci USA. 2011 108:12996-13001). Комплексообразование, доставку и интернализацию полимерных наночастиц можно точно контролировать, меняя химический состав компонентов ядра и оболочки наночастицы. Например, наночастицы со структурой ядро-оболочка могут эффективно доставлять миРНК в гепатоциты мыши после ковалентного присоединения холестерина к наночастице.

[00466] В одном варианте реализации полое липидное ядро, содержащее промежуточный слой ПМГК и внешний слой нейтрального липида, содержащего ПЭГ, может использоваться для доставки модифицированных молекул нуклеиновой кислоты и ммРНК по настоящему изобретению. В качестве неограничивающего примера, у мышей, несущих экспрессирующую люциферазу опухоль, было определено, что гибридная наночастица липид-полимер-липид в значительной мере подавляет экспрессию люциферазы, по сравнению с обычным липоплексом (Shi et al, Angew Chem Int Ed. 2011 50:7027-7031; включена в настоящий документ в полном объеме посредством ссылки).

[00467] В одном варианте реализации липидные наночастицы могут содержать ядро из модифицированных молекул нуклеиновой кислоты, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных нуклеиновых кислот в ядре.

[00468] Наночастицы со структурой ядро-оболочка для использования с модифицированными молекулами нуклеиновой кислоты по настоящему изобретению раскрыты и могут быть получены способами, раскрытыми в патенте США №8313777; включен в настоящий документ в полном объеме посредством ссылки.

[00469] В одном варианте реализации наночастицы со структурой ядро-оболочка могут содержать ядро из модифицированных молекул нуклеиновой кислоты, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты молекул модифицированных нуклеиновых кислот в ядре.

Пептиды и белки

[00470] Молекулы модифицированных нуклеиновых кислот и ммРНК по изобретению могут быть введены в состав с пептидами и/или белками с целью увеличения степени трансфекции клеток модифицированными молекулами нуклеиновой кислоты или ммРНК. В одном варианте реализации пептиды, такие как, без ограничений, проникающие в клетку пептиды и белки, а также пептиды, которые позволяют внутриклеточную доставку, могут применяться для доставки фармацевтических составов. Неограничивающий пример пептида, проникающего в клетку, который может быть использован с фармацевтическими составами по настоящему изобретению, включает последовательность пептида, проникающего в клетку, соединенную с поликатионами, которые облегчают доставку во внутриклеточное пространство, например, полученный из ВИЧ пептид ТАТ, пенетратины, транспортаны или полученные из hCT пептиды, проникающие в клетку (см., например, Caron et al., Mol. Ther. 3(3):310-8 (2001); Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton FL, 2002); El-Andaloussi et al., Curr. Pharm. Des. 11(28):3597-611 (2003); и Deshayes et al., Cell. Mol. Life Sci. 62(16):1839-49 (2005), все из которых включены в данное описание посредством ссылки). Кроме того, рецептура составов может быть разработана таким образом, чтобы включать проникающий в клетку агент, например, липосомы, который повышает эффективность доставки составов во внутриклеточное пространство. Могут быть образованы комплексы молекул модифицированных нуклеиновых кислот и ммРНК по изобретению с пептидам и/или белками, например, без ограничений, пептидами и/или белками, производимыми Aileron Therapeutics (Кембридж, Массачусетс) и Permeon Biologies (Кембридж, Массачусетс), с целью обеспечения возможности внутриклеточной доставки (Cronican et al., ACS Chem. Biol. 2010 5:747-752; McNaughton et al., Proc. Natl. Acad. Sci. USA 2009 106:6111-6116; Sawyer, Chem Biol Drug Des. 2009 73:3-6; Verdine and Hilinski, Methods Enzymol. 2012;503:3-33; все из которых включены в настоящий документ в полном объеме посредством ссылки).

[00471] В одном варианте реализации проникающий в клетку полипептид может содержать первый домен и второй домен. Первый домен может содержать полипептид с излишним зарядом. Второй домен может содержать белок-партнер по связыванию. В настоящем документе «белок-партнер по связыванию» включает, без ограничений, антитела и их функциональные фрагменты, платформенные белки или пептиды. Проникающий в клетку полипептид дополнительно может содержать внутриклеточного партнера по связыванию к белку-партнеру по связыванию. Проникающий в клетку полипептид может быть способен к секреции из клетки, в которую введены модифицированные молекулы нуклеиновой кислоты или ммРНК.

[00472] Составы, содержащие пептиды или белки, могут использоваться для увеличения степени трансфекции клетки модифицированной молекулой нуклеиновой кислоты или ммРНК, изменения биораспределения модифицированной молекулы нуклеиновой кислоты или ммРНК (например, нацеливанием на конкретные виды тканей или клеток) и/или активизации трансляции кодируемого белка (см., например, Международную публикацию № WO 2012110636; включена в настоящий документ в полном объеме посредством ссылки).

Клетки

[00473] Модифицированной молекулой нуклеиновой кислоты и ммРНК по изобретению могут быть трансфицированы клетки ex vivo, которые в дальнейшем пересаживают субъекту. В качестве неограничивающих примеров, фармацевтические составы могут содержать эритроциты для доставки модифицированной РНК в клетки печени и миелоидные клетки, виросомы для доставки модифицированных молекул нуклеиновой кислоты и ммРНК в вирусоподобные частицы (ВПЧ) и подвергнутые электропорации клетки, такие как, без ограничений, производимые MAXCYTE® (Гейтерсберг, Мэриленд) и ERYTECH® (Лион, Франция), для доставки модифицированной РНК. Задокументированы примеры использования эритроцитов, вирусных частиц и подвергнутых электропорации клеток для доставки полезной нагрузки, кроме ммРНК (Godfrin et al., Expert Opin Biol Ther. 2012 12:127-133; Fang et al., Expert Opin Biol Ther. 2012 12:385-389; Hu et al., Proc Natl Acad Sci USA. 2011 108:10980-10985; Lund et al., Pharm Res. 2010 27:400-420; Huckriede et al., J Liposome Res. 2007;17:39-47; Cusi, Hum Vaccin. 2006 2:1-7; de Jonge et al., Gene Ther. 2006 13:400-411; все из которых включены в настоящий документ в полном объеме посредством ссылки). Молекулы модифицированных нуклеиновых кислот и ммРНК могут быть доставлены в синтетические ВПЧ, синтезированные способами, раскрытыми в Международной публикации № WO 2011085231 и Публикации США №20110171248, каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00474] Клеточные препараты модифицированных молекул нуклеиновой кислоты и ммРНК по изобретению могут использоваться для обеспечения трансфекции клеток (например, в клеточном носителе), изменения биораспределения модифицированной молекулы нуклеиновой кислоты или ммРНК (например, путем нацеливания клетки-носителя на конкретные виды тканей или клеток) и/или увеличения трансляции кодируемого белка.

Введение в клетки

[00475] Различные способы известны из уровня техники и пригодны для введения нуклеиновой кислоты в клетку, в том числе опосредованные вирусами и невирусные технологии. Примеры типичных невирусных технологий включают, без ограничений, электропорацию, опосредованный кальция фосфатом перенос, нуклеофекцию, сонопорацию, термический шок, магнитофекцию, опосредованный липосомами перенос, микроинъекцию, опосредованный баллистической трансфекцией перенос (наночастицы), опосредованный катионным полимером перенос (ДЭАЭ-декстран, полиэтиленимин, полиэтиленгликоль (ПЭГ) и т.п.) или слияние клеток.

[00476] В технологии сонопорации или звуковой обработки клеток применяется звук (например, ультразвуковые частоты) для изменения проницаемости плазматической мембраны клетки. Методы сонопорации известны специалистам из уровня техники и раскрыты, например, относительно бактерий в Патентной публикации США 20100196983, и относительно других видов клеток, например, в Патентной публикации США 20100009424, каждая из которых включена в данное описание в полном объеме посредством ссылки.

[00477] Технологии электропорации также хорошо известны из уровня техники. В одном варианте реализации модифицированные молекулы нуклеиновой кислоты или ммРНК могут быть доставлены методом электропорации, как раскрыто в Примере 8.

Гиалуронидаза

[00478] Локальная внутримышечная или подкожная инъекция модифицированных молекул нуклеиновой кислоты или ммРНК по изобретению может содержать гиалуронидазу, которая катализирует гидролиз гиалуронана. Катализируя гидролиз гиалуронана, составляющей интерстициального барьера, гиалуронидаза снижает вязкость гиалуронана, таким образом повышая проницаемость ткани (Frost, Expert Opin. Drug Deliv. (2007) 4:427-440; включена в настоящий документ в полном объеме посредством ссылки). Полезным будет ускорение диспергирования и системного распределения кодируемых белков, вырабатываемых трансфицированными клетками. Альтернативно, гиалуронидаза может применяться для увеличения количества клеток, контактирующих с модифицированной молекулой нуклеиновой кислоты или ммРНК по изобретению, введенной внутримышечно или подкожно.

Миметики наночастиц

[00479] Модифицированные молекулы нуклеиновых кислот и ммРНК по изобретению могут быть инкапсулированы в и/или абсорбированы на миметике наночастицы. Миметик наночастицы может имитировать функцию доставки, свойственную организмам или частицам, таким как, без ограничений, патогены, вирусы, бактерии, грибы, паразиты, прионы и клетки. В качестве неограничивающего примера модифицированная мРНК по изобретению может быть инкапсулирована в невирусную частицу, которая может имитировать функцию доставки вируса (см. Международную публикацию № WO 2012006376; включена в настоящий документ в полном объеме посредством ссылки).

Нанотрубки

[00480] Молекулы модифицированных нуклеиновых кислот или ммРНК по изобретению могут быть присоединены или другим способом связаны по меньшей мере с одной нанотрубкой, такой как, без ограничений, розеткообразные нанотрубки, розеткообразные нанотрубки, содержащие сдвоенные основания с линкером, углеродные нанотрубки и/или однослойные углеродные нанотрубки, Молекулы модифицированных нуклеиновых кислот или ммРНК могут быть связаны с нанотрубками посредством таких сил как, без ограничений, стерические, ионные, ковалентные и/или другие силы.

[00481] В одном варианте реализации нанотрубка может высвобождать одну или более модифицированных молекул нуклеиновой кислоты или ммРНК в клетках. Размер и/или структура поверхности по меньшей мере одной нанотрубки может быть изменена таким образом, чтобы направлять взаимодействие нанотрубки в организме и/или присоединение или связывание с модифицированной молекулой нуклеиновой кислоты или ммРНК, раскрытой в настоящем документе. В одном варианте реализации связывающийся блок и/или функциональные группы, присоединенные к связывающемуся блоку по меньшей мере одной нанотрубки, могут быть изменены для регуляции размеров и/или свойств нанотрубки. В качестве неограничивающего примера, длина нанотрубок может варьировать, чтобы воспрепятствовать прохождению нанотрубок сквозь отверстия в стенках нормальных кровеносных сосудов, но все же быть достаточно маленькой для прохождения сквозь более крупные отверстия в кровеносных сосудах опухолевой ткани.

[00482] В одном варианте реализации по меньшей мере одна нанотрубка может быть дополнительно покрыта соединениями, повышающими эффективность доставки, в том числе, полимерами, такими как, без ограничений, полиэтиленгликоль. В другом варианте реализации по меньшей мере одна нанотрубка и/или модифицированная мРНК может быть смешана с фармацевтически приемлемыми вспомогательными веществами и/или носителями для доставки.

[00483] В одном варианте реализации модифицированная мРНК присоединена и/или другим способом связана по меньшей мере с одной розеткообразной нанотрубкой. Розеткообразные нанотрубки могут быть получены способом, известным из уровня техники и/или раскрытым в Международной публикации WO 2012094304; включена в настоящий документ в полном объеме посредством ссылки. По меньшей мене одна модифицированная мРНК может быть присоединена и/или другим образом связана по меньшей мере с одной розеткообразной нанотрубкой способом, раскрытым в Международной публикации WO 2012094304; включена в настоящий документ в полном объеме посредством ссылки, где розеткообразные нанотрубки или модули, их образующие, смешивают в водной среде по меньшей мере с одной модифицированной мРНК в условиях, которые могут вызывать присоединение или другой вид связывания по меньшей мере одной модифицированной мРНК с розеткообразными нанотрубками.

[00484] В одном варианте реализации модифицированная молекула нуклеиновой кислоты или ммРНК может быть присоединена и/или иным образом связана по меньшей мере с одной углеродной нанотрубкой. В качестве неограничивающего примера, модифицированная молекула нуклеиновой кислоты или ммРНК может быть связана с линкерным агентом, и связанный агент может быть присоединен к углеродной нанотрубке (см, например, патент США №8246995; включен в настоящий документ в полном объеме посредством ссылки). Углеродная нанотрубка может представлять собой однослойную нанотрубку (см., например, патент США №8246995; включен в настоящий документ в полном объеме посредством ссылки).

Конъюгаты

[00485] Модифицированные молекулы нуклеиновой кислоты и ммРНК по изобретению включают конъюгаты, такие как модифицированная молекула нуклеиновой кислоты или ммРНК, ковалентно связанная с носителем или нацеливающей группой, или содержащая два кодирующих участка, которые вместе дают слитый белок (например, несущий нацеливающую группу и терапевтический белок или пептид).

[00486] Конъюгаты по изобретению включают природное вещество, такое как белок (например, сывороточный альбумин человека (САЧ), липопротеин низкой плотности (ЛПНП), липопротеин высокой плотности (ЛПВП) или глобулин); углевод (например, декстран, пуллулан, хитин, хитозан, инулин, циклодекстрин или гиалуроновую кислоту); или липид. Кроме того, лиганд может быть рекомбинантной или синтетической молекулой, такой как синтетический полимер, например, синтетическая полиаминокислота, олигонуклеотид (например, аптамер). Примеры полиаминокислот включают полиаминокислоту, которая представляет собой полилизин (ПЛЛ), поли L-аспарагиновую кислоту, поли L-глютаминовую кислоту, сополимер стирол-малеиновой кислоты ангидрид, поли(L-лактид-со-гликолированный)сополимер, сополимер дивиниловый эфир-малеиновый ангидрид, N-(2-гидроксипропил)метакриламидный сополимер (ГПМА), полиэтиленгликоль (ПЭГ), поливиниловый спирт (ЛВС), полиуретан, поли(2-этилакриловую кислоту), N-изопропилакриламидные полимеры или полифосфазин. Примеры полиаминов включают: полиэтиленимин, полилизин (ПЛЛ), спермин, спермидин, полиамин, псевдопептид-полиамин, полиаминный пептидомиметик, полиаминный дендример, аргинин, амидин, протамин, катионный липид, катионный порфирин, четвертичную соль полиамина или альфа-спиральный пептид.

[00487] Характерные патенты США, в которых раскрыто получение полинуклеотидных конъюгатов, конкретно РНК, включают, без ограничений, патенты США №№4828979; 4948882; 5218105; 5525465; 5541313; 5545730; 5552538; 5578717; 5580731; 5591584; 5109124; 5118802; 5138045; 5414077; 5486603; 5512439; 5578718; 5608046; 4587044; 4605735; 4667025; 4762779; 4789737; 4824941; 4835263; 4876335; 4904582; 4958013; 5082830; 5112963; 5214136; 5082830; 5112963; 5214136; 5245022; 5254469; 5258506; 5262536; 5272250; 5292873; 5317098; 5371241 5391723; 5416203; 5451463; 5510475; 5512667; 5514785; 5565552; 5567810; 5574142; 5585481; 5587371; 5595726; 5597696; 5599923; 5599928 и 5688941; 6294664; 6320017; 6576752; 6783931; 6900297; 7037646; каждый из которых включен в настоящий документ в полном объеме посредством ссылки.

[00488] В одном варианте реализации конъюгат по настоящему изобретению может функционировать как носитель модифицированных молекул нуклеиновой кислоты и ммРНК по настоящему изобретению. Конъюгат может содержать катионный полимер, например, без ограничений, полиамин, полилизин, полиалкиленимин и полиэтиленимин, которые могут быть пересажены на поли(этиленгликоль). В качестве неограничивающего примера, конъюгат может быть сходным с полимерным конъюгатом, и способ синтеза полимерного конъюгата, раскрытый в патенте США №6586524, включен в настоящий документ в полном объеме посредством ссылки.

