Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля



Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля
Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля
Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля
Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля
Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля

Владельцы патента RU 2650833:

федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) (RU)

Изобретение относится к области оптико-физических измерений и касается способа неразрушающего контроля качества теплового контакта термоэлектрического модуля. Контроль осуществляется путем определения наличия/отсутствия воздушных полостей в его структуре методом спектроскопической эллипсометрии. Способ включает в себя измерение спектров эллипсометрических параметров Ψ и Δ по площади термоэлектрического модуля. Количество точек измерения равно или кратно количеству термоэлементов в модуле. Далее производят анализ измеренных данных на основе эллипсометрической модели, включающей в себя слои металлического контакта термоэлемента, воздушного зазора, керамического теплопровода, теплопроводные слои, толщины и оптические константы данных слоев, определяют толщины слоев теплопроводного слоя, включающего пасту, эмаль или герметик, и воздушного зазора. По величинам полученных значений толщин делают вывод о степени качества теплового контакта, характеризуемой наличием/отсутствием воздушных полостей в локальных областях между керамическим теплопроводом и спаями термоэлемента. Технический результат заключается в обеспечении возможности контроля качества теплового контакта между керамическим теплопроводом и спаями термоэлектрической батареи. 4 ил., 1 табл.

 

Область техники

Заявленное техническое решение относится к области оптико-физических измерений, основанных на спектроскопической эллипсометрии, и предназначено для неразрушающего контроля качества теплового контакта термоэлектрических модулей путем определения наличия/отсутствия воздушных полостей между керамическими теплопроводами и спаями термоэлементов.

Уровень техники

Известны различные способы контроля качества термоэлектрического модуля. При этом определяются либо параметры отдельных элементов термоэлектрического модуля на этапе его сборки, такие как теплопроводность, электропроводность, коэффициент Зеебека ветвей термоэлементов р- и n-типа, адгезия коммутационных покрытий и т.п., либо комплексные показатели, характеризующие работоспособность термоэлектрических модулей в целом: термоэлектрическая добротность, электрическое сопротивление, электрическая мощность при заданном перепаде температур, холодопроизводительность и др.

Известно изобретение СПОСОБ КОНТРОЛЯ КАЧЕСТВА ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ (Патент РФ №2285980, МПК H01L 35/34, опубликовано: 20.10.2006). Изобретение относится к области термоэлектрического преобразования энергии и может быть использовано для оценки качества термоэлектрических модулей. Сущность: устанавливают модуль в термостат с измеряемой температурой. Подключают его к измерительной схеме, измеряют электрическое сопротивление при подаче малого переменного тока, термоэлектрическую добротность при подаче малого постоянного тока на модуль до установления стационарного напряжения. Измеряют коэффициент Зеебека и постоянную времени термоэлектрического модуля путем определения времени от подачи малого постоянного тока на модуль до установления стационарного напряжения. Сравнивают полученные результаты со стандартными величинами. По результатам сравнения диагностируют качество термоэлектрического модуля. Данный метод помимо оценки термоэлектрической эффективности полупроводниковый структуры и оценки ее электрических свойств, выключая качество коммутационных переходов, позволяет косвенно характеризовать качество теплопроводного канала, теплопроводящих контактов и теплопереходов, обеспечивающих прохождение теплового потока в термоэлектрическом модуле/системе термоэлектрического модуля.

Недостатком данного способа является невозможность выявления причин плохого качества теплопроводного канала, а также локализации проблемных участков, обладающих высоким термическим сопротивлением.

В диссертации одного из авторов предлагаемого изобретения Осипкова А.С. на тему «ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ ТЕРМОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ ПРИБОРОВ МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ НА ЭТАПЕ ИХ ТЕХНОЛОГИЧЕСКИХ ИСПЫТАНИЙ» (автореферат диссертации к.т.н., опубл. Москва, 2010) по специальности ВАК 05.11.14, 05.02.11 приводится инженерная методика выполнения технологической операции контроля термоэлектрических модулей методом акустической эмиссии, которая позволяет выявлять потенциально ненадежные термоэлектрические модули при регистрации сигналов акустической эмиссии в процессе их ускоренных технологических испытаний.

