Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических, машиностроительных предприятиях. Сущность заявленного технического решении заключается в том, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают электромагнитные волны в образуемом коаксиальном волноводе, возбуждение электромагнитных волн осуществляют на фиксированной частоте на одном из торцов измерительного участка, а прием распространившихся вдоль него электромагнитных волн - на другом его торце, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из высших типов в образуемом коаксиальном волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого высшего типа, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа H11 в образуемом коаксиальном волноводе. Техническим результатом изобретения является расширение функциональных возможностей способа измерения. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических, машиностроительных предприятиях.

Известны рефлектометрический способ измерения внутреннего диаметра металлической трубы и реализующее его устройство (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. - М.: Наука, 1978, 280 с., с. 248-249). Данные технические решения обеспечивают достаточно высокую точность измерения внутреннего диаметра металлической трубы в пределах его измерения 0÷4 мм. При более высоких значениях изменения диаметра трубы погрешность его определения значительно увеличивается. Недостатком этих способа и устройства является ограниченная область применения, обусловленная небольшим диапазоном измерения.

Известны также способ измерения внутреннего диаметра металлических труб и реализующее его устройство, основанные на возбуждении трубы как полого объемного резонатора (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, 208 с.). У торцов трубы располагают закорачивающие элементы. Одна из резонансных частот такого резонатора может служить информативным параметром. Эти способ и устройство являются, однако, контактными и на практике в большинстве случаев неприемлемы. Так, они не могут быть использованы при производстве металлических труб, когда возникает необходимость в бесконтактном определении внутреннего диаметра и толщины стенок изготавливаемой трубы в нескольких поперечных сечениях вдоль ее длины; их применение, кроме того, не дает принципиально высокой точности, которая требуется при локальных многоточечных измерениях, а обеспечивает информацию о диаметре трубы, усредненной по ее длине.

Известны также способ измерения и реализующее его устройство (GB 1264264, 16.02.1972). Способ заключается в зондировании внутренней поверхности трубы электромагнитными колебаниями, возбуждаемыми в измерительном СВЧ резонаторе и определении их собственной (резонансной) частоты, являющейся функцией диаметра трубы. Возможность получения информации о внутреннем диаметре металлической трубы обусловлена в данном способе измерения наличием функциональной связи между резонансной частотой электромагнитных колебаний указанного резонатора, выполненного частично-расщепленным вдоль его длины, и величиной взаимного пространственного расположения внутри трубы измерительных щупов, введенных в нее и контактирующих с ее внутренней поверхностью. Реализующее данный способ устройство содержит датчик в виде находящегося вне трубы волноводного резонатора, с одного торца расщепленного вдоль трубы на две части, к каждой из которых снаружи прикреплен металлический щуп, а также вторичный блок для возбуждения в резонаторе электромагнитных колебаний, их съема и измерения его резонансной частоты. Металлические щупы связаны между собой через пружину, работающую на растяжение, и касаются внутренней поверхности трубы в диаметрально-противоположных точках. Изменение диаметра трубы приводит к соответствующим изменениям степени расщепления полости резонатора и резонансной частоты его электромагнитных колебаний. Недостатком этих способа и устройства является, во-первых, контактность измерений, сужающая область применения, так как, например, на их основе невозможно проведение измерений внутреннего диаметра металлических труб при их изготовлении по методу центробежного литья, где допустимы только бесконтактные измерения. Во-вторых, диапазон измерения недостаточно большой, лимитируемый ограниченной величиной максимального расщепления полости резонатора.

Известно также техническое решение (SU 1298538, 23.11.1987), которое содержит описание способа измерения, по технической сущности наиболее близкого к предлагаемому способу, и принятое в качестве прототипа. Согласно этому способу-прототипу внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают стоячие электромагнитные волны в образуемом коаксиальном волноводе и измеряют их резонансную частоту. При этом содержит размещаемый внутри трубы коаксиально с ней металлический стержень, выполненный из трех участков. Два из этих участков имеют одинаковый диаметр, а третий участок, расположенный между ними и соответствующий измерительному участку трубы, имеет увеличенный по сравнению с ними диаметр. Возбуждение стоячих волн осуществляют на третьем участке на частоте, величина которой меньше критической частоты возбуждения электромагнитных волн на участках с одинаковым диаметром, которая, в свою очередь, зависит от диаметра стержня на всех трех участках и от типа возбуждаемых электромагнитных колебаний Н111 в открытом объемном резонаторе, которым является объем между средним участком стержня и внутренней поверхностью трубы. Такой тип колебаний существует только при превышении значения диаметра стержня на указанном измерительном участке трубы, соответствующего такому открытому объемному резонатору, значений диаметра двух участков металлического стержня с обеих сторон от этого измерительного участка. Недостатком данного способа является его ограниченные функциональные возможности: его нельзя применить при измерении диаметра трубы малого диаметра, чему препятствует увеличенный диаметр измерительного участка стержня. При этом затруднена реализация и электронного блока, предназначенного для возбуждения колебаний в объемном резонаторе и измерения информативного параметра - резонансной частоты электромагнитных колебаний указанного объемного резонатора ввиду ее весьма больших значений при сближении поверхностей третьего участка стержня и внутренней поверхности трубы на ее измерительном участке.