[00489] Кроме того, конъюгаты могут содержать нацеливающие группы, например, нацеливающий на клетку или ткань агент, такой как, лектин, гликопротеин, липид или белок, например, антитело, связывающееся с конкретным видом клеток, таким как клетка почки. Нацеливающая группа может представлять собой тиротропин, меланотропин, лектин, гликопротеин, поверхностно-активный белок А, углевод муцин, поливалентную лактозу, поливалентную галактозу, N-ацетил-галактозамин, N-ацетил-глюкозамин, поливалентную маннозу, поливалентную фукозу, гликозилированные полиаминокислоты, поливалентную галактозу, трансферрин, бисфосфонат, полиглютамат, полиаспартат, липид, холестерин, стероид, желчную кислоту, фолат, витамин В12, биотин, пептид RGD (аргинилглициласпарагиновую кислоту), миметик пептида RGD или аптамер.

[00490] Нацеливающие группы могут быть белками, например, гликопротеинами, или пептидами, например, молекулами со специфичной аффинностью в отношении со-лиганда, или антителами, например, антителом, которое специфично связывается с конкретным видом клеток, таким как раковая клетка, эндотелиальная клетка или костная клетка. Кроме того, нацеливающие группы могут включать гормоны и рецепторы гормонов. Они также могут включать непептидные молекулы, такие как липиды, лектины, углеводы, витамины, кофакторы, поливалентная лактоза, поливалентная галактоза, N-ацетил-галактозамин, N-ацетил-глюкозамин поливалентная манноза, поливалентная фукоза или аптамеры. Лиганд может быть, например, липополисахаридом или активатором р38 MAP киназы (митоген-активируемой протеинкиназы).

[00491] Нацеливающая группа может быть любым лигандом, который способен к нацеливанию на конкретный рецептор. Примеры включают, без ограничений, фолат, GalNAc, галактозу, маннозу, маннозу-бР, аптамеры, рецептор интегриновых лигандов, рецептор хемокиновых лигандов, трансферрин, биотин, рецептор серотониновых лигандов, простатический специфический мембранный антиген (ПСМА), эндотелии, GCPII, соматостатин, лиганды ЛПНП и ЛПВП. В конкретных вариантах реализации нацеливающая группа представляет собой аптамер. Аптамер может быть немодифицированным или содержать любую комбинацию модификаций, раскрытых в настоящем документе.

[00492] В одном варианте реализации фармацевтические составы по настоящему изобретению могут включать химические модификации, такие как, без ограничений, модификации, подобные циклическим нуклеиновым кислотам.

[00493] Характерные патенты США, в которых раскрыто получение циклической («замкнутой») нуклеиновой кислоты (ЦНК), такие как выданные Santaris, включают, без ограничений, следующие: патенты США №№6268490; 6670461; 6794499; 6998484; 7053207; 7084125; и 7399845, каждый из которых включен в настоящий документ в полном объеме посредством ссылки.

[00494] Характерные патенты США, в которых раскрыто получение соединений ПНК, включают, без ограничений, патенты США №№5539082; 5714331; и 5719262, каждый из которых включен в настоящий документ посредством ссылки. Дополнительные указания касательно соединений ПНК могут быть найдены, например, в Nielsen et al., Science, 1991, 254, 1497-1500.

[00495] Некоторые варианты реализации, очерченные в изобретении, включают модифицированные нуклеиновые кислоты или ммРНК с фосфоротиоатными скелетами и олигонуклеозиды с модифицированными иным образом скелетами и, в частности, -CH2-NH-CH2-, -CH2-N(CH3)-O-СН2- [известный как метилен (метилимино) или ММИ скелет], -CH2-O-N(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- и -N(CH3)-CH2-СН2- [где природный фосфодиэфирный скелет представлен как -О-Р(O)2-О-СН2-] из процитированного выше патента США №5489677, и амидные скелеты из процитированного выше патента США №5602240. В некоторых вариантах реализации полинуклеотиды, очерченные в настоящем документе, содержат структуры морфолинового скелета из процитированного выше патента США №5034506.

[00496] Модификации в положении 2' также могут способствовать доставке. Предпочтительно, модификации в положении 2' не относятся к кодирующей полипептид последовательности, т.е., расположены за пределами транслируемого участка. Модификации в положении 2' могут быть расположены в 5' UTR, 3' UTR и/или хвостовом участке. Модификации в положении 2' могут включать одно из следующего в положении 2': Н (т.е., 2'-дезокси); F; О-, S- или N-алкил; О-, S- или N-алкенил; О-, S- или N-алкинил; или О-алкил-О-алкил, где алкил, алкенил и алкинил могут быть замещенными или незамещенными C110алкилом или С210алкенилом и алкинилом. В качестве примера, пригодные модификации включают O[(СН2)nO] mCH3, O(СН2).nOCH3, O(CH2)nNH2, O(СН2)nCH3, O(CH2)nONH2 и O(CH2)nON[(CH2)nCH3)]2, где n и m равны от 1 до приблизительно 10. В других вариантах реализации модифицированные нуклеиновые кислоты или ммРНК содержат одно из следующего в положении 2':C110 низший алкил, замещенный низший алкил, алкарил, аралкил, О-алкарил или О-аралкил, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, гетероциклоалкил, гетероциклоалкарил, аминоалкиламино, полиалкиламино, замещенный силил, отщепляемую группу РНК, репортерную группу, интеркалятор, группу для улучшения фармакокинетических свойств или группу для улучшения фармакодинамических свойств и другие заместители с подобными свойствами. В некоторых вариантах реализации модификация включает 2'-метоксиэтокси (2'-O-СН2СН2ОСН3, также известный как 2'-O-(2-метоксиэтил) или 2'-МОЭ) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504), т.е., алкокси-алкокси группу. Другим примером модификации является 2'-диметиламинооксиэтокси, т.е., O(СН2)2ON(СН3)2 группа, также известная как 2'-ДМАОЭ, как раскрыто в примерах настоящего документа ниже, и 2'-диметиламиноэтоксиэтокси (также известный из уровня техники как 2'-O-диметиламиноэтоксиэтил или 2'-ДМАЭОЭ), т.е., 2'-O-СН2-O-CH2-N(CH2)2, также раскрытый в примерах настоящего документа ниже. Другие модификации включают 2'-метокси (2'-ОСН3), 2'-аминопропокси (2'-OCH2CH2CH2NH2) и 2'-фтор (2'-F). Подобные модификации также могут быть осуществлены в других положениях, конкретно в положении 3' сахара 3'-концевого нуклеотида или в 2'-5' соединенных дцРНК и положении 5' 5'-концевого нуклеотида. Кроме того, полинуклеотиды по изобретению могут содержать миметики сахаров, такие как циклобутильные фрагменты вместо пентофуранозильного сахара. Характерные патенты США, в которых раскрыто получение таких модифицированных сахарных структур включают, без ограничений, патенты США №№4981957; 5118800; 5319080; 5359044; 5393878; 5446137; 5466786; 5514785; 5519134; 5567811; 5576427; 5591722; 5597909; 5610300; 5627053; 5639873; 5646265; 5658873; 5670633; и 5700920; каждый из которых включен в настоящий документ посредством ссылки.

[00497] В других вариантах реализации модифицированная молекула нуклеиновой кислоты или ммРНК ковалентно конъюгирована с проникающим в клетку полипептидом. Дополнительно, проникающий в клетку пептид может содержать сигнальную последовательность. Конъюгаты по изобретению могут быть сконструированы таким образом, чтобы обеспечить повышенную стабильность; повышенную степень трансфекции клеток; и/или измененное биораспределение (например, нацеливание на конкретные виды тканей или клеток).

Самособирающиеся наночастицы

Самособирающиеся наночастицы нуклеиновой кислоты

[00498] Самособирающимся наночастицам свойственен хорошо определенный размер, который можно точно контролировать, поскольку цепи нуклеиновой кислоты можно легко перепрограммировать. Например, оптимальный размер частицы нацеливающего на рак носителя для нанодоставки составляет 20-100 нм, поскольку диаметр свыше 20 нм позволяет избежать почечного клиренса и повышает эффективность доставки в некоторые опухоли благодаря повышенной проницаемости и эффекту удерживания. С использованием самособирающихся наночастиц нуклеиновой кислоты осуществляется точный контроль пространственной ориентации и плотности единой однородно по размеру и форме популяции нацеливающих на рак лигандов для боле эффективной доставки. В качестве неограничивающего примера, были получены олигонуклеотидные наночастицы с использованием программируемых самособирающихся коротких фрагментов ДНК и терапевтических миРНК. Указанные наночастицы являются идентичными с молекулярной точки зрения, с контролируемым размером частиц, целевой локализацией лиганда и плотностью. Происходит самосборка фрагментов ДНК и миРНК в ходе одностадийной реакции с образованием тетраэдрических наночастиц ДНК/миРНК для направленной доставки in vivo. (Lee et al., Nature Nanotechnology 2012 7:389-393; включена в настоящий документ в полном объеме посредством ссылки).

[00499] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и ммРНК, раскрытые в настоящем документе, могут быть введены в самособирающиеся наночастицы. В качестве неограничивающего примера, нуклеиновые кислоты могут использоваться для получения наночастиц, которые могут быть использованы в системе доставки для модифицированных молекул нуклеиновой кислоты и/или ммРНК по настоящему изобретению (см., например, Международную публикацию WO 2012125987; включена в настоящий документ в полном объеме посредством ссылки).

[00500] В одном варианте реализации самособирающиеся наночастицы нуклеиновой кислоты могут содержать ядро из модифицированных молекул нуклеиновой кислоты или ммРНК, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных молекул нуклеиновой кислоты и ммРНК в ядре.

Самособирающиеся наночастицы на основе полимеров

[00501] Полимеры могут использоваться для формирования листов, которые самособираются в наночастицы. Указанные наночастицы могут использоваться для доставки модифицированных нуклеиновых кислот и ммРНК по настоящему изобретению. В одном варианте реализации указанные самособирающиеся наночастицы могут представлять собой микрогубки, образованные длинными полимерами шпилек РНК, которые формируются в кристаллические «гофрированные» листы перед самосборкой в микрогубки. Указанные микрогубки представляют собой плотно упакованные губкоподобные микрочастицы, которые могут функционировать как эффективный носитель и обладать способностью доставлять груз в клетку. Диаметр микрогубок может составлять от 1 мкм до 300 нм. Микрогубки могут образовывать комплексы с другими агентами, известными из уровня техники, с образованием микрогубок большего размера. В качестве неограничивающего примера, микрогубка может образовывать комплекс с агентом, с образованием внешнего слоя, который способствует захвату клеткой, такого как поликатионный полиэтиленимин (ПЭИ). Такой комплекс может образовывать частицу диаметром 250 нм, которая может оставаться стабильной при высоких температурах (150°С) (Grabow and Jaegar, Nature Materials 2012, 11:269-269; включена в настоящий документ в полном объеме посредством ссылки). Дополнительно, указанные микрогубки могут быть способны к проявлению чрезвычайно высокой степени защиты от разложения рибонуклеазами.

[00502] В другом варианте реализации самособирающиеся наночастицы на основе полимера, такие как, без ограничений, микрогубки, могут быть полностью программируемыми наночастицами. Геометрию, размер и стехиометрию наночастиц можно точно контролировать для создания оптимальных наночастиц для доставки груза, такого как, без ограничений, модифицированные молекулы нуклеиновой кислоты и ммРНК.

[00503] В одном варианте реализации наночастицы на основе полимера могут содержать ядро из модифицированных молекул нуклеиновой кислоты и ммРНК, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных молекул нуклеиновой кислоты и ммРНК в ядре.

Неорганические наночастицы

[00504] Молекулы модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению могут быть введены в неорганические наночастицы (патент США №8257745; включен в настоящий документ в полном объеме посредством ссылки). Неорганические наночастицы могут содержать, без ограничений, глиняные субстанции, которые набухают в воде. В качестве неограничивающего примера, неорганическая наночастица может содержать синтетические смектитовые глины, которые получают из простых силикатов (см., например, патенты США №№5585108 и 8257745, каждый из которых включен в настоящий документ в полном объеме посредством ссылки).

[00505] В одном варианте реализации неорганические наночастицы могут содержать ядро из модифицированных нуклеиновых кислот, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных нуклеиновых кислот в ядре.

Полупроводниковые и металлические наночастицы

[00506] Молекулы модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению могут быть введены в диспергируемые в воде наночастицы, содержащие полупроводниковый или металлический материал (Публикация США №20120228565; включена в настоящий документ в полном объеме посредством ссылки), или сформированные магнитные наночастицы (Публикации США №20120265001 и 20120283503; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Диспергируемые в воде наночастицы могут представлять собой гидрофобные наночастицы или гидрофильные наночастицы.

[00507] В одном варианте реализации полупроводниковые и/или металлические наночастицы могут содержать ядро из модифицированных нуклеиновых кислот, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных нуклеиновых кислот в ядре.

Гели и гидрогели

[00508] В одном варианте реализации модифицированная мРНК, раскрытая в настоящем документе, может быть инкапсулирована в любой гидрогель, известный из уровня техники, который может образовывать гель при инъекционном введении субъекту. Гидрогели представляют собой сеть полимерных цепей, которые являются гидрофильными и иногда принимают форму коллоидного геля, если дисперсионная среда является водой. Гидрогели представляют собой природные или синтетические полимеры с высокими абсорбирующими свойствами (они могут содержать свыше 99% воды). Кроме того, гидрогелям свойственна степень гибкости, в высокой степени сходная с природной тканью, благодаря значительному содержанию воды. Гидрогель, раскрытый в настоящем документе, может использоваться для инкапсуляции липидных наночастиц, которые являются биосовместимыми, биоразлагаемыми и/или пористыми.

[00509] В качестве неограничивающего примера, гидрогель может представлять собой аптамер-фунционализированный гидрогель. Аптамер-фунционализированный гидрогель может быть запрограммирован на высвобождение одной или более модифицированных молекул нуклеиновой кислоты и/или ммРНК с применением гибридизации нуклеиновой кислоты. (Battig et al., J. Am. Chem. Society. 2012 134:12410-12413; включена в настоящий документ в полном объеме посредством ссылки).

[00510] В качестве другого неограничивающего примера, гидрогель может принимать форму перевернутого опала. Опаловые гидрогели демонстрируют более высокие соотношения набухания, и их кинетика набухания также на порядок быстрее. Способы получения опаловых гидрогелей и описание опаловых гидрогелей раскрыты в Международной публикации № WO 2012148684; включена в настоящий документ в полном объеме посредством ссылки.

[00511] В качестве другого неограничивающего примера, гидрогель может представлять собой антибактериальный гидрогель. Антибактериальный гидрогель может содержать фармацевтически приемлемую соль или органический материал, например, без ограничений, соль серебра фармацевтической категории и/или медицинской категории и гель или экстракт алоэ вера. (Международная публикация № WO 2012151438; включена в настоящий документ в полном объеме посредством ссылки).

[00512] В одном варианте реализации модифицированная мРНК может быть инкапсулирована в липидную наночастицу, и далее липидная наночастица может быть инкапсулирована в гидрогель.

[00513] В одном варианте реализации модифицированная мРНК, раскрытая в настоящем документе, может быть инкапсулирована в любой гель, известный из уровня техники. В качестве неограничивающего примера, гель может представлять собой инъекционный гель фторурацила или инъекционный гель фторурацила, содержащий химическое соединение и/или лекарственное средство, известное из уровня техники. В качестве другого примера, модифицированная мРНК может быть инкапсулирована в гель фторурацила, содержащий эпинефрин (см., например, Smith et al. Cancer Chemotherapty and Pharmacology, 1999 44(4):267-274; включена в настоящий документ в полном объеме посредством ссылки).