Методика позволяет оценивать параметры надежности термоэлектрических модулей, отбирать для ответственных изделий модули, обладающие потенциально большой наработкой до отказа, но не позволяет локализировать проблемные места и выявлять причины происходящих изменений контролируемых параметров.

Недостатком всех указанных выше способов контроля термоэлектрических модулей является то, что данные способы позволяют проводить оценку эксплуатационных параметров и эффективность работы термоэлектрических модулей в целом, не позволяя выявить местонахождение проблемных мест, которые, например, могут быть связаны с высокими локальными термическими сопротивлениями между спаями термоэлектрических батарей и теплопроводами из-за неравномерного нанесения эмалей, герметиков, появления воздушных полостей и т.п. Появление таких полостей может привести как к значительному снижению эксплуатационных параметров термоэлектрических модулей, так и стать причиной развития постепенных отказов, связанных с локальным перегревом, развитием в ветвях и коммутационных переходах термомеханических напряжений и т.п.

Отказ термоэлектрического модуля, характеризуемый низкими мощностными характеристиками при заданном перепаде температур (в случае генераторного модуля), либо низкой холодопроизводительностью (в случае холодильных модулей) может быть обусловлен именно высокими термическими сопротивлениями термоэлектрических модулей. При этом их электрическое сопротивление соответствует требованиям технических условий и в процессе эксплуатации не претерпевает изменений, поэтому требуются дополнительные методы контроля.

Конструкция термоэлектрического модуля представляет собой множество последовательно соединенных термоэлементов, расположенных на некоторой площади. Площади батарей могут достигать значений 150 см2. Возникновение большого числа областей с высокими локальными термическими сопротивлениями может значительно снизить эффективность такой батареи. При этом, если описанные выше методы контроля позволяют зафиксировать снижение эффективности термоэлектрического модуля, то локализировать проблемное место данными методами не представляется возможным.

Авторы предлагаемого изобретения предлагают решение этой задачи с помощью приемов метода эллипсометрии.

Известны способы контроля параметров материала на основе метода эллипсометрии. Например, изобретение СПОСОБ КОНТРОЛЯ СОСТАВА МАТЕРИАЛА ПРИ ФОРМИРОВАНИИ СТРУКТУРЫ (патент РФ №2396545, МПК G01N 21/17, H01L 21/66, B82B 3/00, Опубликовано: 10.08.2010) предназначено для контроля состава материала по толщине выращиваемых слоев с градиентом состава. Сущность изобретения: в способе контроля состава материала при формировании структуры в процессе формирования слоя осуществляют измерение эллипсометрических параметров, вычисляют производную, при этом в качестве функции выбирают один из эллипсометрических параметров, а в качестве аргумента - другой эллипсометрический параметр, результаты вычисления фиксируют в плоскости производная эллипсометрического параметра - эллипсометрический параметр в виде кривой, по которой определяют оптические постоянные, изменение состава материала слоя, причем вычисление производной эллипсометрического параметра осуществляют с точностью, достаточной в представлении производная эллипсометрического параметра - эллипсометрический параметр для соотнесения получаемых кривых с контролируемыми слоями разного градиента состава, которая задана используемым при контроле эллипсометром. Изобретение обеспечивает возможность неразрушающего контроля состава материала при росте структур, в том числе и многослойных, характеризующихся наличием существенного градиента состава.

Данное изобретение направлено на измерение состава материала в процессе роста структуры. Для термоэлектрического модуля же важно осуществлять входной или выходной контроль качества после их сборки.

Известно изобретение СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ТОНКОЙ ПРОЗРАЧНОЙ ПЛЕНКИ (патент РФ №2463554, МПК G01B 11/06, G01N 21/21, Опубликовано: 10.10.2012), предназначенное для определения толщины тонких прозрачных пленок. Способ заключается в измерении эллипсометрических параметров последующим фиксированием результатов измерения в плоскости в виде кривой, при этом у предварительно спрессованного металлического порошка определяют эллипсометрические параметры, результаты измерений которых наносят на плоскость, в которой расположены кривые, содержащие фиксированные результаты измерения эллипсометрических параметров порошка соответствующего металла, предварительно спрессованного, с заранее заданными оптическими параметрами, полученные с использованием ряда значений заданных оптических параметров упомянутого порошка, задаваемых изменением величины объемной доли активного металла с определенным шагом.