Техническим результатом изобретения является расширение функциональных возможностей способа измерения.

Технический результат достигается тем, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают электромагнитные волны в образуемом коаксиальном волноводе, при этом возбуждение электромагнитных волн осуществляют на фиксированной частоте на одном из торцов измерительного участка, а прием распространившихся вдоль него электромагнитных волн - на другом его торце, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из высших типов в образуемом коаксиальном волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого высшего типа, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа Н11 в образуемом коаксиальном волноводе.

Предлагаемый способ поясняется фиг. 1 и 2.

На фиг. 1 схематично показана схема устройства для реализации способа измерения внутреннего диаметра металлической трубы.

На фиг. 2 приведен график зависимости относительного значения амплитуды напряженности электромагнитного поля от внутреннего диаметра металлической трубы.

Здесь введены обозначения: труба 1, металлический стержень 2, линия связи 3, элемент связи 4, линия связи 5, элемент связи 6, генератор электромагнитных колебаний 7, детектор 8, регистратор 9.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу внутри трубы, в которой размещают коаксиально с ней металлический стержень и на измерительном участке трубы возбуждают электромагнитные волны в образуемом коаксиальном волноводе, возбуждение электромагнитных волн производят на фиксированной частоте на одном из торцов измерительного участка, а прием распространившихся вдоль него электромагнитных волн - на другом его торце. При этом частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из высших типов в образуемом коаксиальном волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого высшего типа, по которой судят о внутреннем диаметре металлической трубы.

Отметим, что предлагаемый способ работоспособен именно на одном из высших типов волн в рассматриваемом коаксиальном волноводе, так как волны в нем на основном типе ТЕМ не характеризуются какой-либо функциональной зависимостью от измеряемого диаметра внутреннего проводника.

Для образования данного коаксиального волновода внутрь контролируемой трубы 1 соосно с ней вводят металлический стержень 2, который, как изображено на фиг. 1, может быть выполнен полым (т.е. в виде трубы) с расположением внутри этой полости линии связи 3, соединенной с элементом связи 4 (металлическим штырем, петлей связи или штырем связи), служащим для возбуждения в коаксиальном волноводе электромагнитных волн, и линии связи 5, соединенной с элементом связи 6 (также металлическим штырем, петлей связи или штырем связи), служащим для приема электромагнитных волн.

При возбуждении электромагнитных волн в коаксиальном волноводе на частоте, которая ниже критической частоты для волны одного из высших типов, вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов коаксиального волновода.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства ƒ>ƒкр, которому должны удовлетворять рабочая частота ƒ и критическая частота ƒкр для электромагнитной волны возбуждаемого ("рабочего") типа. При ƒ<ƒкр имеет место запредельный режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента. В запредельном волноводе поле изменяется вдоль координаты z (оси волновода) по закону

а постоянная ослабления α есть

В этих формулах Е0 - амплитуда напряженности электрического поля в сечении с координатой z=0; ω=2πƒ, с - скорость света.

Выбирая соотношение между ƒ и ƒкр, можно управлять величиной ослабления α.

Следовательно, как следует из (1) и (2), относительное значение Е/Е0 амплитуды напряженности электромагнитного поля в сечении какого-либо волновода, в данном случае коаксиального волновода, с координатой z= есть

В коаксиальном волноводе для волны высшего типа Hm1 (m=1, 2, 3 …), среди которых низший тип есть H11, имеем следующее выражение для критической частоты ƒкр, этого типа H11, который в дальнейшем будем рассматривать в качестве "рабочего" типа волны (Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. - М.: Атомиздат, 464 с., с. 45-46)

где D1 - диаметр внутреннего проводника (то есть диаметр металлического стержня или наружный диаметр полой металлической трубы (штанги)), D2 - внутренний диаметр контролируемой металлической трубы, с=3⋅108 м/с - скорость света.

