Способ гашения электрической дуги отключения

Изобретение относится к области электроаппаратостроения. Способ включает деформирование дуги затопленными струями дугогасящей жидкости, истекающими из полости контактов в дугогасительную камеру, начиная с момента загорания дуги при разведении контактов, процесс воздействия на дугу сопровождают контролем выбранного параметра дуги и в момент достижения значения этого параметра определенной предварительно величины гашение дуги завершают с помощью дополнительного воздействия ударных волн, направленных перпендикулярно фронтальному участку дуги и генерированных с помощью разрядников, установленных в дугогасительной камере, концентрично контактам. В качестве контролируемого параметра выбирают скорость изменения напряжения на дуге dU/dt, а датчик скорости изменения напряжения на дуге подключают с задержкой относительно времени команды на срабатывание коммутационного аппарата, значение задержки определяют согласно приведенному соотношению. Технический результат состоит в снижении коммутационных потерь при увеличении надежности работы. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к области электроаппаратостроения и может быть использовано для гашения электрической дуги в коммутационных аппаратах.

Известен способ гашения дуги [1] затопленными струями дугогасящей жидкости. Дуга изгибается по потоку и одновременно деформируется ее сечение от круглого к овальному. При этом образуется электрический разряд, который принимает вид тонкой плазменной оболочки с развитой поверхностью теплообмена, повторяющей форму струи жидкости. Плазма разряда деионизируется и дуга гасится. На границе дуги и дугогасящей жидкости образуется парогазовая полость, затрудняющая теплоотвод от дуги, что увеличивает время коммутации и ограничивает величину коммутируемых токов при использовании этого способа гашения дуги в высоковольтных коммутационных аппаратах.

Известен способ гашения дуги [2] затопленными струями дугогасящей жидкости. Дуга изгибается по потоку и одновременно деформируется ее сечение от круглого к овальному. При этом образуется электрический разряд, который принимает вид тонкой плазменной оболочки с развитой поверхностью теплообмена, повторяющей форму струи жидкости. Процесс воздействия на дугу сопровождают контролем одного из ее параметров, в качестве которого выбирают толщину дуги. Толщину дуги измеряют с помощью электрических зондов или фотодиодов. Когда толщина дуги достигает определенной расчетной величины, инициируют с помощью разрядников, установленных в дугогасительной камере концентрично контактам, ударные волны, направленные перпендикулярно фронтальному участку дуги. Происходит интенсивное перемешивание плазмы дуги с холодным газом, образовавшимся при испарении дугогасящей жидкости, нарушение теплового баланса дуги и ее гашение.

Недостатками данного способа являются сложность измерения толщины дуги и возможность повторных пробоев межконтактного промежутка при возникновении коммутационных напряжений и, как следствие, большой разброс времен коммутации и коммутационные потери энергии.

Техническим результатом данного изобретения является снижение коммутационных потерь и увеличение надежности работы коммутационных аппаратов, использующих данный способ гашения дуги отключения.

Для достижения указанного технического результата в известном способе гашения электрической дуги отключения, при котором в процессе разведения контактов деформируют дугу затопленными струями дугогасящей жидкости, истекающими из полости контактов в дугогасительную камеру, при этом процесс воздействия на дугу сопровождают контролем по крайней мере одного параметра дуги и в момент достижения значения этого параметра определенной предварительно величины гашение дуги завершают с помощью дополнительного воздействия ударных волн, направленных перпендикулярно фронтальному участку дуги и генерированных с помощью разрядников, установленных в дугогасительной камере, концентрично контактам, предложено в качестве контролируемого параметра выбрать скорость изменения напряжения на дуге dU/dt, а датчик скорости изменения напряжения на дуге подключать с задержкой τ относительно времени команды на срабатывание коммутационного аппарата τ=τр.к.+0,5τудл.д., где τр.к. - время расхождения контактов, τудл.д - экспериментально полученное время удлинения дуги до резкого увеличения скорости изменения напряжения на дуге. При завершении гашения дуги в дугогасящей жидкости создают повышенное давление посредством работы разрядников, а также дополнительно введенного поршня-поплавка, размещенного на поверхности жидкости и стопоров, установленных на внутренней боковой поверхности дугогасительной камеры в плоскости на расстоянии Н от центральной плоскости контактного промежутка, Н=(4-5)h+3Vп.к./π(D2кам.-d2вк.)+hп, где h - межконтактный промежуток, Vп.к. - внутренний объем полости контактов, Dкам. - внутренний диаметр дугогасительной камеры, dвк. - наружный диаметр верхнего контакта, hп. - толщина поршня-поплавка. Дополнительно введенный поршень-поплавок изготавливается из изоляционного материала и имеет внутренние полости, заполненные, например, воздухом, так чтобы плотность поршня-поплавка была меньше плотности дугогасящей жидкости. Дополнительно введенный поршень-поплавок выполнен в виде кольца, внутренний диаметр которого соответствует наружному диаметру верхнего контакта, а наружный внутреннему диаметру дугогасительной камеры, а также поршень-поплавок имеет 6-8 сквозных осевых отверстий диаметром (5-7) мм, равномерно расположенных на радиусе 1,3dвн/2, где dвн - внутренний диаметр поршня-поплавка. Разрядники объединяют по времени срабатывания и геометрии расположения в дугогасительной камере по крайней мере в две группы по три разрядника в каждой группе, срабатывание групп разрядников осуществляют с интервалом (100-150) мкс, а разрядники в каждой группе размещают под углом 120° друг к другу.