[00514] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК, раскрытые в настоящем документе, могут быть инкапсулированы в фибриновый гель, фибриновый гидрогель или фибриновый клей. В другом варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК могут быть введены в липидную наночастицу или быстро элиминирующуюся липидную наночастицу до инкапсуляции в фибриновый гель, фибриновый гидрогель или фибриновый клей. В еще одном варианте реализации модифицированные молекулы нуклеиновой кислоты и/или ммРНК могут быть введены в липоплекс перед инкапсуляцией в фибриновый гель, гидрогель или фибриновый клей. Фибриновые гель, гидрогели и клеи содержат два компонента, раствор фибриногена и раствор тромбина, богатый кальцием (смю, например, Spicer and Mikos, Journal of Controlled Release 2010. 148:49-55; Kidd et al. Journal of Controlled Release 2012. 157:80-85; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Концентрация компонентов фибринового геля, гидрогеля и/или клея может быть изменена с целью модификации характеристик, размера ячеек сети и/или параметров разложения геля, гидрогеля и/или клея, таких как, без ограничений, модификация параметров высвобождения фибринового геля, гидрогеля и/или клея (см., например, Spicer and Mikos, Journal of Controlled Release 2010. 148:49-55; Kidd et al. Journal of Controlled Release 2012. 157:80-85; Catelas et al. Tissue Engineering 2008. 14:119-128; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). Данный признак может быть предпочтительным в случае применения для доставки модифицированной мРНК, раскрытой в настоящем документе (см., например, Kidd et al. Journal of Controlled Release 2012. 157:80-85; Catelas et al. Tissue Engineering 2008. 14:119-128; каждая из которых включена в настоящий документ в полном объеме посредством ссылки).

Катионы и анионы

[00515] Препараты модифицированных молекул нуклеиновой кислоты, раскрытые в настоящем документе, могут содержать катионы или анионы. В одном варианте реализации составы содержат катионы металлов, такие как, без ограничений, Zn2+, Са2+, Cu2+, Mg+ и их комбинации. В качестве неограничивающего примера, препараты могут содержать полимеры и модифицированную мРНК в комплексе с катионом металла (см., например, патенты США №№6265389 и 6555525, каждый из которых включен в настоящий документ в полном объеме посредством ссылки).

Формованные наночастицы и микрочастицы

[00516] Молекулы модифицированных нуклеиновых кислот и/или ммРНК, раскрытые в настоящем документе, могут быть введены в наночастицы и/или микрочастицы. Указанные наночастицы и/или микрочастицы могут быть сформованы в формы любого размера и химической природы. В качестве примера, наночастицы и/или микрочастицы получают с использованием технологии PR1NT® от LIQUIDA TECHNOLOGIES® (Моррисвилл, Северная Каролина) (см., например, Международную публикацию № WO 2007024323; включена в настоящий документ в полном объеме посредством ссылки).

[00517] В одном варианте реализации формованные наночастицы могут содержать ядро из модифицированных молекул нуклеиновой кислоты и/или ммРНК, раскрытых в настоящем документе, и полимерную оболочку. Полимерная оболочка может состоять из любого полимера, раскрытого в настоящем документе и известного из уровня техники. В дополнительном варианте реализации полимерная оболочка может использоваться для защиты модифицированных молекул нуклеиновой кислоты и/или ммРНК в ядре.

Нанокорпуса и нанолипосомы

[00518] Молекулы модифицированных нуклеиновых кислот и/или ммРНК, раскрытые в настоящем документе, могут быть введены в нанокорпуса и нанолипосомы, производимые Keystone Nano (Колледж Штата, Пенсильвания). Нанокорпуса получают из соединений, которые от природы найдены в организме, в том числе, кальция, фосфата, дополнительно они могут содержать небольшое количество силикатов. Размер нанокорпусов может варьировать от 5 до 50 нм, и их можно использовать для доставки гидрофильных и гидрофобных соединений, таких как, без ограничений, модифицированные молекулы нуклеиновой кислоты и/или ммРНК.

[00519] Нанолипосомы получают из липидов, например, без ограничений, липидов, которые от природы встречаются в организме. Размер нанолипосом может варьировать в интервале 60-80 нм, и их можно применять для доставки гидрофильных и гидрофобных соединений, таких как, без ограничений, модифицированные молекулы нуклеиновой кислоты и/или ммРНК. В одном из аспектов, модифицированные нуклеиновые кислоты, раскрытые в настоящем документе, вводят в нанолипосому, например, без ограничений, керамидные нанолипосомы.

Вспомогательные вещества

[00520] Фармацевтические препараты могут дополнительно содержать фармацевтически приемлемое вспомогательное вещество, которое в настоящем документе включает, без ограничений, любой и все растворители, дисперсионные среды, разбавители или другие жидкие носители, диспергирующие или суспендирующие агенты, поверхностно-активные агенты, агенты для поддержания изотоничности, загустители или эмульгаторы, консерванты, твердые наполнители, смазывающие вещества и т.п., в соответствии с конкретной желательной лекарственной формой. Различные вспомогательные вещества для создания фармацевтических составов и способы получения состава известны из уровня техники (см. Remington: The Science and Practice of Pharmacy, 21st Edition, A.R. Gennaro, Lippincott, Williams & Wilkins, Baltimore, MD, 2006; включена в настоящий документ в полном объеме посредством ссылки). Применение традиционной среды вспомогательного вещества может находиться в пределах настоящего документа, за исключением тех случаев, когда любая традиционная среда вспомогательного вещества может быть несовместима с субстанцией или ее производными, например, вызывать любой нежелательный биологический эффект или иным способом оказывать вредное воздействие при взаимодействии с любым другим компонентом(ами) фармацевтического состава.

[00521] В некоторых вариантах реализации чистота фармацевтически приемлемого вспомогательного вещества может составлять по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98%, по меньшей мере 99% или 100%. В некоторых вариантах реализации вспомогательное вещество может быть зарегистрировано для применения у человека и в ветеринарии. В некоторых вариантах реализации вспомогательное вещество может быть одобрено Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов. В некоторых вариантах реализации вспомогательное вещество может быть фармацевтической категории. В некоторых вариантах реализации вспомогательное вещество может соответствовать стандартам Фармакопеи США (Фарм. США), Европейской Фармакопеи (ЕФ), Британской Фармакопеи и/или Международной Фармакопеи.

[00522] Фармацевтически приемлемые вспомогательные вещества, применяемые в производстве фармацевтических составов включают, без ограничений, инертные разбавители, диспергирующие и/или гранулирующие агенты, поверхностно-активные агенты и/или эмульгаторы, дезинтегранты, связующие агенты, консерванты, буферизующие агенты, смазывающие агенты и/или масла. Такие вспомогательные вещества необязательно могут входить в фармацевтические препараты. Дополнительно, состав может содержать вспомогательные вещества, такие как масло какао и суппозиторные воски, красители агенты, покрывающие агенты, подсластители, вкусовые добавки и/или ароматизаторы.

[00523] В качестве примера, разбавители включают, без ограничений, кальция карбонат, натрия карбонат, кальция фосфат, дикальция фосфат, кальция сульфат, кальция гидрофосфат, натрия фосфат, лактозу, сахарозу, целлюлозу, микрокристаллическую целлюлозу, каолин, маннит, сорбит, инозитол, натрия хлорид, сухой крахмал, кукурузный крахмал, порошковый сахар и т.д. и/или их комбинации.

[00524] В качестве примера, гранулирующие и/или диспергирующие агенты включают, без ограничений, картофельный крахмал, кукурузный крахмал, крахмал тапиоки, натрий крахмал гликолят, глину, альгиновую кислоту, гуаровую камедь, мякоть цитрусовых, агар, бентонит, целлюлозу и продукты обработки древесины, натуральную губку, катионообменные смолы, кальция карбонат, силикаты, натрия карбонат, поперечно-сшитый поли(винил-пирролидон) (кросповидон), натрий карбоксиметилкрахмал (натрий крахмал гликолят), карбоксиметилцеллюлозу, поперечно-сшитую натрий карбоксиметилцеллюлозу (кроскармелозу), метилцеллюлозу, прежелатинизированный крахмал (крахмал 1500), микрокристаллический крахмал, нерастворимый в воде крахмал, кальций карбоксиметилцеллюлозу, магния алюминия силикат (VEEGUM®), натрия лаурилсульфат, четвертичные соединения аммония и т.д. и/или их комбинации.

[00525] В качестве примера, поверхностно-активные агенты и/или эмульгаторы включают, без ограничений, природные эмульгаторы (например, акация, агар, альгиновая кислота, натрия альгинат, трагакант, карраген, холестерин, ксантан, пектин, желатин, яичный желток, казеин, ланолин, холестерин, воск и лецитин), коллоидные глины (например, бентонит [алюминия кремния силикат] и VEEGUM® [магния алюминия силикат]), длинноцепочечные производные аминокислот, высокомолекулярные спирты (например, стеариловый спирт, цетиловый спирт, олеиловый спирт, триацетинмоностеарат, этиленгликоль дистеарат, глицерилмоностеарат и пропиленгликоль моностеарат, поливиниловый спирт), карбомеры (например, карбоксиполиметилен, полиакриловая кислота, полимер акриловой кислоты и карбоксивиниловый полимер), каррагенан, производные целлюлозы (например, натрий карбоксиметилцеллюлоза, порошкообразная целлюлоза, гидроксиметилцеллюлоза, гидроксипропилцеллюлоза, гидроксипропилметилцеллюлоза, метилцеллюлоза), жирнокислотные эфиры сорбитана (например, полиоксиэтиленсорбитан монолаурат [TWEEN® 20], полиоксиэтиленсорбитан [TWEEN® 60], полиоксиэтиленсорбитан моноолеат [TWEEN® 80], сорбитан монопальмитат [SPAN® 40], сорбитан моностеарат [SPAN® 60], сорбитан тристеарат [SPAN® 65], глицерилмоноолеат, сорбитан моноолеат [SPAN® 80]), эфиры полиоксиэтилена (например, полиоксиэтилена моностеарат [MYRJ® 45], полиоксиэтилен гидрогенизированное касторовое масло, полиэтоксилированное касторовое масло, полиоксиметиленстеарат и SOLUTOL®), жирнокислотные эфиры сахарозы, жирнокислотные эфиры полиэтиленгликоля (например, CREMOPHOR®), эфиры полиоксиэтилена, (например, лауриловый эфир полиоксиэтилена [BR1J® 30]), поли(винил-пирролидон), диэтиленгликоль монолаурат, триэтаноламин олеат, натрия олеат, калия олеат, этилолеат, олеиновую кислоту, этиллаурат, натрия лаурилсульфат, PLUORINC® F 68, POLOXAMER® 188, цетримония бромид, цетилпиридиния хлорид, бензалкония хлорид, докузат натрия и т.д. и/или их комбинации.

[00526] В качестве примера, связующие агенты включают, без ограничений, крахмал (например, кукурузный крахмал и крахмальную пасту); желатин; сахара (например, сахарозу, глюкозу, декстрозу, декстрин, патоку, лактозу, лактитол, маннит); природные и синтетические камеди (например, акацию, натрия альгинат, экстракт ирландского моха, камедь панвара (panwar), камедь гхатти, гуммиарабик, карбоксиметилцеллюлозу, метилцеллюлозу, этилцеллюлозу, гидроксиэтилцеллюлозу, гидроксипропилцеллюлозу, гидроксипропилметилцеллюлозу, микрокристаллическую целлюлозу, целлюлозы ацетат, поли(винилпирролидон), магния алюминия силикат (VEEGUM®) и арабогалактан лиственницы); альгинаты; полиэтиленоксид; полиэтиленгликоль; неорганические соли кальция; кремниевую кислоту; полиметакрилаты; воски; воду; спирт; и т.д.; и их комбинации.

[00527] В качестве примера, консерванты могут включать, без ограничений, антиоксиданты, хелатные агенты, противомикробные консерванты, противогрибковые консерванты, спиртовые консерванты, кислотные консерванты и/или другие консерванты. В качестве примера, антиоксиданты включают, без ограничений, альфа-токоферол, аскорбиновую кислоту, аскорбилпальмитат, бутилированный гидроксианизол, бутилированный гидрокситолуол, монотиоглицерин, калия метабисульфит, пропионовую кислоту, пропилгаллат, натрия аскорбат, натрия бисульфит, натрия метабисульфит и/или натрия сульфит.В качестве примера, хелатные агенты включают этилендиаминтетрауксусную кислоту (ЭДТК), лимонной кислоты моногидрат, динатрия эдетат, дикалия эдетат, этилендиаминтетрауксусную кислоту, фумаровую кислоту, яблочную кислоту, фосфорную кислоту, натрия эдетат, винную кислоту и/или тринатрия эдетат. В качестве примера, противомикробные консерванты включают, без ограничений, бензалкония хлорид, бензэтония хлорид, бензиловый спирт, бронопол, цетримид, цетилпиридиния хлорид, хлоргексидин, хлорбутанол, хлоркрезол, хлорксиленол, крезол, этиловый спирт, глицерин, гексетидин, имидмочевину, фенол, феноксиэтанол, фенилэтиловый спирт, фенилртути нитрат, пропиленгликоль и/или тимеросал. В качестве примера, противогрибковые консерванты включают, без ограничений, бутилпарабен, метилпарабен, этилпарабен, пропилпарабен, бензойную кислоту, гидроксибензойную кислоту, калия бензоат, калия сорбат, натрия бензоат, натрия пропионат и/или сорбиновую кислоту. В качестве примера, спиртовые консерванты включают, без ограничений, этанол, полиэтиленгликоль, фенол, фенольные соединения, бисфенол, хлорбутанол, гидроксибензоат и/или фенилэтиловый спирт. В качестве примера, кислотные консерванты включают, без ограничений, витамин А, витамин С, витамин Е, бета-каротин, лимонную кислоту, уксусную кислоту, дегидроуксусную кислоту, аскорбиновую кислоту, сорбиновую кислоту и/или фитиновую кислоту. Другие консерванты включают, без ограничений, токоферол, токоферола ацетат, детероксим мезилат, цетримид, бутилированный гидроксианизол (БГА), бутилированный гидрокситолуол (БГТ), этилендиамин, натрия лаурилсульфат (НЛС), натрия лаурилэфирсульфат (НЛЭС), натрия бисульфит, натрия метабисульфит, калия сульфит, калия метабисульфит, GLYDANT PLUS®, PHENONIP®, метилпарабен, GERMALL® 115, GERMABEN® II, NEOLONE™, KATHON™ и/или EUXYL®.

[00528] В качестве примера, буферизующие агенты включают, без ограничений, цитратные буферные растворы, ацетатные буферные растворы, фосфатные буферные растворы, аммония хлорид, кальция карбонат, кальция хлорид, кальция цитрат, кальция глюбионат, кальция глюцептат, кальция глюконат, d-глюконовую кислоту, кальция глицерофосфат, кальция лактат, пропановую кислоту, кальция левулинат, пентановую кислоту, двухосновный кальция фосфат, фосфорную кислоту, трехосновный кальция фосфат, кальция гидрофосфат, калия ацетат, калия хлорид, калия глюконат, калиевые смеси, двухосновный калия фосфат, одноосновный калия фосфат, смеси калия фосфата, натрия ацетат, натрия бикарбонат, натрия хлорид, натрия цитрат, натрия лактат, двухосновный натрия фосфат, одноосновный натрия фосфат, смеси натрия фосфата, трометамин, магния гидроксид, алюминия гидроксид, альгиновую кислоту, апирогенную воду, изотонический раствор соли, раствор Рингера, этиловый спирт и т.д. и/или их комбинации.

[00529] В качестве примера, смазывающие агенты включают, без ограничений, магния стеарат, кальция стеарат, стеариновую кислоту, кремния диоксид, тальк, мальт, глицерилбегенат, гидрогенизированные растительные масла, полиэтиленгликоль, натрия бензоат, натрия ацетат, натрия хлорид, лейцин, магния лаурилсульфат, натрия лаурилсульфат и т.д. и их комбинации.

[00530] В качестве примера, масла включают, без ограничений, миндальное, масло абрикосовых косточек, авокадо, бабассу, бергамота, семян черной смородины, бораго, можжевельника, ромашки, канолы, тмина, карнаубы, касторовое, коричное, масло какао, кокосовое, печени трески, кофе, кукурузное, семян хлопка, эму, эвкалипта, вечерней примулы, рыбий жир, масло льна, гераниол, масло бутылочной тыквы, виноградных косточек, фундука, иссопа, изопропилмиристат, жожоба, лакового дерева, лавандина, лаванды, лимона, лицеи кубеба, ореха макадамии, мальвы, семян манго, семян пенника лугового, норки, мускатного ореха, оливковое, апельсина, атлантического большеголова, пальмовое, пальмоядровое, персиковых косточек, арахисовое, семян мака, семян тыквы, рапсовое, коричневого риса, розмарина, саффлоровое, сандалового дерева, саскуаны (sasquana), ароматических трав, облепихи крушиновидной, кунжутное, масло ши, силиконовое, соевое, подсолнечниковое, чайного дерева, чертополоха, тсубаки (tsubaki), ветивера, грецкого ореха и зародышей пшеницы. В качестве примера, масла включают, без ограничений, бутилстеарат, каприлтриглицерид, каприновый триглицерид, циклометикон, диэтилсебацат, диметикон 360, изопропилмиристат, минеральное масло, октилдодеканол, олеиловый спирт, силиконовое масло и/или их комбинации.