Особенностью волн этих H-типов в коаксиальном волноводе, характеризующихся произвольным первым индексом m, но вторым индексом 1, является наличие в формуле для λкр суммы диаметров D1 и D2. С учетом (2) и (4) соотношение (3), выражающее функциональную связь относительного значения E(D2)/E0 амплитуды напряженности электрического поля в сечении с координатой от измеряемого диаметра D2, принимает следующий вид:

где , D1 - диаметр внутреннего проводника (то есть диаметр металлического стержня или наружный диаметр полой металлической трубы). В данном случае величина - это расстояние вдоль коаксиального волновода между элементом возбуждения в нем электромагнитных волн и элементом приема распространившихся по коаксиальному волноводу волн на частоте, меньшей критической частоты возбуждаемого ("рабочего") типа волн.

Согласно предлагаемому способу в коаксиальном волноводе возбуждают электромагнитные волны. Для образования данного коаксиального волновода внутрь контролируемой трубы 1 соосно с ней введен металлический стержень 2. Этот стержень может быть выполнен, как изображено на фиг. 1, полым (т.е. в виде трубы) с расположением внутри этой полости линии связи 3, соединенной с элементом связи 4 (металлическим штырем, петлей связи или штырем связи), служащим для возбуждения в коаксиальном волноводе электромагнитных волн, и линии связи 5, соединенной с элементом связи 6 (также металлическим штырем, петлей связи или штырем связи), служащим для приема электромагнитных волн. В данном коаксиальном волноводе возбуждают через элемент связи 4 с помощью генератора электромагнитных колебаний 7 электромагнитные волны на фиксированной частоте ƒ, меньшей критической частоты ƒкр волн одного из высших типов, в частности типа H11, для этого коаксиального волновода (фиг. 1). Напряженность электрического поля Е при удалении от элемента связи 4 спадает в соответствии с соотношением (1). При этом значение E зависит от внутреннего диаметра D2 контролируемой металлической трубы 1. У другого торца коаксиального волновода (фиг. 1) принимаемый сигнал поступает через элемент связи 6 на детектор 8. Затем продетектированный сигнал поступает на регистратор 9 для определения амплитуды E(D2) сигнала, служащего информативным параметром.

Вводимый в трубу металлический стержень можно изготовить относительно тонким. Элементы для возбуждения и съема колебаний и кабели связи могут быть расположены как на наружной поверхности штанги, так и внутри полой штанги.

Синтез устройства, реализуемого с применением вводимого в трубу соосно с ней металлического стержня, состоит в следующей последовательности действий: выбирают, исходя из технологических особенностей конкретной задачи, например, допустимой точности и веса, величину диаметра D1 стержня, а также, исходя, в частности, из необходимой степени локальности измерений, длину этой части стержня; затем рассчитывают на основе формулы (5) значение напряженности электрического поля E(D2) и определяют внутренний диаметр D2 контролируемой трубы. Затем реализуют измерительное устройство на основе данных расчетов.

Например, при производстве металлических труб по методу центробежного литья диаметр D2 производимой трубы может изменяться, в частности, в пределах 4,6÷5,8 см. В этом случае численные значения входящих в формулу (5) величин могут быть следующими: =5 см, D1=2 см. На фиг. 2 приведен график зависимости E(D2)/E0 (в процентах) при ƒ=0,8 ГГц в рабочем диапазоне изменения D2=4,6÷5,8 см.

Для металлических труб конкретных размеров выбором частоты ƒ генератора можно оптимизировать чувствительность такого датчика внутреннего диаметра трубы в рабочем диапазоне его изменения. При этом имеет место монотонность зависимости амплитуды результирующего значения напряженности электромагнитного поля от этого диаметра.

Таким образом, данный способ измерения достаточно просто реализуем. Он может найти применение на практике там, где требуется производить бесконтактные измерения внутреннего диаметра металлической трубы, а также и толщину ее стенки при известности наружного диаметра этой трубы.

1. Способ измерения внутреннего диаметра металлической трубы, при котором внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают электромагнитные волны в образуемом коаксиальном волноводе, отличающийся тем, что возбуждение электромагнитных волн осуществляют на фиксированной частоте на одном из торцов измерительного участка, а прием распространившихся вдоль него электромагнитных волн - на другом его торце, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из высших типов в образуемом коаксиальном волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого высшего типа, по которой судят о внутреннем диаметре металлической трубы.