Данное изобретение направлено на определение толщины исключительно тонкой прозрачной пленки. В нашем же случае производится определение толщин многослойных структур, имеющих в своем составе как прозрачные, так и полупрозрачные слои (с толщинами до нескольких сот мкм).

Известно изобретение СПОСОБ КОНТРОЛЯ КАЧЕСТВА СЛОЕВ МНОГОСЛОЙНОГО ЛЕНТОЧНОГО СВЕРХПРОВОДНИКА (патент РФ №2584340, МПК G01N 23/20, G01N 21/41, Опубликовано: 20.05.2016) (методом эллипсометрии), которое используется для контроля качества многослойных сверхпроводников в процессе изготовления. Сущность изобретения заключается в том, что в процессе изготовления ленточного сверхпроводника исследуемые поверхности облучают световым потоком и регистрируют параметры отраженного светового потока, по которым определяют показатели преломления слоев. Показатели преломления слоев определяют с помощью предварительно полученных тарировочных зависимостей остроты кристаллографической текстуры слоев сверхпроводника от значения показателя преломления.

Данное изобретение используется для определения показателя преломления слоя (толщиной менее 2 мкм), а для термоэлектрического модуля важна качественная оценка наличия/отсутствия поры и ее глубины.

Однако применений метода эллипсометрии для контроля качества термоэлектрических модулей обнаружено не было. Известные способы контроля качества термоэлектрического модуля позволяют определять его теплопроводность, электропроводность, коэффициент Зеебека и термоэлектрическую добротность. В то же время ни один из данных методов не позволяет оценить качество теплового контакта между керамическим теплопроводом и спаями термоэлектрической батареи (модуля).

Раскрытие изобретения

Задачей предлагаемого изобретения явилась реализация диагностики качества теплового контакта (отсутствие воздушных полостей) между керамическим теплопроводом и спаями термоэлектрической батареи (модуля) методом спектроскопической эллипсометрии.

Задача решается способом неразрушающего контроля качества теплового контакта термоэлектрического модуля путем определения наличия/отсутствия воздушных полостей в его структуре методом спектроскопической эллипсометрии, который характеризуется тем, что по площади термоэлектрического модуля измеряют спектры эллипсометрических параметров Ψ и Δ, при этом количество точек измерения равно или кратно количеству термоэлементов в модуле, производят анализ измеренных данных на основе эллипсометрической модели, включающей в себя слои металлического контакта термоэлемента, воздушного зазора, керамического теплопровода, теплопроводные слои, толщины и оптические константы данных слоев, определяют толщины слоев теплопроводного слоя, включающего пасту, эмаль или герметик, и воздушного зазора, и по величинам полученных значений толщин делают вывод о степени качества теплового контакта, характеризуемой наличием/отсутствием воздушных полостей в локальных областях между керамическим теплопроводом и спаями термоэлемента.

Перечень фигур

На фиг. 1 представлена типовая схема измерения методом спектроскопической эллипсометрии.

На фиг. 2 представлена схематическое изображение термоэлектрического модуля (а) и структурная схема его эллипсометрической модели (б).

На фиг. 3 показаны экспериментальные спектры эллипсометрических параметров Ψ (13) и Δ (14) при а) наличии и б) отсутствии воздушных полостей между керамическим теплопроводом и спаем термоэлемента.

На фиг. 4 показана измеренная «карта» теплового контакта термоэлектрического модуля.

Осуществление изобретения

Сущность предлагаемого решения: по всей площади термоэлектрической батареи измеряют спектры эллипсометрических параметров Ψ и Δ (фиг. 1). Обозначены: 1 - Источник излучения; 2 - Поляризатор; 3 - Образец; 4 - Компенсатор; 5 - Анализатор; 6 - Детектор.

Измерения термоэлектрической батареи проводят для всех областей, где расположены термоэлементы (эскиз термоэлектрического модуля показан на фиг. 2а, где 11 - ветвь термоэлемента), с двух сторон. Соответственно, определяют качество теплового контакта для каждого термоэлемента с теплопроводом.