[00531] Вспомогательные вещества, такие как масло какао и суппозиторные воски, красители, покрывающие агенты, подсластители, вкусовые добавки и/или ароматизаторы, могут присутствовать в композиции, на усмотрение разработчика рецептуры.

Доставка

[00532] Настоящий документ охватывает доставку модифицированных молекул нуклеиновой кислоты или ммРНК для любых терапевтических, фармацевтических, диагностических целей или целей визуализации, любым подходящим способом, с учетом возможного научного прогресса в сфере доставки лекарственных средств. Доставка может осуществляться непосредственно или в виде лекарственной формы.

Непосредственная доставка

[00533] Молекулы модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению могут быть доставлены в клетку непосредственно. В настоящем документе под «непосредственной» подразумевается доставка модифицированных молекул нуклеиновой кислоты или ммРНК без агентов, которые способствуют трансфекции. Например, модифицированные молекулы нуклеиновой кислоты или ммРНК, доставляемые в клетку, могут не содержать дополнительных модификаций. Такие модифицированные молекулы нуклеиновой кислоты или ммРНК без дополнительных модификаций могут быть доставлены в клетку с использованием способов введения, известных из уровня техники и раскрытых в настоящем документе.

Доставка в виде лекарственной формы

[00534] Молекулы модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению могут быть созданы с применением способов, раскрытых в настоящем документе. Препараты могут содержать модифицированные молекулы нуклеиновой кислоты или ммРНК, которые могут быть дополнительно модифицированными и/или немодифицированными. Кроме того, препараты могут содержать, без ограничений, проникающие в клетку агенты, фармацевтически приемлемый носитель, агент доставки, биоэродирующий или биосовместимый полимер, растворитель и депо для доставки с контролируемым высвобождением. Модифицированные молекулы нуклеиновой кислоты или ммРНК в составе препарата могут быть доставлены в клетку с использованием способов доставки, известных из уровня техники и раскрытых в настоящем документе.

[00535] Кроме того, составы могут быть разработаны для непосредственной доставки в орган или ткань любым из нескольких способов, известных из уровня техники, в том числе, без ограничений, прямое пропитывание или погружение, с помощью катетера, в гелях, порошках, мазях, кремах, гелях, лосьонах и/или каплях, путем использования субстратов, таких как ткань или биоразлагаемые материалы, покрытые или пропитанные композициями, и т.п.

Введение

[00536] Молекулы модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению могут быть введены любым способом, который дает терапевтически эффективный результат. Указанные способы включают, без ограничений, энтеральный, гастроэнтеральный, эпидуральный, пероральный, трансдермальный, эпидуральный (перидуральный), интрацеребральный (в мозг), интрацеребровентрикулярный (в желудочки мозга), накожный (нанесение на кожу), внутрикожный (непосредственно в кожу), подкожный (под кожу), назальное введение (через нос), внутривенный (в вену), внутриартериальный (в артерию), внутримышечный (в мышцу), внутрисердечный (в сердце), внутрикостную инфузию (в костный мозг), интратекальный (в спинальный канал), внутрибрюшинный (инфузия или инъекция в брюшную полость), внутрипузырную инфузию, в стекловидное тело (через глаз), интракавернозную инъекцию (в основание пениса), интравагинальное введение, внутриматочное, экстра-амниотическое введение, трансдермальное (диффузия сквозь интактную кожу для системного распределения), трансмукозально (диффузия сквозь слизистую оболочку), инсуффляцию (вдыхание через нос), сублингвальное, сублабиальное, в клизме, в глазных каплях (на конъюнктиву) или в ушных каплях. В конкретных вариантах реализации составы могут вводиться таким способом, который позволяет проникновение сквозь гематоэнцефалический барьер, сосудистый барьер или другой эпителиальный барьер. Неограничивающие способы введения модифицированных нуклеиновых кислот или ммРНК по настоящему изобретению раскрыты ниже.

Парентеральное и инъекционное введение

[00537] Жидкие лекарственные формы для парентерального введения включают, без ограничений, фармацевтически приемлемые эмульсии, микроэмульсии, растворы, суспензии, сиропы и/или эликсиры. В дополнение к активным ингредиентам, жидкие лекарственные формы могут содержать инертные разбавители, широко применяемые в данной области, такие как вода или другие растворители, солюбилизирующие агенты и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензилбензоат, пропиленгликоль, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое, кукурузное, зародышей пшеницы, оливковое, касторовое и кунжутное масла), глицерин, тетрагидрофурфуриловый спирт, полиэтиленгликоли, жирнокислотные эфиры сорбитана и их смеси. Кроме инертных разбавителей, составы для перорального введения могут содержать адъюванты, такие как увлажнители, эмульгаторы и суспендирующие агенты, подсластители, вкусовые добавки и/или ароматизаторы. В некоторых вариантах реализации для парентерального введения составы смешивают с солюбилизаторами, такими как CREMOPHOR®, спирты, масла, модифицированные масла, гликоли, полисорбаты, циклодекстрины, полимеры и/или их комбинации.

[00538] Инъекционные препараты, например, стерильные инъекционные водные или масляные суспензии могут быть созданы в соответствии с уровнем техники с использованием пригодных диспергирующих агентов, увлажняющих агентов и/или суспендирующих агентов. Стерильные инъекционные препараты могут представлять собой стерильные инъекционные растворы, суспензии и/или эмульсии в нетоксичных, приемлемых для парентерального введения разбавителях и/или растворителях, например, в виде раствора в 1,3-бутандиоле. Среди приемлемых носителей и растворителей, которые могут применяться, - вода, раствор Рингера, Фарм. США, и изотонический раствор натрия хлорида. Стерильные, нелетучие масла традиционно используются в качестве растворителя или среды суспендирования. Для этой цели может быть использовано любое нелетучее прозрачное масло, в том числе, синтетические моно- или диглицериды. В приготовлении инъекционных форм могут применяться жирные кислоты, такие как олеиновая кислота.

[00539] Инъекционные препараты могут быть стерилизованы, например, фильтрацией сквозь задерживающий бактерии фильтр и/или введением стерилизующих агентов в форму стерильных твердых составов, которые могут быть растворены или диспергированы в стерильной воде или другой стерильной инъекционной среде перед использованием.

[00540] Для пролонгации эффекта активного ингредиента, часто является желательным замедлить абсорбцию активного ингредиента после подкожной или внутримышечной инъекции. Это может быть достигнуто применением жидкой суспензии кристаллического или аморфного материала со слабой растворимостью в воде. Скорость абсорбции лекарственного средства в дальнейшем будет зависеть от его скорости растворения, которая, в свою очередь, может зависеть от размера кристаллов и кристаллической формы. Альтернативно, замедленная абсорбция парентерально введенной лекарственной формы достигается растворением или суспендированием лекарственного средства в масляном носителе. Инъекционные формы депо получают путем формирования матриц микрокапсулы лекарственного средства в биоразлагаемых полимерах, таких как полилактид-полигликолид. В зависимости от соотношения лекарственного средства к полимеру и природы конкретно используемого полимера, можно контролировать скорость высвобождения лекарственного средства. Примеры других биоразлагаемых полимеров включают поли(ортоэфиры) и поли(ангидриды). Инъекционные препараты депо получают путем захвата лекарственного средства в липосомы или микроэмульсии, совместимые с тканями организма.

Ректальное и вагинальное введение

[00541] Составы для ректального или вагинального введения обычно представляют собой суппозитории, которые могут быть получены смешиванием составов с пригодными нераздражающими вспомогательными веществами, такими как масло какао, полиэтиленгликоль или суппозиторный воск, который находится в твердом состоянии при комнатной температуре, но становится жидким при температуре тела, и, таким образом, плавится в прямой кишке или полости влагалища и высвобождает активный ингредиент.

Пероралъное введение

[00542] Жидкие лекарственные формы для перорального введения включают, без ограничений, фармацевтически приемлемые эмульсии, микроэмульсии, растворы, суспензии, сиропы и/или эликсиры. В дополнение к активным ингредиентам, жидкие лекарственные формы могут содержать инертные разбавители, широко применяемые в данной области, такие как вода или другие растворители, солюбилизирующие агенты и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензилбензоат, пропиленгликоль, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое, кукурузное, зародышей пшеницы, оливковое, касторовое и кунжутное масла), глицерин, тетрагидрофурфуриловый спирт, полиэтиленгликоли, жирнокислотные эфиры сорбитана и их смеси. Кроме инертных разбавителей, составы для перорального введения могут содержать адъюванты, такие как увлажнители, эмульгаторы и суспендирующие агенты, подсластители, вкусовые добавки и/или ароматизаторы. В некоторых вариантах реализации для парентерального введения, составы смешивают с солюбилизаторами, такими как CREMOPHOR®, спирты, масла, модифицированные масла, гликоли, полисорбаты, циклодекстрины, полимеры и/или их комбинации.

[00543] Твердые лекарственные формы для перорального введения включают капсулы, таблетки, пилюли, порошки и гранулы. В таких твердых лекарственных формах, активный ингредиент смешан по меньшей мере с одним инертным, фармацевтически приемлемым вспомогательным веществом, таким как натрия цитрат или дикальция фосфат и/или наполнители или расширители (например, различные виды крахмала, лактоза, сахароза, глюкоза, маннит и кремниевая кислота), связующие агенты {например, карбоксиметилцеллюлоза, альгинаты, желатин, поливинилпирролидинон, сахароза и акация), влагоудерживающие вещества {например, глицерин), дезинтегранты (например, агар, кальция карбонат, картофельный крахмал или крахмал тапиоки, альгиновая кислота, некоторые силикаты и натрия карбонат), удерживающие в растворе агенты (например, парафин), ускорители абсорбции (например, четвертичные соединения аммония), увлажнители (например, цетиловый спирт и глицерин моностеарат), абсорбенты (например, каолин и бентонитовая глина) и смазывающие вещества (например, тальк, кальция стеарат, магния стеарат, твердые полиэтиленгликоли, натрия лаурилсульфат) и их смеси. В случае капсул, таблеток и пилюль, лекарственная форма может содержать буферизующие агенты.

Местное или трансдермалъное применение

[00544] Как раскрыто в настоящем документе, составы, содержащие модифицированные молекулы нуклеиновой кислоты или ммРНК по изобретению, могут быть созданы для местного применения. Кожа может быть идеальной мишенью для доставки, поскольку она легко доступа. Экспрессия гена может быть ограничена не только кожей, что потенциально позволяет избежать неспецифичной токсичности, но также конкретными слоями и типами клеток в пределах кожи.

[00545] Участок кожной экспрессии доставленного состава будет зависеть от способа доставки нуклеиновой кислоты. В общем, рассматриваются три способа доставки модифицированных молекул нуклеиновой кислоты или ммРНК в кожу: (i) местное нанесение (например, для местного/регионального лечения); (ii) внутрикожная инъекция (например, для местного/регионального лечения); и (iii) системная доставка (например, для лечения дерматологических заболеваний, которые поражают кожные и внекожные участки). Молекулы модифицированных нуклеиновых кислот или ммРНК могут быть доставлены в кожу с помощью нескольких различных подходов, известных из уровня техники. Большинство подходов для местной доставки продемонстрировали свою эффективность для доставки ДНК, например, без ограничений, местное нанесение некатионного комплекса липосома-ДНК, катионного комплекса липосома-ДНК, опосредованный частицами (генное ружье), опосредованная проколами трансфекция генов и вирусные подходы к доставке. После доставки нуклеиновой кислоты, генные продукты были обнаружены во множестве различных типов кожных клеток, в том числе, без ограничений, базальных кератиноцитах, клетках сальных железы, дермальных фибробластах и дермальных макрофагах.

[00546] В одном варианте реализации изобретения предлагаются различные повязки (например, повязки на раны) или бандажи (например, адгезивные бандажи) для традиционного и/или эффективного осуществления способов по настоящему изобретению. Типично, повязки или бандажи могут содержать достаточные количества фармацевтических составов и/или модифицированных молекул нуклеиновой кислоты или ммРНК, раскрытых в настоящем документе, чтобы позволить пользователю осуществить различные схемы лечения субъекта(ов).

[00547] В одном варианте реализации изобретения предлагаются составы на основе модифицированных молекул нуклеиновой кислоты или ммРНК для доставки в виде более, чем одной инъекции.

[00548] В одном варианте реализации, перед местным и/или трансдермальным применением, по меньшей мере один участок ткани, например, кожи, может быть обработан с помощью устройства и/или раствора, которые может увеличивать проницаемость. В одном варианте реализации ткань может быть обработана абразионным устройством для повышения проницаемости кожи (см. Патентную публикацию США №20080275468; включена в настоящий документ в полном объеме посредством ссылки). В другом варианте реализации ткань может быть обработана усиливающим ультразвуковым устройством. Усиливающее ультразвуковое устройство может включать, без ограничений, устройства, раскрытые в Публикации США №20040236268 и патентах США №№6491657 и 6234990; каждый из которых включен в настоящий документ в полном объеме посредством ссылки. Способы повышения проницаемости ткани раскрыты в Публикациях США №№20040171980 и 20040236268 и патенте США №6190315; каждый из которых включен в настоящий документ в полном объеме посредством ссылки.

[00549] В одном варианте реализации устройство может использоваться для повышения проницаемости ткани, перед доставкой препаратов модифицированных мРНК, раскрытых в настоящем документе. Проницаемость кожи может быть измерена способами, известными из уровня техники и/или раскрытыми в патенте США №6190315; включен в настоящий документ в полном объеме посредством ссылки. В качестве неограничивающего примера, препарат модифицированной мРНК может быть доставлен способами доставки лекарственного средства, раскрытыми в патенте США №6190315; включен в настоящий документ в полном объеме посредством ссылки.

[00550] В другом неограничивающем примере, ткань может быть обработана эвтектической смесью местноанестезирующих средств (ЭМЛА) в форме крема перед, в ходе и/или после обработки ткани устройством, которое может повышать проницаемость. Katz et al. (Anesth Analg (2004); 98:371-76; включена в настоящий документ в полном объеме посредством ссылки) показали, что применение крема ЭМЛА в сочетании с обработкой низкой интенсивности, поверхностная кожная анестезия развивается уже через 5 минут после предварительной обработки ультразвуком низкой интенсивности.

[00551] В одном варианте реализации усилители могут быть нанесены на ткань перед, в ходе и/или после обработки ткани с целью повышения проницаемости. Усилители включают, без ограничений, усилители транспорта, усилители физических свойств и усилители образования пор. Неограничивающие примеры усилителей раскрыты в патенте США №6190315; включен в настоящий документ в полном объеме посредством ссылки.

[00552] В одном варианте реализации устройство может использоваться для повышения проницаемости ткани перед доставкой препаратов модифицированной мРНК, раскрытых в настоящем документе, которые могут дополнительно содержать вещество, вызывающее иммунный ответ. В другом неограничивающем примере, препарат, содержащий вещество, которое вызывает иммунный ответ, может быть доставлен способами, раскрытыми в Публикациях США №№20040171980 и 20040236268; каждая из которых включена в настоящий документ в полном объеме посредством ссылки.

[00553] Лекарственные формы для местного и/или трансдермального применения состава могут включать мази, пасты, кремы, лосьоны, гели, порошки, растворы, спреи, ингаляционные формы и/или пластыри. В общем, активный ингредиент предварительно смешивают в стерильных условиях с фармацевтически приемлемым вспомогательным веществом и/или любыми необходимыми консервантами и/или буферными веществами, которые могут потребоваться.

[00554] Дополнительно, данное изобретение охватывает применение трансдермальных пластырей, которые часто обладают дополнительным преимуществом контролируемой доставки соединения в организм. Такие лекарственные формы могут быть получены, например, путем растворения и/или диспергирования соединения в соответствующей среде. Альтернативно или дополнительно, скорость может контролироваться с помощью контролирующей скорость мембраны и/или путем диспергирования соединения в полимерной матрице и/или геле.