На рис. 1 представлена геометрия потока дугогасящей жидкости и дуги отключения в одной из возможных конструкций, реализующих способ гашения дуги; на рис. 2 - разрез А-А на рис. 1; на рис. 3 - блок-схема работы коммутационного аппарата; на рис. 4 - пример осциллограммы напряжения и теневых фотографий электрической дуги отключения в затопленной струе технической воды, 1,5 кВ/дел., 200 мкс/дел., время экспозиции одного кадра - 25 мкс, t=500-700 мкс - время после расхождения контактов, υ=50 м/с - скорость затопленной струи дугогасящей жидкости, Im=60 кА - максимальный ток электрической дуги отключения.

Контакты - верхний подвижный 1 и нижний неподвижный 2, расположены соосно и вертикально в дугогасительной камере 3, заполненной дугогасящей жидкостью выше уровня контактного узла (от центральной плоскости межконтактного промежутка при расхождении контактов) на (4-5)h, где h - межконтактный промежуток (рис. 1). Верхний подвижный контакт 1 выполнен в виде стакана, стенки которого охватывают снаружи стенки неподвижного контакта 2, имеющего полость 4, заполненную дугогасящей жидкостью. На поверхности дугогасящей жидкости в дугогасительной камере 3 размещен поршень-поплавок 5, изготовленный из изоляционного материала. Поршень-поплавок 5 имеет внутренние полости 6, заполненные, например, воздухом, так чтобы плотность поршня-поплавка была меньше плотности дугогасящей жидкости. Поршень-поплавок 5 выполнен в виде кольца, внутренний диаметр которого соответствует наружному диаметру верхнего контакта 1, а наружный - внутреннему диаметру дугогасительной камеры 3, а также поршень-поплавок имеет 6-8 сквозных осевых отверстий 7 диаметром (5-7) мм, равномерно расположенных на радиусе 1,3dвн/2, где dвн - внутренний диаметр поршня-поплавка. На внутренней боковой поверхности дугогасительной камеры 3 в плоскости на расстоянии Н от центральной плоскости контактного промежутка установлены стопоры 8, Н=(4-5)h+3Vп.к./π(D2кам.-d2вк.)+hп, где h - межконтактный промежуток, Vп.к. - внутренний объем полости контактов, Dкам. - внутренний диаметр дугогасительной камеры, dвк. - наружный диаметр верхнего контакта, hп. - толщина поршня-поплавка. Концентрично контактам 1 и 2 в дугогасительной камере 3 установлены разрядники 9. Разрядники 9 объединены по крайней мере в две группы, по три разрядника в каждой группе, и в каждой группе размещены под углом 120° друг к другу. К каждому разряднику 9 подключена электрическая цепь, состоящая из коммутатора 10 и емкостного накопителя 11.