Анализ измеренных данных производят на основе эллипсометрической модели (ее структура представлена на фиг. 2б), состоящей из слоев:

- керамический теплопровод (например, AlN или Al2O3) (7),

- теплопроводный слой №1 (паста, эмаль или герметик) (8),

- воздушный зазор (9),

- теплопроводный слой №2 (паста, эмаль или герметик) (12),

- металлический контакт термоэлемента (10).

При этом определяют толщины слоев теплопроводного слоя (паста, эмаль или герметик) и воздушного зазора. По величинам получаемых значений делают вывод о том, является ли тепловой контакт качественным или нет. В случае если толщина слоя воздушного зазора равна нулю или близка к данному значению (не более 100 нм), тепловой контакт признают качественным. В случае, если толщина данного слоя превышает 100 нм, делают вывод о том, что тепловой контакт - плохой (некачественный). Таким образом выявляют области, в которых под теплопроводом расположены воздушные полости.

Также возможна более подробная оценка качества теплового контакта термоэлектрического модуля. В данном случае критериями будут являться толщины слоев воздушного зазора (глубина полости) и количество точек измерения (ветвей термоэлементов), в которых глубина полости превышает заданное значение (см. таблицу).

Пример осуществления изобретения

Предлагаемый способ осуществляют, например, следующим образом.

Измерение термоэлектрического модуля производят на ИК-спектроскопическом эллипсометре марки IR-VASE. Для этого термоэлектрический модуль устанавливают на держатель образцов. Производят калибровку положения образца. Далее выполняют измерение по поверхности термоэлектрического модуля (картирование) эллипсометрических параметров Ψ и Δ. Количество точек (локальных областей) выбирают равным или кратным количеству термоэлементов в модуле. Для перемещения образца используют моторизованный стол с возможностью перемещения по координатам х и у не менее 200 мм и точностью не хуже 2 мкм. Параметры измерения: диапазон длин ИК-волн от 300 до 5000 см-1; спектральное разрешение 4 см-1; угол падения излучения на образец 45°. После измерения передней стороны термоэлектрического модуля его переворачивают и производят измерение обратной стороны модуля.

В результате получают спектры эллипсометрических параметров Ψ и Δ, как например, показано на фиг. 3. Далее используют эллипсометрическую модель, которая включает в себя структуру образца, толщины и оптические константы слоев. Исходя из того, что падающее на образец излучение не проникает сквозь слой металлического контакта термоэлемента, этот слой выбран в качестве подложки. Структура эллипсометрической модели представлена на фиг. 2. Оптические постоянные каждого из слоев были определены ранее на этапе экспериментальных исследований, так как без знания этих постоянных невозможно определить толщины слоев и далее выявить области, в которых тепловой контакт является некачественным. Толщина керамического теплопровода была известна. Толщины теплопроводных слоев и слоя воздушного зазора являлись варьируемыми параметрами, их толщины определялись исходя из наилучшего совпадения (среднеквадратическая ошибка (mean-squared error (MSE)) принимает минимальное значение) эллипсометрических параметров Ψ и Δ, рассчитанных из модели при варьировании толщин указанных выше слоев, и экспериментальных данных.

Численное решение обратной задачи эллипсометрии (определение параметров модели по измеренным значениям параметров Ψ и Δ) проводилось с использованием программной среды WVASE 32 для эллипсометра IR-VASE. В результате было определено, что толщина слоя воздушного зазора только в двух измеряемых областях оказалась равной примерно 1 мкм. Во всех остальных областях она была нулевой. Таким образом, была получена «карта» теплового контакта термоэлектрического модуля (фиг. 4) (обозначены: 15 - качественный тепловой контакт; 16 - тепловой контакт отсутствует) и, соответственно, определены области, в которых тепловой контакт является качественным или некачественным (вплоть до брака).

Предлагаемый способ неразрушающего контроля качества теплового контакта термоэлектрического модуля разработан в ходе выполнения прикладных научных исследований (ПНИ) в рамках Соглашения о предоставлении субсидии №14.577.21.0113 между Министерством образования и науки Российской Федерации и МГТУ им. Н.Э. Баумана.