[00555] Препараты, пригодные для местного применения, включают, без ограничений, жидкие и/или полужидкие препараты, такие как линименты, лосьоны, эмульсии масло-в-воде и/или вода-в-масле, например, кремы, мази и/или пасты и/или растворы и/или суспензии. Применяемые местно препараты, например, могут содержать от приблизительно 0,1% до приблизительно 10% масс активного ингредиента, хотя концентрация активного ингредиента может быть настолько высокой, чтобы достигать предела растворимости активного ингредиента в растворителе. Кроме того, препараты для местного применения могут содержать один или более дополнительных ингредиентов, раскрытых в настоящем документе.

Введение в форме депо

[00556] Как раскрыто в настоящем документе, в некоторых вариантах реализации состав вводят в депо для пролонгированного высвобождения. В общем, происходит нацеливание на конкретный орган или ткань («ткань-мишень») для введения.

[00557] В некоторых аспектах изобретения, модифицированные молекулы нуклеиновой кислоты или ммРНК пространственно удерживаются в пределах или поблизости ткани-мишени. Раскрыт способ доставки состава в ткань-мишень субъекта-млекопитающего посредством приведения ткани-мишени (которая содержит одну или более клеток-мишеней) в контакт с составом в таких условиях что состав, в частности, компонент(ы) нуклеиновой кислоты в составе, в значительной степени удерживаются в ткани-мишени, т.е. по меньшей мере 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99,9, 99,99 или более чем 99,99% состава удерживается в ткани-мишени. Предпочтительно, степень удерживания определяют, измеряя количество нуклеиновой кислоты, присутствующей в составе, которая входит в одну или более клеток-мишеней. Например, по меньшей мере 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99,9, 99,99 или более чем 99,99% нуклеиновых кислот, введенных субъекту, присутствуют в клетках на протяжении периода времени после введения. Например, внутримышечную инъекцию субъекту-млекопитающему выполняют с использованием водного состава, содержащего рибонуклеиновую кислоту и реактив трансфекции, и удерживание состава определяют, измеряя количество рибонуклеиновой кислоты, присутствующей в мышечных клетках.

[00558] Аспекты изобретения направлены на способы доставки состава к ткани-мишени субъекта-млекопитающего, путем приведения ткани-мишени (содержащей одну или более клеток-мишеней) в контакт с составом, в таких условиях, что состав в значительной степени удерживается в ткани-мишени. Состав содержит эффективное количество молекул нуклеиновой кислоты или ммРНК, таким образом, что целевой полипептид вырабатывается по меньшей мере в одной клетке-мишени. В общем, составы содержат проникающий в клетки агент, хотя «непосредственно» вводимая нуклеиновая кислота (например, нуклеиновые кислоты без проникающего в клетки агента или другого агента) также включена, и фармацевтически приемлемый носитель.

[00559] В некоторых обстоятельствах, количество белка, вырабатываемого клетками в ткани, желательно увеличить. Предпочтительно, такое увеличение выработки белка пространственно ограничено клетками в пределах ткани-мишени. Таким образом, раскрыты способы увеличения выработки целевого белка в ткани субъекта-млекопитающего. Раскрыт состав, который содержит модифицированную молекулу нуклеиновой кислоты или ммРНК, отличающийся тем, что определена единица количества состава для выработки целевого полипептида в значительном проценте клеток, содержащихся в предварительно определенном объеме ткани-мишени.

[00560] В некоторых вариантах реализации состав включает несколько различных модифицированных молекул нуклеиновой кислоты или ммРНК, где одна или более одной модифицированной молекулы нуклеиновой кислоты или ммРНК кодирует целевой полипептид. Необязательно, состав также содержит проникающий в клетки агент, способствующий внутриклеточной доставке состава. Проводят определение дозы состава, необходимой для выработки целевого полипептида в значительном проценте клеток, содержащихся в предварительно определенном объеме ткани-мишени (в основном, без индуцирования значимой выработки целевого полипептида в ткани, смежной с предварительно определенным объемом, или дистальной по отношению к ткани-мишени). После такого определения, определенную дозу вводят непосредственно в ткань субъекта-млекопитающего.

[00561] В одном варианте реализации изобретения раскрыты модифицированные молекулы нуклеиновой кислоты или ммРНК для доставки в виде более, чем одной инъекции или в виде инъекций разделенных доз.

[00562] В одном варианте реализации объект изобретения может удерживаться вблизи ткани-мишени с использованием одноразового резервуара для лекарственного средства небольшого размера, пластырного насоса или осмотического насоса. Неограничивающие примеры пластырных насосов включают производимые и/или продаваемые BD®, (Франклин Лейке, Нью-Джерси), Insulet Corporation (Бедфорд, Массачусетс), SteadyMed Therapeutics (Сан Франциско, Калифорния), Medtronic (Миннеаполис, Миннесота) (например, MiniMed), UniLife (Йорк, Пенсильвания), Valeritas (Бриджуотер, Нью-Джерси) и SpringLeaf Therapeutics (Бостон, Массачусетс). Неограничивающий пример осмотического насоса включает производимые DURECT® (Купертино, Калифорния) (например, DUROS® и ALZET®).

Легочное введение

[00563] Фармацевтический состав может быть получен, упакован и/или продан в форме, пригодной для легочного введения через буккальную полость. Такой препарат может содержать сухие частицы, которые содержат активный ингредиент, и диаметр которых составляет от приблизительно 0,5 нм до приблизительно 7 нм или от приблизительно 1 нм до приблизительно 6 нм. Для таких составов подходит форма сухих порошков для введения с использованием устройства, содержащего резервуар для сухого порошка, на который может быть направлена струя пропеллента с целью диспергирования порошка, и/или с использованием самодвижущейся емкости для отпуска растворителя/порошка, такой как устройство, содержащее активный ингредиент в герметизированной емкости, в растворенной и/или суспендированной в низкокипящем пропелленте форме. Такие порошки содержат частицы, где диаметр по меньшей мере 98% масс частиц составляет более 0,5 нм, и диаметр по меньшей мере 95% частиц (по количеству) составляет менее 7 нм. Альтернативно, диаметр по меньшей мере 95% масс частиц составляет более 1 нм, и диаметр по меньшей мере 90% частиц (по количеству) составляет менее 6 нм. Составы в форме сухого порошка могут содержать твердый разбавитель в форме тонкого порошка, такой как сахар, и традиционно поставляются в однодозовой форме.

[00564] Низкокипящие пропелленты, в общем, включают жидкие пропелленты с температурой кипения ниже 65°F при атмосферном давлении. В общем, пропеллент может составлять от 50% до 99,9% масс состава, и активный ингредиент может составлять от 0,1% до 20% масс состава. Пропеллент может содержать дополнительные ингредиенты, такие как жидкий неионный и/или твердый анионный поверхностно-активный агент и/или твердый разбавитель (порядок размера частиц которого может быть таким же, как и частиц, содержащих активный ингредиент).

[00565] В качестве неограничивающего примера, модифицированные молекулы нуклеиновой кислоты или ммРНК, раскрытые в настоящем документе, могут быть введены в состав для легочной доставки способами, раскрытыми в патенте США №8257685; включен в настоящий документ в полном объеме посредством ссылки.

[00566] Фармацевтический состав для легочной доставки может доставлять активный ингредиент в форме капелек раствора и/или суспензии. Такие препараты могут быть получены, упакованы и/или проданы в форме водных и/или разбавленных спиртовых растворов и/или суспензий, необязательно стерильных, содержащих активный ингредиент, и традиционно могут быть введены с использованием любого устройства для небулайзинга и/или аэрозольного распыления. Такие препараты могут содержать один или более дополнительных ингредиентов в том числе, без ограничений, вкусовую добавку, такую как сахаринат натрия, летучее масло, буферизующий агент, поверхностно-активный агент и/или консервант, такой как метилгидроксибензоат. Средний диаметр капелек, доставленных таким способом введения, может находиться в интервале от приблизительно 0,1 нм до приблизительно 200 нм.

Интраназальное, назальное и буккальное введение

[00567] Препараты, раскрытые в настоящем документе, как пригодные для легочной доставки, пригодны для интраназальной доставки фармацевтического состава. Другим препаратом, пригодным для интраназального введения, является грубый порошок, содержащий активный ингредиент, средний размер частиц которого составляет от приблизительно 0,2 мкм до 500 мкм. Такой препарат вводят способом быстрого вдыхания в нос, т.е. быстрой ингаляцией на вдохе из емкости с порошком, находящейся близко к носу.

[00568] Препараты, пригодные для назального введения, например, могут содержать настолько малое количество как приблизительно 0,1% масс, и настолько большое количество, как 100% масс активного ингредиента, и могут содержать один или более дополнительных ингредиентов, раскрытых в настоящем документе. Фармацевтический состав может быть получен, упакован и/или продан в форме, пригодной для буквального введения. Такие препараты, например, могут приобретать форму таблеток и/или леденцов, полученных с применением традиционных способов и, например, могут содержать от 0,1% до 20% масс активного ингредиента, тогда как оставшаяся часть состоит из растворимого и/или разлагаемого в ротовой полости состава и, необязательно, одного или более дополнительных ингредиентов, раскрытых в настоящем документе. Альтернативно, препараты, пригодные для буккального введения, могут содержать порошок и/или аэрозольный и/или распыленный раствор и/или суспензию, содержащую активный ингредиент. Средний размер частицы и/или капельки в таких порошкообразных, аэрозольных и/или аэрозольных препаратах, при диспергировании, может находиться в интервале от приблизительно 0,1 нм до приблизительно 200 нм, и они могут дополнительно содержать один или более дополнительных ингредиентов, раскрытых в настоящем документе.

Введение в глаза

[00569] Фармацевтический состав может быть получен, упакован и/или продан в форме, пригодной для введения в глаза. Такие препараты, например, могут приобретать форму глазных капель, в том числе, например, 0,1/1,0% масс раствор и/или суспензия активного ингредиента в водном или масляном жидком вспомогательном веществе. Такие капли дополнительно могут содержать буферизующие агенты, соли и/или один или более любых других дополнительных ингредиентов, раскрытых в настоящем документе. Другие пригодные препараты для введения в глаза включают содержащие активный ингредиент в микрокристаллической форме и/или в виде липосомального препарата. Ушные капли и/или глазные капли находятся в пределах настоящего изобретения. Может быть получено устройство в виде многослойной тонкой пленки, содержащее фармацевтический состав для доставки в глаз и/или окружающую ткань.

Введение полезной нагрузки: обнаружимые агенты и терапевтические агенты

[00570] Молекулы модифицированных нуклеиновых кислот или ммРНК, раскрытых в настоящем документе, могут применяться во множестве различных сценариев, в которых желательна доставка вещества («полезная нагрузка») к биологической мишени, например доставка обнаружимых веществ для определения мишени или доставка терапевтического агента. Способы обнаружения могут включать, без ограничений, способы визуализации in vitro и in vivo, например, иммуногистохимию, биолюминесцентную интроскопию (БЛИ), магнитную резонансную томографию (MPT), позитронно-эмиссионную томографию (ПЭТ), электронную микроскопию, рентгеновскую компьютерную томографию, изображение комбинационного рассеяния, оптическую когерентную томографию, абсорбционное формирование изображений, термическое формирование изображений, формирование изображений на основе отражения флуоресценции, флуоресцентную микроскопию, флуоресцентную молекулярную томографию, ядерную магнитно-резонансную томографию, рентгенографию, ультразвуковую визуализацию, фотоакустическую визуализацию, лабораторные анализы, или любую ситуацию, где требуется введение метки/окрашивание/визуализация.

[00571] Молекулы модифицированных нуклеиновых кислот или ммРНК могут быть сконструированы таким образом, чтобы содержать линкер и полезную нагрузку в любой пригодной ориентации. Например, линкер, содержащий два конца, используют для присоединения одного из концов к полезной нагрузке, и другого конца к нуклеиновому основанию, например, в положениях С-7 или С-8 дезаза-аденозина или дезаза-гуанозина или в положениях N-3 или С-5 цитозина или урацила. Полинуклеотид по изобретению может содержать более чем одну полезную нагрузку (например, метку и ингибитор транскрипции), а также расщепляемый линкер.

[00572] В одном варианте реализации модифицированный нуклеотид представляет собой модифицированный 7-дезаза-аденозина трифосфат, где один из концов расщепляемого линкера присоединен к положению С7 7-дезаза-аденина, а другой конец линкера присоединен к ингибитору (например, к положению С5 нуклеинового основания на цитидине), и метка (например, Cy5) присоединена к центру линкера (см., например, соединение 1 А*рСр С5 Parg без кэпа на Фиг. 5 и колонки 9 и 10 патента США №7994304; включен в настоящий документ посредством ссылки). После введения модифицированного 7-дезаза-аденозинтрифосфата в кодирующий участок, полученный полинуклеотид содержит расщепляемый линкер, присоединенный к метке и ингибитору (например, ингибитор полимеразы). После расщепления линкера (например, в восстановительных условиях для восстановления линкера, содержащего расщепляемый дисульфидный фрагмент), высвобождаются метка и ингибитор. Дополнительное количество линкеров и полезной нагрузки (например, терапевтические агенты, обнаружимые метки и проникающая в клетку полезная нагрузка) раскрыты в настоящем документе.

[00573] На Схеме 12 ниже проиллюстрирован пример модифицированного нуклеотида, где нуклеиновое основание аденин присоединено к линкеру при С-7 атоме углерода 7-дезазааденина. Кроме того, на Схеме 12 проиллюстрирован модифицированный нуклеотид с линкером и полезной нагрузкой, например, обнаружимый агент, введенный на 3' конце мРНК. Расщепление дисульфида и 1,2-присоединение тиольной группы к пропаргиловому эфиру высвобождает обнаружимый агент. Остаток структуры (изображенный, например, как pApC5Parg на Схеме 12) представляет собой ингибитор. Обоснование структуры модифицированных нуклеотидов состоит в том, что присоединенный ингибитор стерически препятствует способности полимеразы ввести второе основание. Таким образом, критичной является достаточная длина линкера для осуществления данной функции, а также положение ингибитора в стереохимической ориентации, которая ингибирует или препятствует присоединению второго и последующих нуклеотидов к растущей полинуклеотидной цепи.

[00574] Например, модифицированные молекулы нуклеиновой кислоты или ммРНК, раскрытые в настоящем документе, могут применяться для перепрограммирования индуцированных полипотентных стволовых клеток (клеток иПС), что позволяет непосредственно отслеживать трансфицированные клетки, в сравнении с общим количеством клеток в кластере. В другом примере, лекарственное средство, которое может быть присоединено к модифицированным молекулам нуклеиновой кислоты или ммРНК посредством линкера и может содержать флуоресцентную метку, может применяться для отслеживания лекарственного средства in vivo, например, внутриклеточно. Другие примеры включают, без ограничений, применение модифицированных молекул нуклеиновой кислоты или ммРНК в целях обратимой доставки лекарственного средства в клетки.

[00575] Модифицированные молекулы нуклеиновых кислот или ммРНК, раскрытые в настоящем документе, могут применяться для внутриклеточного нацеливания полезной нагрузки, например, обнаружимого или терапевтического агента, на конкретную органеллу. В качестве примера, внутриклеточные мишени могут включать, без ограничений, ядерную локализацию для последующего процессинга мРНК или присоединения последовательности ядерной локализации (ПЯЛ) к мРНК, содержащей ингибитор.

[00576] Кроме того, модифицированные молекулы нуклеиновой кислоты или ммРНК, раскрытые в настоящем документе, могут применяться для доставки терапевтических агентов в клетки или ткани, например, в организм живых животных. Например, модифицированные нуклеиновые кислоты или ммРНК, раскрытые в настоящем документе, могут применяться для доставки высокополярных химиотерапевтических агентов, чтобы вызывать гибель раковых клеток. Молекулы модифицированных нуклеиновых кислот или ммРНК, присоединенные к терапевтическому агенту посредством линкера, могут облегчать проникновение партнера, позволяя терапевтическому агенту попадать в клетку и достигать внутриклеточной мишени.

[00577] В одном из примеров, линкер присоединен в положении 2' рибозного кольца и/или в положении 3' и/или 5' модифицированной молекулы нуклеиновой кислоты или ммРНК (см., например, Международную публикацию WO 2012030683; включена в настоящий документ в полном объеме посредством ссылки). Линкер может представлять собой любой линкер, раскрытый в настоящем документе, известный из уровня техники и/или раскрытый в Международной публикации № WO 2012030683; включена в настоящий документ в полном объеме посредством ссылки.