2. Способ по п. 1, отличающийся тем, что частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн типа H11 в образуемом коаксиальном волноводе.



 

Похожие патенты:

Изобретение относится к области нефтегазовой промышленности и может быть использовано для измерения диаметра буровых скважин, а также их глубины. Технический результат: сокращение числа потребных спускоподъемных операций и повышение надежности каверномера.

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья.

Изобретение относится к области геофизических исследований глубоких и сверхглубоких скважин, может быть использовано в многорычажных профилемерах-сканерах для детального контроля качества внутренней поверхности обсадных колонн.

Изобретение относится к области нефтяной промышленности, а именно к устройствам для определения внутреннего диаметра труб, размещенных в скважине, необходимых для диагностики состояния труб в скважине и позволяющих в сочетании с данными других измерений определить остаточную толщину стенок трубы.

Изобретение относится к устройствам для измерения внутреннего диаметра тонкостенных цилиндрических оболочек и может быть использовано в промышленности при проверке качества серийных изделий.

Изобретение относится к измерительной технике, а именно к области измерения параметров глубоких отверстий. .

Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, а именно для контроля профиля полости уложенных магистральных нефтегазопродуктопроводов путем пропуска внутри контролируемого трубопровода устройства с установленными на корпусе средствами измерения дефектов полости трубопровода, средствами обработки и хранения данных измерений, продвигающегося внутри трубопровода за счет транспортируемого по трубопроводу потока жидкости (газа).

Изобретение относится к неразрушающему контролю и может быть использовано для измерения внутреннего диаметра полых электропроводящих объектов. .

Изобретение относится к измерительной технике и может быть использовано , например, в машиностроекиц для измерения внутренних и наружных диаметров изделий. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве.

Изобретение относится к технике радиометрических измерений при обращении с радиоактивными веществами. Способ обнаружения образования солевого отложения, загрязненного радионуклидами природного происхождения, на внутренних поверхностях колонн насосно-компрессорных труб нефтегазодобывающих морских платформ содержит этапы, на которых выполняют с помощью радиометра гамма-излучения измерения числа импульсов фонового гамма-излучения в выбранном энергетическом интервале на выбранном участке колонны насосно-компрессорных труб на начальной стадии ее эксплуатации за фиксированное время и измерения числа импульсов гамма-излучения от образующегося солевого отложения в выбранном энергетическом интервале на том же выбранном участке колонны насосно-компрессорных труб в процессе ее эксплуатации за такое же фиксированное время, а также производят вычислительные операции определения порогового значения числа импульсов от фонового гамма-излучения для заданного уровня ложных тревог, после чего производят операции сравнения полученного порогового значения числа импульсов от фонового гамма-излучения с измеренными величинами числа импульсов гамма-излучения от образующегося солевого отложения в процессе эксплуатации колонны насосно-компрессорных труб, затем по результатам сравнения, в случае превышения измеренными величинами числа импульсов гамма-излучения от образующегося солевого отложения порогового значения числа импульсов от фонового гамма-излучения, фиксируют обнаружение образования начальной стадии солевого отложения на внутренней поверхности колоны насосно-компрессорных труб.

Изобретение может быть использовано для измерения остаточной толщины стенки основного металла в технологических продуктопроводах и элементах запорной арматуры. Комплекс содержит рентгеновский источник излучения, приемник излучения, устройство для считывания информации с многоразовых гибких фосфорных пластин, запоминающее и обрабатывающее устройство.

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья.

Изобретение относится к технике радиометрических измерений при обращении с радиоактивными веществами. Способ определения толщины солевого отложения, загрязненного радионуклидами природного происхождения, на внутренних поверхностях трубопроводов нефтегазодобывающих морских платформ, при котором определяют калибровочную зависимость коэффициента пропускания гамма-квантов от толщины солевого отложения в лабораторных условиях по заранее отобранным образцам трубопроводов разных моделей с солевыми отложениями разной толщины, измеряют скорость счета импульсов от фонового гамма-излучения на образце трубопровода без солевого отложения, измеряют скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника, определяют скорость счета импульсов от гамма-квантов источника, прошедших через образец трубопровода, измеряют скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника, определяют скорость счета импульсов от гамма-квантов источника, прошедших через исследуемый участок трубопровода, определяют коэффициент пропускания гамма-излучения исследуемого участка трубопровода, определяют толщину солевого отложения на исследуемом участке трубопровода по величине его коэффициента пропускания гамма-излучения и полученной калибровочной зависимости.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов.