Способ неразрушающего контроля качества теплового контакта термоэлектрического модуля путем определения наличия/отсутствия воздушных полостей в его структуре методом спектроскопической эллипсометрии, характеризующийся тем, что по площади термоэлектрического модуля измеряют спектры эллипсометрических параметров Ψ и Δ, при этом количество точек измерения равно или кратно количеству термоэлементов в модуле, производят анализ измеренных данных на основе эллипсометрической модели, включающей в себя слои металлического контакта термоэлемента, воздушного зазора, керамического теплопровода, теплопроводные слои, толщины и оптические константы данных слоев, определяют толщины слоев теплопроводного слоя, включающего пасту, эмаль или герметик, и воздушного зазора, и по величинам полученных значений толщин делают вывод о степени качества теплового контакта, характеризуемой наличием/отсутствием воздушных полостей в локальных областях между керамическим теплопроводом и спаями термоэлемента.



 

Похожие патенты:

Изобретение относится к области полупроводниковых материалов с модифицированными электрическими свойствами. Способ получения низкотемпературного термоэлетрика на основе сплава Bi88Sb12 с добавками гадолиния включает помещение навески сплава Bi88Sb12 и металлического гадолиния в количестве 0,01-0,1 ат.% в стеклянную ампулу, из которой откачивают воздух до 10-3 мм рт.

Использование: для получения термоэлектрического элемента. Сущность изобретения заключается в том, что множество ветвей термоэлемента, изготовленных из активного материала с термоэлектрической активностью, вводят в, по сути, плоскую подложку, изготовленную из электро- и термоизоляционного материала подложки, таким образом, что ветви термоэлемента проходят через подложку, по сути, перпендикулярно плоскости подложки, и при котором активный материал заранее подготавливают в порошкообразной форме, прессуют с получением неспеченных заготовок и затем спекают внутри подложки с получением ветвей термоэлемента.

Изобретение относится к области термоэлектрического преобразования энергии. Сущность: формируют отдельные сегменты из низко-, средне- и высокотемпературных термоэлектрических материалов и соединяют их между собой.

Изобретение относится к способу изготовления термоэлектрического конструктивного элемента и термоэлектрическому конструктивному элементу (1). Термоэлектрический конструктивный элемент (1) имеет по меньшей мере одно покрытое термоэлектрическим материалом (3) волокно (4).

Изобретение относится к области термоэлектричества, а именно к технологии изготовления конструктивных элементов для термоэлектрических модулей. Сущность: способ изготовления конструктивного элемента (12) для термоэлектрического модуля (15) имеет следующие шаги: а) обеспечение по меньшей мере одной нити (1), имеющей протяженность (2), б) обеспечение трубчатого приемного элемента (13), имеющего внешнюю периферическую поверхность (14), в) нанесение термоэлектрического материала (3) по меньшей мере на одну нить (1), г) наматывание по меньшей мере одной нити (1) вокруг трубчатого приемного элемента (13), так что на внешней периферической поверхности (14) образовывается по меньшей мере один кольцеобразный конструктивный элемент (12) для термоэлектрического модуля (15).

Изобретение относится к области создания термоэлектрических модулей для прямого и обратного преобразования тепловой и электрической энергии. Сущность: на диэлектрическую подложку методом сеткотрафаретной печати наносят соединительные дорожки для одноименных элементов и коммутирующие дорожки для разноименных элементов.

Изобретение относится к области термоэлектрического преобразования энергии и может быть использовано при производстве термоэлектрических составных ветвей термоэлемента, предназначенных для изготовления генераторов электроэнергии с высоким коэффициентом преобразования.

Изобретение может быть использовано в автомобильных двигателях внутреннего сгорания. Термоэлектрический генератор размещен в выпускной системе отработавших газов двигателя внутреннего сгорания.

Изобретение относится к термоэлектричеству. Технический результат: получение термоэлектрического элемента с высоким термическим сопротивлением, который требует меньше полупроводникового материала.

Изобретение относится к термоэлектрическому преобразованию энергии и может быть использовано при производстве термоэлектрических охладителей и генераторов. Сущность: способ получения термоэлектрического элемента включает подготовку верхней и нижней граней ветвей термоэлемента, создание системы контактных слоев между гранями ветвей термоэлемента и коммутирующими шинами.