[00578] В другом примере, модифицированные молекулы нуклеиновой кислоты или ммРНК могут содержать вирусный ингибиторный пептид (ВИП), присоединенный к модифицированным молекулам нуклеиновой кислоты или ммРНК посредством расщепляемого линкера. Расщепляемый линкер может высвобождать ВИЛ и краситель в клетке. В другом примере, модифицированные молекулы нуклеиновой кислоты или ммРНК могут быть присоединены посредством линкера к АДФ-рибозилату, который ответственен за действие некоторых бактериальных токсинов, таких как токсин холеры, токсин дифтерии и токсин коклюша. Указанные белки токсинов представляют собой АДФ-рибозилтрансферазы, которые модифицируют белки-мишени в клетках человека. Например, АДФ-рибозилаты белков G токсина холеры модифицируют клетки человека, вызывая массированную секрецию жидкости из выстилки тонкого кишечника, что приводит к опасной для жизни диарее.

[00579] В некоторых вариантах реализации полезная нагрузка может быть терапевтическим агентом, таким как цитотоксин, радиоактивный ион, химиотерапевтический или другой терапевтический агент. Цитотоксин или цитотоксический агент включает любой агент, который может быть вредным для клеток. Примеры включают, без ограничений, таксол, цитохалазин В, грамицидин D, этидия бромид, эметин, митомицин, этопозид, тенипозид, винкристин, винбластин, колхицин, доксорубицин, даунорубицин, дигидроксиантрацендион, митоксантрон, митрамицин, актиномицин D, 1-дегидротестостерон, глюкокортикоиды, прокаин, тетракаин, лидокаин, пропранолол, пуромицин, майтанзиноиды, например, майтанзинол (см. патент США №5208020; включен в настоящий документ в полном объеме), рэчелмицин (СС-1065, см. патенты США №№5475092, 5585499 и 5846545, все из которых включены в данное описание посредством ссылки) и их аналоги или гомологи. Радиоактивные ионы включают, без ограничений, йод (например, йод 125 или йод 131), стронций 89, фосфор, палладий, цезий, иридий, фосфат, кобальт, иттрий 90, самарий 153 и празеодимий. Другие терапевтические агенты включают, без ограничений, антиметаболиты (например, метотрексат, 6-меркаптопурин, 6-тиогуанин, цитарабин, 5-фторурацил дакарбазин), алкилирующие агенты (например, мехлорэтамин, тиотепа, хлорамбуцил, рэчелмицин (СС-1065), мелфалан, кармустин (BSNU), ломустин (CCNU), циклофосфамид, бусульфан, дибромманнит, стрептозотоцин, митомицин С и цис-дихлордиаминоплатину (II) (ДДП или цисплатин), антрациклины (например, даунорубицин (ранее носил название дауномицина) и доксорубицин), антибиотики (например, дактиномицин (ранее носил название актиномицина), блеомицин, митрамицин и антрамицин (АМЦ)) и антимитотические агенты (например, винкристин, винбластин, таксол и майтанзиноиды).

[00580] В некоторых вариантах реализации полезная нагрузка может представлять собой обнаружимый агент, такой как различные органические молекулы небольшого размера, неорганические соединения, наночастицы, ферменты или субстраты ферментов, флуоресцентные материалы, люминесцентные материалы (например, люминол), биолюминесцентные материалы (например, люцифераза, люциферин и экворин), хемилюминесцентные материалы, радиоактивные материалы (например, 18F, 67Ga, 81mKr, 82Rb, 111In, 123I, 133Xe, 201Tl, 125I, 35S, 14C, 3H или 99mTc (например, в виде пертехнецата (технецат (VII), )) и контрастные агенты (например, золото (например, наночастицы золота), гадолиний (например, хелатированный Gd), железа оксиды (например, суперпарамагнитный железа оксид (СПЖО), наночастицы монокристаллического железа оксида (МЖОнч) и ультрамалые частицы суперпарамагнитного железа оксида (ПЖОум)), хелаты марганца (например, Mn-дипиридоксил дифосфат), бария сульфат, йодированная контрастная среда (йогексол), микропузырьки или перфторуглероды). Такие оптически обнаружимые метки включают, например, без ограничений, 4-ацетамидо-4'-изотиоцианатостилбен-2,2'-дисульфоновая кислота; акридин и производные (например, акридин и акридина изотиоцианат); 5-(2'-аминоэтил)аминонафталин-1-сульфоновая кислота (ЭДАНК); 4-амино-N-[3-винилсульфонил)фенил]нафталимид-3,5-дисульфонат; N-(4-анилино-1-нафтил)малеинимид; антраниламид; BODIPY; бриллиантовый желтый; кумарин и производные (например, кумарин, 7-амино-4-метилкумарин (АМС, Coumarin 120) и 7-амино-4-трифторметилкумарин (Coumarin 151)): цианиновые красители; цианозин; 4',6-диаминидино-2-фенилиндол (ДАФИ); 5',5ʺ-дибромпирогаллол-сульфонафталин (бромпирогаллоловый красный); 7-диэтиламино-3-(4'-изотиоцианатофенил)-4-метилкумарин; диэтилентриамин пентаацетат; 4,4'-диизотиоцианатодигидро-стильбен-2,2'-дисульфоновую кислоту; 4,4'-диизотиоцианатостильбен-2,2'-дисульфоновую кислоту; 5-[диметиламино]-нафтален-1-сульфонилхлорид (ДНС, данзилхлорид); 4-диметиламинофенилазофенил-4'-изотиоцианат (ДАФИТЦ); эозин и производные (например, эозин и эозина изотиоцианат); эритрозин и производные (например, эритрозин В и эритрозина изотиоцианат); этидий; флуоресцеин и производные (например, 5-карбоксифлуоресцеин (FAM), 5-(4,6-дихлортриазин-2-ил)аминофлуоресцеин (ДТАФ), 2',7'-диметокси-4'5'-дихлор-6-карбоксифлуоресцеин, флуоресцеин, флуоресцеина изотиоцианат, Х-родамин-5-(и -6)-изотиоцианат (QFITC или XRITC) и флуоресцамин); 2-[2-[3-[[1,3-дигидро-1,1-диметил-3-(3-сульфопропил)-2Н-бенз[е]индол-2-илиден]этилиден]-2-[4-(этоксикарбонил)-1-пиперазинил]-1-циклопентен-1-ил]этенил]-1,1-диметил-3-(3-сульфогпропил)-1Н-бенз[е]индолия гидроксид, внутренняя соль, соединение с n,n-диэтилэтанамином (1:1) (IR144); 5-хлор-2-[2-[3-[(5-хлор-3-этил-2(3Н)-бензотиазол-илиден)этилиден]-2-(дифениламино)-1-циклопентен-1-ил]этенил]-3-этилбензотиазолия перхлорат (IR140); малахитовый зеленый изотиоцианат; 4-метилумбеллиферон ортокрезолфталеин; нитротирозин; парарозанилин; феноловый красный; В-фикоэритрин; о-фталдиальдегид; пирен и производные (например, пирен, пирена бутират и сукцинимидил 1-пирен); квантовые примеси бутирата; реакционноспособный красный 4 (CibacronTM бриллиантовый красный 3B-A); родамин и производные (например, 6-карбокси-Х-родамин (ROX), 6-карбоксиродамин (R6G), лиссамин родамин В сульфонилхлорид родарнин (Rhod), родамин В, родамин 123, родамин X изотиоцианат, сульфородамин В, сульфородамин 101, сульфонилхлоридные производные сульфородамина 101 (техасский красный), N,N,N',N'тетраметил-6-карбоксиродамин (TAMPA), тетраметилродамин и тетраметилродамина изотиоцианат (ТРИТЦ)); рибофлавин; розоловая кислота; хелатные производные тербия; цианин-3 (Cy3); цианин-5 (Cy5); цианин-5,5 (Cy5,5), цианин-7 (Cy7); IRD 700; IRD 800; Alexa 647; La Jolta голубой; фталоцианин; и нафталоцианин.

[00581] В некоторых вариантах реализации обнаружимый агент может представлять собой необнаружимый прекурсор, который становится обнаружимым после активации (например, флуорогенные тетразин-флуорофоровые конструкты (например, тетразин-BODIPY FL, тетразин-Орегонский Зеленый 488 или тетразин-BODIPY TMR-X) или активируемые ферментом флуорогенные агенты (например, PROSENSE® (VisEn Medical))). Анализы in vitro, в которых могут применяться меченные ферментом составы включают, без ограничений, твердофазные иммуноферментные анализы (ТИФА), иммунопреципитационные анализы, иммунофлуоресценцию, иммуноферментные анализы (ИФА), радиоиммуноанализы (РИА) и вестерн-блоттинг.

Комбинации

[00582] Молекулы нуклеиновой кислоты или ммРНК могут применяться в сочетании с одним или более других терапевтических, профилактических, диагностических или контрастных агентов. Выражение «в комбинации с» не обязательно обозначает, что агенты должны вводиться в одно и то же время и/или в одном препарате для совместной доставки, хотя такие способы доставки находятся в пределах настоящего документа. Составы могут быть введены одновременно с, до или после введения одного или более других желательных терапевтических средств или проведения медицинских процедур. В общем, каждый агент будет вводиться в дозе и/или по расписанию, определенному для данного агента. В некоторых вариантах реализации настоящий документ охватывает доставку фармацевтических, профилактических, диагностических или контрастных составов в сочетании с агентами, которые могут улучшать их биодоступность, снижать и/или модифицировать их метаболизм, подавлять их экскрецию и/или модифицировать их распределение в пределах организма. В качестве неограничивающего примера, молекулы нуклеиновой кислоты или ммРНК могут применяться в сочетании с фармацевтическим агентом для лечения рака или для контроля гиперпролиферирующих клеток. В патенте США №7964571, который включен в настоящий документ в полном объеме посредством ссылки, раскрыта комбинированная терапия для лечения солидной первичной или метастазированной опухоли с применением фармацевтического состава, содержащего ДНК плазмиду, кодирующую интерлейкин-12, с липополимером, а также введение по меньшей мере одного противоракового агента или химиотерапевтического средства. Кроме того, молекулы нуклеиновой кислоты и ммРНК по настоящему изобретению, которые кодируют антипролиферативные молекулы, могут быть введены в фармацевтический состав с липополимером (см., например, Публикацию США №20110218231; включена в настоящий документ в полном объеме посредством ссылки; заявлен фармацевтический состав, содержащий ДНК плазмиду, которая кодирует антипролиферативную молекулу, и липополимер), который может вводиться по меньшей мере с одним химиотерапевтическим или противораковым агентом.

Проникающая в клетку полезная нагрузка

[00583] В некоторых вариантах реализации модифицированные нуклеотиды и модифицированные молекулы нуклеиновой кислоты, которые введены в нуклеиновую кислоту, например, РНК или мРНК, также могут содержать полезную нагрузку, которая может представлять собой проникающий в клетку фрагмент или агент, улучшающий внутриклеточную доставку составов. Например, составы могут содержать, без ограничений, последовательность проникающего в клетку пептида, который облегчает доставку во внутриклеточное пространство, например, полученный из ВИЧ пептид ТАТ, пенетратины, транспортаны или полученные из hCT проникающие в клетку пептиды, см., например, Caron et al., (2001) Mol Ther. 3(3):310-8; Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton FL 2002); El-Andaloussi et al., (2005) Curr Pharm Des. 11(28):3597-611; и Deshayes et al., (2005) Cell Mol Life Sci. 62(16):1839-49; все из которых включены в данное описание посредством ссылки. Кроме того, могут быть разработаны составы, содержащие проникающий в клетку агент, например, липосомы, которые улучшают доставку составов во внутриклеточное пространство.

Биологические мишени

[00584] Модифицированные нуклеотиды и модифицированные молекулы нуклеиновой кислоты, раскрытые в настоящем документе, которые введены в нуклеиновую кислоту, например, РНК или мРНК, могут применяться для доставки полезной нагрузки к любой биологической мишени, для которой специфичный лиганд существует или может быть сгенерирован. Лиганд может связываться с биологической мишенью ковалентно или нековалентно.

[00585] Примеры биологических мишеней включают, без ограничений, биополимеры, например, антитела, нуклеиновые кислоты, такие как РНК и ДНК, белки, ферменты; примеры белков включают, без ограничений, ферменты, рецепторы и ионные каналы. В некоторых вариантах реализации мишень может представлять собой маркер, специфичный для вида тканей или клеток, например, белок, который экспрессируется конкретно на выбранном типе тканей или клеток. В некоторых вариантах реализации мишень может быть рецептором, таким как, без ограничений, рецепторы плазматической мембраны и ядерные рецепторы; более конкретные примеры включают, без ограничений, сочетанные с белком G рецепторы, белки клеточной поры, белки-переносчики, экспрессируемые на поверхности антитела, белки антигена лейкоцитов человека, белки основного комплекса гистосовместимости и рецепторы фактора роста.

Дозы

[00586] В настоящем изобретении раскрываются способы, которые включают введение модифицированных мРНК и кодируемых ими белков или комплексов в соответствии с изобретением субъекту, который нуждается в этом. Нуклеиновые кислоты, белки или комплексы или фармацевтические, контрастные, диагностические или профилактические составы на их основе, могут быть введены субъекту с использованием любого количества и любого способа введения, эффективного с точки зрения профилактики, лечения, диагностики или визуализации заболевания, расстройства и/или состояния (например, заболевания, расстройства и/или состояния, связанного с ухудшением оперативной памяти). Точное необходимое количество будет варьировать от одного субъекта к другому, в зависимости от биологического вида, возраста и общего состояния здоровья субъекта, тяжести заболевания, конкретного состава, схемы введения, механизма действия и т.п. Составы в соответствии с изобретением типично вводят в дозированную лекарственную форму для легкости введения и однородности дозирования. Однако, следует понимать, что общая суточная доза составов по настоящему изобретению может быть определена лечащим врачом по своему усмотрению. Конкретный терапевтически эффективный, профилактически эффективный или подходящий для визуализации уровень дозы для любого конкретного больного будет зависеть от различных факторов, в том числе, подлежащего лечению расстройства и его тяжести; активности конкретно применяемого соединения; конкретно применяемого состава; возраста, массы тела, общего состояния здоровья, пола и рациона больного; времени введения, способа введения и скорости экскреции конкретно применяемого соединения; продолжительности лечения; лекарственных средств, применяемых в сочетании или параллельно с конкретно применяемым соединением; и т.п. факторов, хорошо известных в области медицины.

[00587] В некоторых вариантах реализации составы в соответствии с данным изобретением могут вводиться в дозах, достаточных для доставки от приблизительно 0,0001 мг/кг до приблизительно 100 мг/кг, от приблизительно 0,001 мг/кг до приблизительно 0,05 мг/кг, от приблизительно 0,005 мг/кг до приблизительно 0,05 мг/кг, от приблизительно 0,001 мг/кг до приблизительно 0,005 мг/кг, от приблизительно 0,05 мг/кг до приблизительно 0,5 мг/кг, от приблизительно 0,01 мг/кг до приблизительно 50 мг/кг, от приблизительно 0,1 мг/кг до приблизительно 40 мг/кг, от приблизительно 0,5 мг/кг до приблизительно 30 мг/кг, от приблизительно 0,01 мг/кг до приблизительно 10 мг/кг, от приблизительно 0,1 мг/кг до приблизительно 10 мг/кг или от приблизительно 1 мг/кг до приблизительно 25 мг/кг массы тела субъекта в сутки, один или более раз в сутки, с получением желательного терапевтического, диагностического, профилактического эффекта или эффекта визуализации. Желательные дозы могут вводиться 3 раза в сутки, 2 раза в сутки, 1 раз в сутки, через день, каждый 3-й день, 1 раз в неделю, через неделю, каждые 3 недели или каждые 4 недели. В некоторых вариантах реализации желательные дозы могут быть доставлены в виде множественных доз (например, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или более доз).