При подаче команды на срабатывание коммутационного аппарата (рис. 3) в полости 4 нижнего неподвижного контакта 2, заполненной дугогасящей жидкостью, известным способом создают повышенное давление. Верхний контакт 1 под воздействием давления начинает ускоренное движение, происходит разрыв контактов, в образующийся межконтактный промежуток истекает поток дугогасящей жидкости, воздействующий на электрическую дугу отключения. Дуга изгибается по потоку и одновременно деформируется ее сечение от круглого к овальному. При этом образуется электрический разряд, который принимает вид тонкой плазменной оболочки с развитой поверхностью теплообмена, повторяющей форму струи жидкости (рис. 1, 2). Осциллограмма напряжения на дуге U (рис. 4) имеет пологий участок (ab), который соответствует квазистационарному удлинению дуги на фронте затопленной струи жидкости (dU/dt≈3⋅106 В/с) и участок (bc) - резкого возрастания скорости изменения напряжения на дуге (dU/dt≈107 В/с). Участок (bc) связан с процессами в дуге на ее переднем фронте. Когда на 500-ой - 600-ой мкс после расхождения контактов и возникновения дуги на отрезке дуги перед передним фронтом струи жидкости начинают развиваться возмущения, интенсивность свечения дуги падает и на ее переднем фронте появляется темная область, разделяющая излучающий канал дуги на две части (700-ая мкс, рис. 4.). Возникновение темной области на переднем фронте дуги совпадает по времени с максимумом на осциллограмме напряжения. Скорость изменения напряжения на дуге dU/dt контролируют датчиком скорости изменения напряжения на дуге (рис. 3), который подключают с задержкой τ относительно времени команды на срабатывание коммутационного аппарата τ=τр.к.+0,5τудл.д., где τр.к. - время расхождения контактов, τудл.д. - экспериментально полученное время удлинения дуги до резкого увеличения скорости изменения напряжения на дуге (точка b на осциллограмме напряжения на дуге U (рис. 4)). При резком возрастании скорости изменения напряжения на дуге запускается система генерации ударных волн на основе разрядников 9 и подключенных к ним электрических цепей, состоящих из коммутаторов 10 и емкостных накопителей 11 (рис. 3). Система генерации ударных волн срабатывает по сигналу от генератора однократных импульсов, который запускается от блока регистрации сигнала с датчика скорости изменения напряжения на дуге. Срабатывание групп разрядников 9 осуществляют с интервалом (100-150) мкс, пока к межконтактному промежутку приложено коммутационное напряжение. Объем дугогасящей жидкости в полости контактов 1 и 2, а также размещение стопоров 8 выбирают таким, что ко времени τудл.д из полости контактов истекает 3/4Vп.к. дугогасящей жидкости и происходит фиксация поршня-поплавка 5. В дугогасительной камере 3 повышается давление и из отверстий 7 происходит истечение жидкости, а также газов, отведенных из парогазовой области, прилегающей к дуге, в пространство над поршнем-поплавком 5. Характер теплообмена дугового разряда при этом существенно изменяется, нарушается тепловой баланс, преобладающим становится процесс остывания дуги, пронизанной струями дугогасящей жидкости, она приобретает ячеистую структуру и гасится. Вероятность повторных пробоев сводится к минимуму за счет поддержания повышенного давления в дугогасительной камере 3 разрядниками 9.

Как показали эксперименты, использование данного способа позволяет снизить на 30% по сравнению с прототипом коммутационные потери при увеличении надежности работы.

Приведем один из конкретных примеров реализации способа. Дугогасительная камера и полости контактов заполнены технической водой с проводимостью σ0=2,8⋅10-2 См/м и температурой t=20°С. До срабатывания коммутационного аппарата давление воздуха над поверхностью поршня-поплавка Р=0,1 МПа. Наружный диаметр верхнего контакта dвк.=60 мм. Межконтактный промежуток h=5 мм. Толщина поршня-поплавка hп.=50 мм. Задержка подключения датчика скорости изменения напряжения на дуге относительно времени команды на срабатывание коммутационного аппарата τ=300 мкс. Пологий участок (ab) на осциллограмме напряжения, соответствующий квазистационарному удлинению дуги на фронте затопленной струи жидкости (dU/dt≈3⋅106 В/с) и участок (bc) - резкого возрастания скорости изменения напряжения на дуге (dU/dt≈10 В/с) (рис. 4). Давление в дугогасительной камере после фиксации поршня-поплавка P1=5 МПа. Скорость затопленной струи дугогасящей жидкости V=50 м/с. Максимальный ток электрической дуги отключения Im=60 кА.

Источники информации

1. Ахмеров Н.А., Герасимов В.П., Годонюк В.А, Грибков А.М., Егоров Ю.Я., Емельянов А.И., Жаворонков М.А., Смоляк А.И. Макет коммутатора постоянного тока многократного действия // ПТЭ. - 1983. - №4. - С. 132-136.

2. Азизов Э.А., Годонюк В.А., Емельянов А.И., Цветков Н.В., Ягнов В.А. Способ гашения электрической дуги отключения. Патент РФ №1757372 // Бюллетень изобретений и открытий. - 1994. - №10. - С. 203.

1. Способ гашения электрической дуги отключения, при котором в процессе разведения контактов деформируют дугу затопленными струями дугогасящей жидкости, истекающими из полости контактов в дугогасительную камеру, при этом процесс воздействия на дугу сопровождают контролем выбранного параметра дуги и в момент достижения значения этого параметра определенной предварительно величины гашение дуги завершают с помощью дополнительного воздействия ударных волн, направленных перпендикулярно фронтальному участку дуги и генерированных с помощью разрядников, установленных в дугогасительной камере, концентрично контактам, отличающийся тем, что в качестве контролируемого параметра выбирают скорость изменения напряжения на дуге dU/dt, а датчик скорости изменения напряжения на дуге подключают с задержкой τ относительно времени команды на срабатывание коммутационного аппарата τ=τр.к.+0,5τудл.д., где τрк. - время расхождения контактов, τудл.д - экспериментально полученное время удлинения дуги до резкого увеличения скорости изменения напряжения на дуге, и гашение дуги завершают в момент достижения значения скорости изменения напряжения на дуге dU/dt предварительно определенной экспериментально величины.