Устройство для вариативной одноцветной спектроскопии «накачка-зондирование» в терагерцовом диапазоне содержит перестраиваемый по частоте источник монохроматического излучения, первую пропускающую дифракционную решетку и вторую пропускающую дифракционную решетку.

Изобретение относится к области фотометрии жидких сред. Концентратомер жидких сред содержит источник излучения, кювету, фильтр низких частот, усилитель, интегратор, задающий генератор.

Изобретение относится к области измерительной техники. Анализатор состава природного газа содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным и боковым окном, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления, взаимодействующий с ПЗС-матрицей.

Изобретение относится к исследованию и анализу газов с помощью электромагнитного излучения. Спектрометр состоит из последовательно размещенных источника микроволнового излучения, ячейки с исследуемым газом, приемной системы, включающей в себя детектор и блок обработки сигнала, и блока управления частотой источника излучения.

Изобретение относится к способам определения потенциалов ионизации и сродства к электрону органических молекул кислород- и азотсодержащих соединений. Целью изобретения является повышение точности методов определения ПИ и СЭ и его распространение на другие классы соединений, которые не относятся к ароматическим молекулам.

Изобретение относится к области экологического контроля и касается способа определения возможности применения спектрорадиометра для экологического мониторинга атмосферы.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам. Способ контроля шероховатости поверхности детали включает зондирование исследуемой поверхности потоком со струйной структурой, содержащим смесь химически взаимодействующих газов, визуализацию информативного параметра через контролируемую область поверхности по регистрируемому в оптическом диапазоне длин волн изображению яркостного контраста проекции зоны химического взаимодействия смеси газов.

Изобретение относится к акустике, в частности к микрофонам. Способ создания микрофона на основе селективного поглощения инфракрасного (ИК) излучения углекислым газом.

Изобретение относится к аналитической химии органических соединений. Способ определения концентрации паров нафталина в газовой смеси ароматических соединений заключается в том, что материал, содержащий флуорофор дибензоилметанат дифторида бора (DBMBF2) или его метил-, или метокси-, или диметил-, или диметокси- или метилметоксипроизводное, молекулы которого окружены цепями полидиметилсилоксана или алкильными группами, помещают в газовую смесь.

Изобретение относится к биологии, экологии, сельскому хозяйству, в частности к исследованиям биоматериалов и учету животных при изучении миграционной активности. Способ детекции системной родаминовой метки в мелких млекопитающих включает использование кормовых приманок с препаратом родамин B в количестве от 0,05 до 0,10 мас.% и выявление флуоресцирующей метки родамина B путем облучения мелких млекопитающих лучом портативного зеленого лазера с длиной волны 532±20 нм.

Изобретение относится к области анализа материалов, тонкопленочных структур и поверхностей с помощью оптических средств. Эллипсометр включает последовательно расположенные вдоль оптической оси источник излучения, плечо поляризатора и плечо анализатора.

Изобретение относится к области оптико-физических измерений и касается способа неразрушающего контроля качества теплового контакта термоэлектрического модуля. Контроль осуществляется путем определения наличияотсутствия воздушных полостей в его структуре методом спектроскопической эллипсометрии. Способ включает в себя измерение спектров эллипсометрических параметров Ψ и Δ по площади термоэлектрического модуля. Количество точек измерения равно или кратно количеству термоэлементов в модуле. Далее производят анализ измеренных данных на основе эллипсометрической модели, включающей в себя слои металлического контакта термоэлемента, воздушного зазора, керамического теплопровода, теплопроводные слои, толщины и оптические константы данных слоев, определяют толщины слоев теплопроводного слоя, включающего пасту, эмаль или герметик, и воздушного зазора. По величинам полученных значений толщин делают вывод о степени качества теплового контакта, характеризуемой наличиемотсутствием воздушных полостей в локальных областях между керамическим теплопроводом и спаями термоэлемента. Технический результат заключается в обеспечении возможности контроля качества теплового контакта между керамическим теплопроводом и спаями термоэлектрической батареи. 4 ил., 1 табл.

Наверх