Изобретение относится к устройству для детектирования толщины и плоскостности пластин и полос в области применения ядерных технологий. Устройство включает C-образную раму, два источника излучения, установленные на верхнем плече C-образной рамы и расположенные с некоторым интервалом в направлении ширины стальной пластины/полосы, два ряда матриц детекторов - газонаполненных ионизационных камер, установленных на нижнем плече С-образной рамы и расположенных с некоторым интервалом в направлении движения пластины/полосы, коллиматоры, установленные ниже двух источников излучения, причем коллиматоры позволяют излучению от каждого источника облучать только соответствующий ряд детекторов, модули предварительных усилителей, соединенные с матрицами детекторов, устройство сбора данных, соединенное с модулями предварительных усилителей, компьютер для обработки и отображения данных, соединенный с устройством сбора данных, и систему подачи охлаждающей воды и сжатого воздуха, и систему управления для обеспечения эксплуатации и контроля системы.

Изобретение относится к радиолокации и может быть использовано для определения толщины морских льдов, ледовой разведки, а также для радиозондирования ледников. Технический результат состоит в повышении точности измерения толщины льда.

Изобретение относится к способу измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали. Способ характеризуется тем, что включает следующие стадии: стадия 1: выбирают два растворимых в воде химических вещества, которые содержат элементы P, Ca, Ti, Ba или Sr и не вступают в реакцию с жидкостью для нанесения не содержащего хром покрытия; стадия 2: добавляют два растворимых в воде химических вещества, выбранные на стадии 1, в жидкость для нанесения не содержащего хром покрытия и перемешивают их до гомогенности, после чего изготавливают эталонный образец пленки покрытия; стадия 3: используют излучение, испускаемое прибором определения в автономном режиме толщины пленки, для возбуждения двух растворимых в воде химических веществ для получения характеристических спектров двух растворимых в воде химических веществ и, тем самым, определения толщины пленки покрытия эталонного образца; толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает интенсивным характеристическим спектром, принимают за фактическую толщину пленки, в то время как толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, принимают за измеренную толщину пленки, разницу между фактической толщиной пленки и измеренной толщиной пленки принимают за величину коррекции толщины; многократно проводят операции получения величин коррекции толщины, соответствующие измеренным толщинам пленки, в результате аппроксимации величин коррекции толщины и измеренной толщины пленки получают выражение корреляционной функции между измеренной толщиной пленки и величиной коррекции толщины; стадия 4: добавляют в жидкость для нанесения не содержащего хром покрытия растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, и используют излучение, испускаемое прибором определения в режиме реального времени толщины пленки покрытия, для возбуждения вещества и для получения, таким образом, измеренной толщины пленки, после чего используют выражение корреляционной функции для получения величины коррекции толщины, и, в заключение, исходя из измеренной толщины пленки и величины коррекции толщины получают фактическую толщину пленки покрытия.

Изобретение относится к измерительной технике и может быть использовано в качестве переносного дистанционного измерителя толщины слоя нефти на поверхности воды. .

Изобретение относится к радиометрии. Способ основан на измерениях радиотепловых излучений от разлива нефти на воде и от атмосферы на вертикальной и горизонтальной поляризациях двухканальным радиометром на двух частотах и двух углах места при подвешивании радиометра на опоре на двух высотах. Находят измеренные отношения разностей измеренных величин излучений от разлива нефти на воде и атмосферы в числителе на вертикальной, а в знаменателе на горизонтальной поляризации отдельно для двух частот и двух углов места. Вычисляют в диапазоне толщин от 0 до 12 мм теоретические отношения единицы минус коэффициент отражения слоя нефти на воде для излучения в числителе для вертикальной, а в знаменателе для горизонтальной поляризации отдельно для двух частот и двух углов места. Определяют четыре набора толщин, в которых теоретическое отношение равно измеренному отношению, соответствующему по углу и частоте. Выбирают из наборов по одному значению наиболее близких друг к другу в пределах заданной погрешности толщин и их среднее принимают за измеряемую толщину разлива нефти. Технический результат заключается в увеличении точности измерения толщины нефти, разлитой на водной поверхности, при увеличении диапазона измерений толщины до 12 мм. 4 ил.
Наверх