2. Способ по п. 1, отличающийся тем, что при завершении гашения дуги в дугогасящей жидкости создают повышенное давление посредством работы разрядников, а также дополнительно введенного поршня-поплавка, размещенного на поверхности жидкости и стопоров, установленных на внутренней боковой поверхности дугогасительной камеры в плоскости на расстоянии Н от центральной плоскости контактного промежутка, Н=(4-5)h+3Vп.к./π(D2кам.-d2вк.)+hп., где h - межконтактный промежуток, Vп.к. - внутренний объем полости контактов, Dкам. - внутренний диаметр дугогасительной камеры, dвк. - наружный диаметр верхнего контакта, hп. - толщина поршня-поплавка.

3. Способ по п. 1, отличающийся тем, что дополнительно введенный поршень-поплавок изготавливается из изоляционного материала и имеет внутренние полости, заполненные, например, воздухом, так чтобы плотность поршня-поплавка была меньше плотности дугогасящей жидкости.

4. Способ по п. 1, отличающийся тем, что дополнительно введенный поршень-поплавок выполнен в виде кольца, внутренний диаметр которого соответствует наружному диаметру верхнего контакта, а наружный - внутреннему диаметру дугогасительной камеры, а также поршень-поплавок имеет 6-8 сквозных осевых отверстий диаметром (5-7) мм, равномерно расположенных на радиусе 1,3dвн/2, где dвн - внутренний диаметр поршня-поплавка.

5. Способ по п. 1, отличающийся тем, что разрядники объединяют по времени срабатывания и геометрии расположения в дугогасительной камере по крайней мере в две группы по три разрядника в каждой группе, срабатывание групп разрядников осуществляют с интервалом (100-150) мкс, а разрядники в каждой группе размещают под углом 120° друг к другу.



 

Похожие патенты:

Настоящее изобретение относится к камере (7) гашения дуги устройства электрической защиты, содержащего камеру образования дуги, содержащую неподвижный контакт (4) и подвижный контакт (3), которые при их разделении образуют между собой дугу (a), причем упомянутая камера образования дуги сообщается с входом второй камеры, называемой камерой гашения дуги.

Использование: в области электротехники. Технический результат – повышение надежности работы контакторов и повышение быстродействия компенсации реактивной энергии.

Изобретение относится к области электротехники и может быть использовано в устройствах отключения тока. Технический результат - увеличение надежности и упрощение способа изготовления.

Изобретение относится к области электротехники, в частности к трехфазному высоковольтному размыкателю цепи с механической связью и направляющим средством. Техническим результатом является повышение надежности и устойчивости.

Настоящее изобретение относится к прерывателю цепи в литом корпусе, в котором блокирующий элемент образован на внутренней стороне рычага и противовращательный элемент образован на верхней стороне.

Изобретение относится к устройству ограничения или прерывания тока в линии электропередачи, а также к способу управления этим устройством. Устройство включает в себя ветвь (29) прерывания тока и мостовую ветвь.

Газонаполненный аппарат включает закрепленные на общей опорной раме (1) расположенные один за другим, по крайней мере, три полюса, каждый из которых содержит выключатель, размещенный в горизонтально расположенном корпусе (2), и блоки, включающие ввод (4) с узлом вывода (5).

Изобретение относится к вакуумным выключателям и может быть использовано в вакуумных дугогасительных камерах высокого напряжения. Контактная система вакуумной дугогасительной камеры содержит соосно расположенные подвижный и неподвижный контактные узлы, каждый из которых состоит из токоподвода в виде стержня и присоединенной к нему контактной детали с плоской поверхностью контактирования.

Изобретение относится к дугогасительным камерам высоковольтных пневматических и электромагнитных контакторов электроподвижного состава. Высоковольтная дугогасительная камера содержит спаренные изоляционные стенки, образующие между собой входную щель в зоне предварительного растяжения дуги, дугогасительных устройств в зоне гашения дуги, верхний и нижний рога, два магнитных полюса, перфорированную изоляционную пластину, вставленную в паз на выходе камеры.

Изобретение относится к сильноточной коммутирующей аппаратуре многократного действия, работающей в цепях постоянного и переменного тока, и может быть использовано в системах питания электрофизических установок.
Наверх