[00588] В соответствии с данным изобретением, было обнаружено, что введение ммРНК в схеме с разделенными дозами приводит к более высоким уровням белков у субъекта-млекопитающего. В настоящем документе «разделенная доза» обозначает деление одинарной или общей суточной дозы на две или более доз, например, введение двух или более одинарных доз. В настоящем документе «одинарная доза» представляет собой дозу любого терапевтического средства, вводимую однократно/за один раз/одним способом/в одном месте введения, т.е., посредством одинарного акта введения. В настоящем документе «общая суточная доза» представляет собой количество, введенное или назначенное для введения в течение 24 час. Оно может быть введено в виде одинарной дозы. В одном варианте реализации ммРНК по настоящему изобретению вводят субъекту в виде разделенных доз. ммРНК может быть введена только в буферном растворе или в составе, раскрытом в настоящем документе.

Лекарственные формы

[00589] Фармацевтический состав, раскрытый в настоящем документе, может быть введен в лекарственную форму, раскрытую в настоящем документе, например, для местного, интраназального, интратрахеального или инъекционного (например, внутривенного, внутриглазного, в стекловидное тело, внутримышечного, внутрисердечного, внутрибрюшинного, подкожного) введения.

Жидкие лекарственные формы

[00590] Жидкие лекарственные формы для парентерального введения включают, без ограничений, фармацевтически приемлемые эмульсии, микроэмульсии, растворы, суспензии, сиропы и/или эликсиры. Кроме активных ингредиентов, жидкие лекарственные формы могут содержать инертные разбавители, широко применяемые в данной области, в том числе, без ограничений, воду или другие растворители, солюбилизаторы и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензилбензоат, пропиленгликоль, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое, кукурузное, зародышей пшеницы, оливковое, касторовое и кунжутное масла), глицерин, тетрагидрофурфуриловый спирт, полиэтиленгликоли и жирнокислотные эфиры сорбитана, а также их смеси. В некоторых вариантах реализации для парентерального введения составы могут быть смешаны с солюбилизаторами, такими как CREMOPHOR®, спирты, масла, модифицированные масла, гликоли, полисорбаты, циклодекстрины, полимеры и/или их комбинации.

Инъекционные формы

[00591] Инъекционные препараты, например, стерильные водные или масляные суспензии для инъекций, могут быть созданы в соответствии с уровнем техники, и могут содержать пригодные диспергирующие агенты, увлажнители и/или суспендирующие агенты. Стерильные инъекционные препараты могут представлять собой стерильные инъекционные растворы, суспензии и/или эмульсии в нетоксических, приемлемых для парентерального введения разбавителях и/или растворителях, например, раствор в 1,3-бутандиоле. Приемлемые носители и растворители, которые могут использоваться, включают, без ограничений, воду, раствор Рингера, Фарм. США, и изотонический раствор натрия хлорида. Стерильные, нелетучие масла традиционно используются в качестве растворителя или среды суспендирования. Для этой цели может быть использовано любое прозрачное нелетучее масло, в том числе синтетические моно- или диглицериды. Жирные кислоты, такие как олеиновая кислота, могут применяться в приготовлении инъекционных форм.

[00592] Инъекционные препараты могут быть стерилизованы, например, фильтрацией сквозь задерживающий бактерии фильтр и/или введением стерилизующих агентов в форме стерильных твердых составов, которые могут быть растворены или диспергированы в стерильной воде или другой стерильной инъекционной среде перед использованием.

[00593] Для пролонгации эффекта активного ингредиента, может быть желательным замедлить абсорбцию активного ингредиента после подкожной или внутримышечной инъекции. Это может быть достигнуто применением жидкой суспензии кристаллического или аморфного материала со слабой растворимостью в воде. В дальнейшем, скорость абсорбции модифицированной мРНК будет зависеть от ее скорости растворения, которая, в свою очередь, может зависеть от размера и формы кристаллов. Альтернативно, замедление абсорбции парентерально введенной модифицированной мРНК может быть достигнуто посредством растворения или суспендирования модифицированной мРНК в масляном носителе. Инъекционные формы депо получают формированием микроинкапсулирующих матриц модифицированной мРНК в биоразлагаемых полимерах, таких как полилактид-полигликолид. В зависимости от соотношения модифицированной мРНК к полимеру и природы конкретно используемого полимера, можно контролировать скорость высвобождения модифицированной мРНК. Примеры других биоразлагаемых полимеров включают, без ограничений, поли(ортоэфиры) и поли(ангидриды). Инъекционные препараты депо могут быть получены посредством захвата модифицированной мРНК в липосомы или микроэмульсии, совместимые с тканями организма.

Легочные

[00594] Препараты, раскрытые в настоящем документе, как пригодные для легочной доставки, также могут применяться для интраназальной доставки фармацевтического состава. Другим препаратом, пригодным для интраназального введения, является грубый порошок, содержащий активный ингредиент, средний размер частиц которого составляет от приблизительно 0,2 мкм до 500 мкм. Такой препарат может вводиться способом быстрого вдыхания в нос, т.е. быстрой ингаляцией на вдохе из емкости с порошком, находящейся близко к носу.

[00595] Препараты, пригодные для назального введения, например, могут содержать настолько малое количество как приблизительно 0,1% масс, и настолько большое количество, как 100% масс активного ингредиента, и могут содержать один или более дополнительных ингредиентов, раскрытых в настоящем документе. Фармацевтический состав может быть получен, упакован и/или продан в форме, пригодной для буккального введения. Такие препараты, например, могут приобретать форму таблеток и/или леденцов, полученных с применением традиционных способов и, например, могут содержать от 0,1% до 20% масс активного ингредиента, тогда как оставшаяся часть состоит из растворимого и/или разлагаемого в ротовой полости состава и, необязательно, одного или более дополнительных ингредиентов, раскрытых в настоящем документе. Альтернативно, препараты, пригодные для буккального введения, могут содержать порошок и/или аэрозольный и/или распыленный раствор и/или суспензию, содержащую активный ингредиент. Средний размер частицы и/или капельки в таких порошкообразных, аэрозольных и/или аэрозольных препаратах, при диспергировании, может находиться в интервале от приблизительно 0,1 нм до приблизительно 200 нм, и они могут дополнительно содержать один или более дополнительных ингредиентов, раскрытых в настоящем документе.

[00596] Общие соображения относительно состава и/или производства фармацевтических агентов можно найти, например, в Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (включено в настоящий документ в полном объеме посредством ссылки).

Покрытия или оболочки

[00597] Твердые лекарственные формы в виде таблеток, драже, капсул, пилюль и гранул могут быть получены с использованием покрытий и оболочек, таких как кишечнорастворимые покрытие и другие виды покрытий, хорошо известных из уровня техники в области фармацевтической рецептуры. Они могут необязательно содержать замутнители, и могут быть такого состава, чтобы высвобождать активный ингредиент(ы) только или предпочтительно, в определенной части желудочно-кишечного тракта, необязательно, в замедленной форме. Примеры внедренных составов, которые могут применяться, включают полимерные субстанции и воски. Твердые составы подобного типа могут применяться в качества наполнителей в мягких и твердых желатиновых капсулах, с использованием таких вспомогательных веществ как лактоза или молочный сахар, а также высокомолекулярных полиэтиленгликолей и т.п.

Свойства фармацевтических составов

[00598] Фармацевтические составы, раскрытые в настоящем документе, могут быть охарактеризованы одним или более из следующих свойств:

Биодоступность

[00599] Молекулы модифицированных нуклеиновых кислот и ммРНК, при введении в состав с агентом доставки, как раскрыто в настоящем документе, могут демонстрировать повышение биодоступности, по сравнению с составом без агента доставки, как раскрыто в настоящем документе. В настоящем документе термин «биодоступность» обозначает системную доступность данного количества модифицированной молекулы нуклеиновой кислоты, введенной млекопитающему. Биодоступность можно оценить путем измерения площади под кривой (AUC) или максимальной концентрации в сыворотке или плазме (Cmax) неизмененной формы соединения после его введения млекопитающему. AUC представляет собой определение площади под кривой на графике, где концентрация соединения в сыворотке или плазме нанесена по оси ординат (ось Y) против времени по оси абсцисс (ось X). В общем, AUC для конкретного соединения может быть вычислена с применением способов, известных среднему специалисту в данной области, и как раскрыто в G.S. Banker, Modern Pharmaceutics, Drugs and the Pharmaceutical Sciences, v. 72, Marcel Dekker, New York, Inc., 1996; включено в настоящий документ в полном объеме посредством ссылки.

[00600] Значение Cmax представляет собой максимальную концентрацию соединения, достигаемую в сыворотке или плазме млекопитающего после введения соединения млекопитающему. Значение Cmax для конкретного соединения может быть измерено с применением способов, известных среднему специалисту в данной области. Выражения «увеличение биодоступности» или «улучшение фармакокинетики» в настоящем документе обозначают, что системная доступность первой модифицированной молекулы нуклеиновой кислоты, измеренная как AUC, Cmax или Cmin У млекопитающего, будет выше в случае совместного введения с агентом доставки, как раскрыто в настоящем документе, чем в отсутствие такого совместного введения. В некоторых вариантах реализации биодоступность модифицированной молекулы нуклеиновой кислоты может увеличиваться по меньшей мере приблизительно на 2%, по меньшей мере приблизительно на 5%, по меньшей мере приблизительно на 10%, по меньшей мере приблизительно на 15%, по меньшей мере приблизительно на 20%, по меньшей мере приблизительно на 25%, по меньшей мере приблизительно на 30%, по меньшей мере приблизительно на 35%, по меньшей мере приблизительно на 40%, по меньшей мере приблизительно на 45%, по меньшей мере приблизительно на 50%, по меньшей мере приблизительно на 55%, по меньшей мере приблизительно на 60%, по меньшей мере приблизительно на 65%, по меньшей мере приблизительно на 70%, по меньшей мере приблизительно на 75%, по меньшей мере приблизительно на 80%, по меньшей мере приблизительно на 85%, по меньшей мере приблизительно на 90%, по меньшей мере приблизительно на 95% или приблизительно на 100%.

Терапевтическое окно

[00601] Молекулы модифицированных нуклеиновых кислот и ммРНК, при введении в состав с агентом доставки, как раскрыто в настоящем документе, могут демонстрировать увеличение терапевтического окна введенного состава на основе модифицированной молекулы нуклеиновой кислоты, по сравнению с терапевтическим окном введенного состава на основе модифицированной молекулы нуклеиновой кислоты без агента доставки, как раскрыто в настоящем документе. В настоящем документе «терапевтическое окно» обозначает интервал концентрации в плазме или интервал уровней терапевтически активной субстанции в месте действия, с высокой вероятностью оказания терапевтического эффекта. В некоторых вариантах реализации терапевтическое окно модифицированной молекулы нуклеиновой кислоты, при совместном введении с агентом доставки, как раскрыто в настоящем документе, может увеличиваться по меньшей мере приблизительно на 2%, по меньшей мере приблизительно на 5%, по меньшей мере приблизительно на 10%, по меньшей мере приблизительно на 15%, по меньшей мере приблизительно на 20%, по меньшей мере приблизительно на 25%, по меньшей мере приблизительно на 30%, по меньшей мере приблизительно на 35%, по меньшей мере приблизительно на 40%, по меньшей мере приблизительно на 45%, по меньшей мере приблизительно на 50%, по меньшей мере приблизительно на 55%, по меньшей мере приблизительно на 60%, по меньшей мере приблизительно на 65%, по меньшей мере приблизительно на 70%, по меньшей мере приблизительно на 75%, по меньшей мере приблизительно на 80%, по меньшей мере приблизительно на 85%, по меньшей мере приблизительно на 90%, по меньшей мере приблизительно на 95% или приблизительно на 100%.

Объем распределения

[00602] Молекулы модифицированных нуклеиновых кислот, при введении в состав с агентом доставки, как раскрыто в настоящем документе, могут демонстрировать улучшенный объем распределения (Vdist), например, уменьшенный или направленный, по сравнению с модифицированный молекулой нуклеиновой кислоты без агента доставки, как раскрыто в настоящем документе. Объем распределения (Vdist) соотносит количество лекарственного средства в организме с концентрацией лекарственного средства в крови или плазме. В настоящем документе термин «объем распределения» обозначает объем жидкости, который потребовался бы, чтобы вместить общее количество лекарственного средства в организме с той же концентрацией, что и в крови или плазме: Vdist равен количеству лекарственного средства в организме/концентрацию лекарственного средства в крови или плазме. Например, для дозы 10 мг и концентрации в плазме 10 мг/л, объем распределения будет составлять 1 л. Объем распределения отображает степень, до которой лекарственное средство присутствует во внесосудистой ткани. Большой объем распределения отображает тенденцию соединения связываться с компонентами ткани, по сравнению со связыванием с белками плазмы. В клинике, Vdist может использоваться для определения нагрузочной дозы с целью достижения фазы плато концентрации. В некоторых вариантах реализации объем распределения модифицированной молекулы нуклеиновой кислоты, при совместном введении с агентом доставки, как раскрыто в настоящем документе, может уменьшаться по меньшей мере приблизительно на 2%, по меньшей мере приблизительно на 5%, по меньшей мере приблизительно на 10%, по меньшей мере приблизительно на 15%, по меньшей мере приблизительно на 20%, по меньшей мере приблизительно на 25%, по меньшей мере приблизительно на 30%, по меньшей мере приблизительно на 35%, по меньшей мере приблизительно на 40%, по меньшей мере приблизительно на 45%, по меньшей мере приблизительно на 50%, по меньшей мере приблизительно на 55%, по меньшей мере приблизительно на 60%, по меньшей мере приблизительно на 65%, по меньшей мере приблизительно на 70%.

Биологический эффект

[00603] В одном варианте реализации биологический эффект модифицированной мРНК, введенной животным, можно квалифицировать посредством анализа экспрессии белка в организме животных. Экспрессия белка может быть определена в результате анализа биологического образца, полученного от млекопитающего, которому была введена модифицированная мРНК по настоящему изобретению. В одном варианте реализации может быть предпочтительной экспрессия белка, кодируемого модифицированной мРНК, введенной млекопитающему, по меньшей мере 50 пг/мл. Например, экспрессия белка 50-200 пг/мл для белка, кодируемого модифицированной мРНК, введенной млекопитающему, может рассматриваться как терапевтически эффективное количество белка в организме млекопитающего.

Обнаружение модифицированных нуклеиновых кислот масс-спектрометрией

[00604] Масс-спектрометрия (МС) представляет собой метод анализа, который может предоставить информацию относительно структуры и молекулярной массы/концентрации молекул после их превращения в ионы. Вначале молекулы ионизируют для получения положительных или отрицательных зарядов, после чего их пропускают сквозь анализатор массы, т.е., различные зоны детектора, в соответствии с их соотношением массы/заряда (m/z).

[00605] Масс-спектрометрию осуществляют с использованием масс-спектрометра, который содержит источник ионов для ионизации фракционированного образца и получения заряженных молекул для дополнительного анализа. Например, ионизация образца может осуществляться посредством ионизации электрораспылением (ИЭР), химической ионизации при атмосферном давлении (ХИАД), фотоионизации, электронной ионизации, бомбардировки быстрыми атомами (ББА)/вторичной ионизации в жидкости (ВИЖ), матрично-активированной лазерной десорбции/ионизации (МАЛДИ), полевой ионизации, полевой десорбции, ионизации термораспылением/плазмараспылением и ионизации пучком частиц. Квалифицированному специалисту будет понятно, что выбор способа ионизации может быть определен с учетом анализируемого вещества, которое подлежит измерению, вида образца, вида детектора, выбора положительного против отрицательного режима и т.д.

[00606] После ионизации образца, полученные таким образом положительно или отрицательно заряженные ионы могут быть проанализированы для определения соотношения массы и заряда (т.е., m/z). Пригодные анализаторы для определения соотношения массы и заряда включают квадрупольные анализаторы, анализаторы с ионными ловушками и времяпролетные анализаторы. Ионы могут быть обнаружены с применением нескольких режимов обнаружения. Например, выбранные ионы могут быть обнаружены (т.е., с применением режима селективного мониторинга ионов (СМИ)) или, альтернативно, ионы могут быть обнаружены с применением режима сканирования, например, мониторинг множественных реакций (ММР) или мониторинг выбранной реакции (МБР).

[00607] Мониторинг множественных реакций -жидкостная хроматография (ЖХ-МС/ММР), в сочетании с разведением меченных стандартными изотопами стандартных образцов пептида показал себя как эффективный способ верификации белков (например, Keshishian et al., Mol Cell Proteomics 2009 8:2339-2349; Kuhn et al., Clin Chem 2009 55:1108-1117; Lopez et al., Clin Chem 2010 56:281-290; каждая из которых включена в настоящий документ в полном объеме посредством ссылки). В отличие от ненаправленной масс-спектрометрии, обычно применяемой в исследованиях по разработке биомаркеров, методы направленной МС представляют собой базирующиеся на пептидной последовательности режимы МС, которые фокусируют полномасштабные аналитические возможности прибора на десятках или сотнях выбранных пептидов в сложной смеси. При ограничении обнаружения и фрагментации только пептидами, образованными из целевых белков, чувствительность и воспроизводимость резко повышаются, по сравнению с исследовательским режимом МС. Данный метод количественного определения белков на основе масс-спектрометрического мониторинга множественных реакций (ММР) может существенно влиять на открытие и количественное определение биомаркеров с помощью быстрого, направленного, мультиплексного построения профиля экспрессии белка для клинических образцов.

[00608] В одном варианте реализации биологический образец, который может содержать по меньшей мере один белок, кодируемый по меньшей мере одной модифицированной мРНК по настоящему изобретению, может быть проанализирован методом ММР-МС. Количественное определение биологического образца может дополнительно включать, без ограничений, меченные изотопами пептиды или белки в качестве внутренних стандартов.

[00609] В соответствии с настоящим изобретением, биологический образец, после получения от субъекта, может быть обработан ферментным расщеплением. В настоящем документе термин «расщепление» обозначает разрушение с образованием более коротких пептидов. В настоящем документе выражение «обработка образца с расщеплением белков» обозначает такой способ манипулирования образцом, при котором белки в образце разрушаются. Указанные ферменты включают, без ограничений, трипсин, эндопротеиназу Glu-C и химопритсин. В одном варианте реализации биологический образец, который может содержать по меньшей мере один белок, кодируемый по меньшей мере одной модифицированной мРНК по настоящему изобретению, может быть расщеплен с использованием ферментов.

[00610] В одном варианте реализации биологический образец, который может содержать белок, кодируемый модифицированной мРНК по настоящему изобретению, может быть проанализирован на предмет содержания белка с применением ионизации электрораспылением. В масс-спектрометрии с ионизацией электрораспылением (ИЭР) (МСИЭР) электрическая энергия применяется, чтобы способствовать переносу ионов из раствора в газообразную фазу, после чего их анализируют масс-спектрометрией. Образцы могут быть проанализированы с применением методов, известных из уровня техники (например, Но et al., Clin Biochem Rev. 2003 24(1):3-12; включена в настоящий документ в полном объеме посредством ссылки). Ионизированные молекулы, содержащиеся в растворе, могут быть перенесены в газообразную фазу с помощью тонкодисперсного распыления заряженных капелек, испарения растворителя и выброса ионов из заряженных капелек с образованием тумана из капелек с высоким зарядом. Туман из капелек с высоким зарядом может быть проанализирован с применением по меньшей мере 1, по меньшей мере 2, по меньшей мере 3 или по меньшей мере 4 анализаторов массы, таких как, без ограничений, квадрупольный анализатор массы. Далее метод масс-спектрометрии может включать стадию очистки. В качестве неограничивающего примера, первый квадруполь может быть настроен таким образом, чтобы отбирать единичное соотношение m/z, т.е., он может отфильтровывать молекулярные ионы с другим соотношением m/z, что может позволить исключить сложные и требующие времени методики очистки образца перед анализом методом МС.

[00611] В одном варианте реализации биологический образец, который может содержать белок, кодируемый модифицированной мРНК по настоящему изобретению, может быть проанализирован на предмет содержания белка в системе тандемной МСИЭР (например, МС/МС). В качестве неограничивающих примеров, капельки могут быть проанализированы с использованием сканирования продукта (или дочернего сканирования), сканирования прекурсора (родительского сканирования), потери нейтральных частиц или мониторинга множественных реакций.

[00612] В одном варианте реализации биологический образец, который может содержать белок, кодируемый модифицированной мРНК по настоящему изобретению, может быть проанализирован с применением масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (МАЛДИ) (МСМАЛДИ). МАЛДИ предлагает неразрушительное испарение и ионизацию молекул большого и небольшого размера, таких как белки. В анализе МАЛДИ, анализируемое вещество вначале сокристаллизуют со значительным молярным избытком матричного соединения, которое может также включать, без ограничений, абсорбирующую ультрафиолет слабую органическую кислоту. Неограничивающие примеры матриц, используемых в МАЛДИ представляют собой α-циано-4-гидроксикоричную кислоту, 3,5-диметокси-4-гидроксикоричную кислоту и 2,5-дигидроксибензойную кислоту. Лазерное облучение смеси анализируемое вещество-матрица может приводить к испарению матрицы и анализируемого вещества. Индуцированная лазером десорбция обеспечивает высокие выходы иона интактного анализируемого вещества и позволяет проводить измерение веществ с высокой точностью. Образцы могут быть проанализированы с применением способов, известных из уровня техники (например, Lewis, Wei and Siuzdak, Encyclopedia of Analytical Chemistry 2000:5880-5894; включена в настоящий документ в полном объеме посредством ссылки). В качестве неограничивающих примеров, используемые в анализе МАЛДИ анализаторы массы могут включать линейный времяпролетный (ВПЛ), ВПЛ рефлектрон или анализатор массы с Фурье преобразованием.

[00613] В одном варианте реализации смесь анализируемое вещество-матрица может быть получена с применением метода высушенной капельки. Биологический образец смешивают с матрицей с образованием насыщенного раствора матрицы, в котором соотношение матрицы к образцу составляет приблизительно 5000:1. Затем аликвоте (приблизительно 0,5-2,0 мкл) насыщенного раствора матрицы дают высохнуть с образованием смеси анализируемое вещество-матрица.

[00614] В одном варианте реализации смесь анализируемое вещество-матрица может быть образована с применением метода тонкого слоя. Вначале образуется гомогенная пленка матрицы, после чего наносят образец, который может абсорбироваться матрицей с образованием смеси анализируемое вещество-матрица.

[00615] В одном варианте реализации смесь анализируемое вещество-матрица может быть получена с применением метода толстого слоя. Получают гомогенную пленку матрицы с добавлением в матрицу нитроцеллюлозы. После получения однородного слоя матрицы с нитроцеллюлозой наносят образец, который абсорбируется в матрицу с образованием смеси анализируемое вещество-матрица.

[00616] В одном варианте реализации смесь анализируемое вещество-матрица может быть получена с применением метода сандвича. Тонкий слой кристаллов матрицы получают, как в методе тонкого слоя, с последующим добавлением капелек водной трифторуксусной кислоты, образца и матрицы. Далее образец абсорбируется в матрицу с образованием смеси анализируемое вещество-матрица.

Применение модифицированных молекул нуклеиновой кислоты

Терапевтические агенты

[00617] Модифицированные молекулы нуклеиновой кислоты и белки, транслированные из модифицированных молекул нуклеиновой кислоты, раскрытых в настоящем документе, могут применяться в качестве терапевтических агентов. Например, модифицированная молекула нуклеиновой кислоты, раскрытая в настоящем документе, может быть введена субъекту, причем модифицированная молекула нуклеиновой кислоты транслируется in vivo с образованием терапевтического пептида в организме субъекта. Соответственно, в настоящем документе раскрыты составы, способы, наборы и реактивы для лечения или профилактики заболевания или состояний у человека и других млекопитающих. Активные терапевтические агенты согласно настоящему документу включают, без ограничений, модифицированные молекулы нуклеиновой кислоты, содержащие модифицированные молекулы нуклеиновой кислоты клетки или транслированные из модифицированных молекул нуклеиновой кислоты полипептиды, транслированные из модифицированных молекул нуклеиновой кислоты полипептиды и клетки, которые контактировали с клетками, содержащими модифицированные молекулы нуклеиновой кислоты или полипептиды, транслированные из модифицированных молекул нуклеиновой кислоты.

[00618] В некоторых вариантах реализации раскрыты терапевтические составы, которые могут содержать одну или более модифицированных молекул нуклеиновой кислоты, содержащую транслируемые участки, вместе с белком, который индуцирует антителозависимую клеточную цитотоксичность. В настоящем документе «транслируемые участки» кодируют белок или белки, которые могут усиливать иммунитет субъекта. Например, в настоящем документе раскрыты терапевтические средства, содержащие одну или более нуклеиновых кислот, кодирующих трастузумаб и гранулоцитарный колониестимулирующий фактор (G-CSF). Конкретно, такие комбинированные терапевтические средства могут быть пригодными для применения у больных Her2+ раком молочной железы, у которых развилась индуцированная резистентность к трастузумабу (см., например, Albrecht, Immunotherapy. 2(6):795-8 (2010); включена в настоящий документ в полном объеме посредством ссылки).

[00619] Дополнительно раскрыты способы индукции трансляции рекомбинантного полипептида в популяции клеток с использованием модифицированных молекул нуклеиновой кислоты, раскрытых в настоящем документе. Такая трансляция может происходить in vivo, ex vivo, in culture или in vitro. Популяция клеток может быть приведена в контакт с эффективным количеством состава, содержащего нуклеиновую кислоту, которая содержит по меньшей мере одну модификацию нуклеозида и транслируемый участок, кодирующий рекомбинантный полипептид. Популяция может быть приведена в контакт в таких условиях, что нуклеиновая кислота может локализоваться в одной или более клеток популяции, и рекомбинантный полипептид может транслироваться в клетку из нуклеиновой кислоты.

[00620] Эффективное количество состава может быть предложено на основе, по меньшей мере частично, вида ткани-мишени, клетки-мишени, способа введения, физических характеристик нуклеиновой кислоты (например, размер и степень модификации нуклеозидов) и других определяющих факторов. В общем, эффективное количество состава обеспечивает эффективную выработку белка в клетке, предпочтительно более эффективную, чем в случае состава, содержащего соответствующую немодифицированную молекулу нуклеиновой кислоты. Повышение эффективности может быть продемонстрировано увеличением трансфекции клеток (т.е., процента клеток, трансфицированных нуклеиновой кислотой), увеличением трансляции белка из нуклеиновой кислоты, уменьшением разложения нуклеиновой кислоты (что демонстрируется, например, увеличением продолжительности трансляции белка из модифицированной молекулы нуклеиновой кислоты) или снижением природного иммунного ответа клетки-хозяина.

[00621] Аспекты настоящего документа направлены на способы индуцирования трансляции рекомбинантного полипептида in vivo в организме субъекта-млекопитающего, который в этом нуждается. В этом отношении, эффективное количество состава, содержащего нуклеиновую кислоту, которая содержит по меньшей мере одну модификацию нуклеозида и транслируемый участок, кодирующий рекомбинантный полипептид, может быть введено субъекту с помощью способов доставки, раскрытых в настоящем документе. Нуклеиновая кислота может быть доставлена в таком количестве и в таких условиях, что нуклеиновая кислота локализуется в клетке субъекта, и рекомбинантный полипептид может быть транслирован в клетке из нуклеиновой кислоты. Клетка, в которой локализуется нуклеиновая кислота, или ткань, в которой присутствует клетка, может быть мишенью в одном или более циклов введения нуклеиновой кислоты.

[00622] Другие аспекты настоящего документа относятся к трансплантации клеток, содержащих модифицированные молекулы нуклеиновой кислоты, субъекту-млекопитающему. Введение клеток субъектам-млекопитающим известно средним специалистам из уровня техники и включает, без ограничений, локальную имплантацию (например, местное или подкожное введение), доставку в орган или системную инъекцию (например, внутривенная инъекция или ингаляция) и введение клеток в фармацевтически приемлемый носитель. Составы, содержащие модифицированные молекулы нуклеиновой кислоты, разрабатывают для внутримышечного, трансартериального, внутрибрюшинного, внутривенного, интраназального, подкожного, эндоскопического, трансдермального или интратекального введения. В некоторых вариантах реализации составы могут быть разработаны для замедленного высвобождения.

[00623] Субъект, которому может быть введен терапевтический агент, страдает от или может быть подвержен риску развития заболевания, расстройства или патологического состояния. Раскрыты способы идентификации, диагностики и классификации субъектов на этом основании, что может включать клиническую диагностику, уровни биомаркеров, полигеномное исследование ассоциаций (ПГИА) и другие способы, известные из уровня техники.

[00624] В некоторых вариантах реализации введенная модифицированная молекула нуклеиновой кислоты направляет выработку одного или более рекомбинантных полипептидов, обеспечивающих функциональную активность, которая могла в существенной мере отсутствовать в клетке, где рекомбинантный полипептид может быть транслирован. Например, отсутствующая функциональная активность по своей природе может быть ферментной, структурной или генно-регуляторной.

[00625] В других вариантах реализации введение модифицированной молекулы нуклеиновой кислоты направляет выработку одного или более рекомбинантных полипептидов, заменяющих полипептид (или несколько полипептидов), который может в существенной мере отсутствовать в клетке, где может быть транслирован рекомбинантный полипептид. Такое отсутствие может быть результатом генетической мутации кодирующего гена или его регуляторного пути. Альтернативно, функция рекомбинантного полипептида антагонистична по отношению к активности эндогенного белка, присутствующего в клетке, на ее поверхности, или секретирующегося из клетки. Обычно, активность эндогенного белка может быть вредна для субъекта, например, вследствие мутации эндогенного белка, которая ведет к изменению активности или локализации. Дополнительно, рекомбинантный полипептид проявляет антагонизм, прямо или косвенно, в отношении активности биологического фрагмента, присутствующего в клетке, на ее поверхности или секретирующегося из клетки. Примеры антагонизируемых биологических фрагментов включают, без ограничений, липиды (например, холестерин), липопротеин (например, липопротеин низкой плотности), нуклеиновую кислоту, углевод или низкомолекулярный токсин.

[00626] Рекомбинантные белки, раскрытые в настоящем документе, могут быть сконструированы для локализации в пределах клетки, потенциально в пределах конкретного отсека, такого как ядро, или сконструированы для секреции из клетки или транслокации на плазматической мембране клетки.

[00627] Как раскрыто в настоящем документе, полезным признаком модифицированных молекул нуклеиновой кислоты в соответствии с настоящим изобретением является способность снижать природный иммунный ответ клетки на экзогенную нуклеиновую кислоту. Раскрыты способы осуществления титрования, уменьшения или устранения иммунного ответа в клетке или популяции клеток. В некоторых вариантах реализации клетка может быть приведена в контакт с первым составом, который содержит первую дозу первой экзогенной нуклеиновой кислоты, в том числе, транслируемый участок и по меньшей мере одну модификацию нуклеозида, и может быть определен уровень природного иммунного ответа клетки на первую экзогенную нуклеиновую кислоту. Затем, клетка может быть приведена в контакт со вторым составом, содержащим вторую дозу первой экзогенной нуклеиновой кислоты, причем вторая доза содержит меньшее количество первой экзогенной нуклеиновой кислоты, по сравнению с первой дозой. Альтернативно, клетка может быть приведена в контакт с первой дозой второй экзогенной нуклеиновой кислоты. Вторая экзогенная нуклеиновая кислота может содержать один или более модифицированных нуклеозидов, которые могут быть такими же или отличными, по сравнению с первой экзогенной нуклеиновой кислотой, или, альтернативно, вторая экзогенная нуклеиновая кислота может не содержать модифицированных нуклеозидов. Стадии контакта клетки с первым составом и/или вторым составом могут повторяться один или более раз. Дополнительно, эффективность выработки белка (например, трансляции белка) в клетке может быть необязательно определена, и клетка может быть повторно трансфицирована первым и/или вторым составом, до тех пор, пока не будет достигнута целевая эффективность выработки белка.

Терапевтические средства для заболеваний и состояний

[00628] В настоящем документе раскрыты способы лечения или профилактики симптома заболеваний, характеризующихся отсутствующей или аберрантной активностью белка, путем обеспечения отсутствующей активности белка или преодоления аберрантной активности белка. Благодаря быстрому началу выработки белка после введения модифицированной мРНК, по сравнению с вирусными ДНК векторами, соединения в соответствии с настоящим документом конкретно предпочтительны для лечения острых заболеваний, таких как сепсис, инсульт и инфаркт миокарда. Более того, аккуратное титрование белка может быть достижимо с применением модифицированной мРНК по настоящему изобретению, поскольку модифицированная мРНК может быть способна изменять скорости транскрипции и, таким образом, выз