Способ синтеза наноалмазов


C01P2004/64 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2650971:

Носачев Леонид Васильевич (RU)

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд. Изобретение позволяет получать наноалмазы высокой чистоты, в частности без примеси азота, размером от 3 до 10 нм с улучшенными тепло- и электрофизическими свойствами. 1 ил.

 

Изобретение относится к синтезу наноалмазов для использования в различных областях науки и техники, в частности при разработке элементов оптической памяти для квантовых компьютеров высокой производительности.

Известен детонационный синтез наноалмазов (Верещагин А.Л. Детонационные наноалмазы. БТИ. Алт ГТУ. 2001. С. 177), основанный на уникальной способности атомов углерода соединяться между собой в гигантские молекулы, образуя пространственные структуры с прочными связями при детонации подготовленного углеродсодержащего взрывчатого вещества (ВВ) с отрицательным кислородным балансом в замкнутом объеме в инертной к углероду газовой среде высокого давления.

Недостатком известного технического решения является высокое содержание примеси других химических элементов в наноалмазах, ухудшающих их свойства.

Наиболее близким из известных технических решений предлагаемому способу синтеза наноалмазов является принятый за прототип способ синтеза ультрадисперсных алмазов (патент RU №2556763 C2, МПК B82B 3/00, опубл. 20.07.2015. Бюл. №20), включающий образование плазмы углерода из углеродсодержащего вещества и ее конденсацию охлаждающей жидкостью в условиях кавитации.

Недостатком известного технического решения является повышенное содержание атомов примеси в кристаллах наноалмазов.

Задачей данного изобретения является снижение вероятности попадания инородных атомов примеси, например азота, внутрь кристаллов наноалмаза.

Технический результат реализации изобретения заключается в получении кристаллов наноалмаза высокой чистоты с улучшенными тепло- и электрофизическими свойствами.

Решение поставленной задачи и технический результат достигаются тем, что в способе синтеза наноалмазов, включающем подготовку углеродсодержащей смеси, размещение углеродсодержащей смеси в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.

На фигуре 1 показана принципиальная схема устройств для реализации предлагаемого способа синтеза наноалмазов. Здесь подготовленная углеродсодержащая смесь 1 размещена в камере 2, которая содержит герметичные токовводы 3, средства дренажа 4 с обратным клапаном 5, подогреватель 6 и рубашку охлаждения 7. В нижней части камеры 2 под сетчатым электродом 8 установлена центробежная форсунка 9. Устройство содержит высоковольтный источник 10 и средства коммутации 11.

Предлагаемый способ синтеза наноалмазов работает следующим образом. Подготовленную углеродсодержащую смесь 1 на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше размещают в камере 2, способной выдержать давление в импульсе порядка 100000 МПа. Камера имеет герметичные токовводы 3 для импульсного электропитания электрического разряда от высоковольтного источника. Углеродсодержащую смесь 1 в камеру 2 вводят в жидком состоянии через средства дренажа 4 с обратным клапаном 5.

Перед формированием в углеродсодержащей смеси 1 электрического разряда ее нагревают до температуры выше 300 K и распыляют в ней с помощью центробежной форсунки 9 метан. Затем средствами коммутации 11 подают от высоковольтного источника 10 в камеру 2 электрический импульс, формирующий в жидкости с пузырьками метана мощный электрический разряд, генерирующий интенсивную ударную волну с ее переотражениями от стенок камеры 2 высокого давления. При этом на пике импульсов высокого давления, в условиях находящейся в состоянии сверхкритического флюида, углеродсодержащей смеси 1 атомы углерода высокой плотности и подвижности образуют гигантские углеродные молекулы кристаллов наноалмазов, в которые практически исключено попадание атомов иных химических элементов, ухудшающих тепло- и электрофизические свойства наноалмазов.

В настоящее время завершается разработка технической документации устройства для реализации предложенного способа синтеза наноалмазов.

Реализация предложенного способа синтеза наноалмазов позволит получать кристаллы наноалмазов высокой чистоты размером от 3 до 10 нм с улучшенными тепло- и электрофизическими свойствами.

Способ синтеза наноалмазов, включающий подготовку углеродсодержащей смеси, размещение углеродсодержащей смеси в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, отличающийся тем, что в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2, в частности с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.



 

Похожие патенты:

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус конического зеркала и собирающей линзы.

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники.

Группа изобретений относится к способам формирования монокристаллического режущего элемента для бурового долота с закрепленными резцами и к буровому долоту для бурения буровой скважины.

Изобретение может быть использовано для изготовления прессовок поликристаллического алмаза и режущего инструмента. Наноразмерный одно- или многослойный материал, содержащий графен, спекают примерно 5 мин в отсутствие катализатора - переходного металла при давлении и температуре по меньшей мере 45 кбар и 700°С, соответственно.

Изобретение относится к способам получения монолитных соединений стержней из поликристаллических алмазов, предназначенных для использования в производстве приборов электроники, оптики, СВЧ-техники, в частности для изготовления диэлектрических опор в лампах бегущей волны (ЛБВ), использующих низкий коэффициент поглощения на частотах генерации.

Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок. Способ получения кристаллических алмазных частиц включает добавление к порошку наноалмазов, полученных детонационным синтезом, циклоалкана (циклического насыщенного углеводорода) или многоосновного спирта в количестве 5-85 мас.
Изобретение относится к технологии обработки алмазов, а именно к методам придания им заданной геометрической формы, и востребовано в промышленности для производства электроники.
Изобретение относится к области создания материалов для пассивных и активных элементов устройств фотоники, квантовой электроники и оптики. Способ образования центров окраски в алмазе включает облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ дозой 100-120 част./см2 на каждый А-агрегат.

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов.

Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза.

Изобретение может быть использовано в производстве лекарственных средств, изделий медицинского назначения, изделий для сельского хозяйства и садоводства, бытовых и промышленных товаров.

Изобретение может быть использовано в электронике, в производстве телекоммуникационного оборудования и электродвигателей. Способ получения субмикронных порошков феррита кобальта(II) включает приготовление исходных реакционных водных растворов, содержащих соли кобальта и железа.

Изобретение может быть использовано в лакокрасочной промышленности. Способ получения красных железоокисных пигментов включает получение раствора нитрата железа (II) и первого содержащего оксид азота потока путем реакции железа с азотной кислотой.

Изобретение может быть использовано в производстве бумаги, чернил, красок, пластмасс. Способ получения продукта осажденного карбоната кальция включает в себя получение водной суспензии осажденных затравок карбоната кальция путем карбонизации суспензии Са(ОН)2 в присутствии 0,005-0,030 моль Sr в форме Sr(OH)2 на моль Са(ОН)2.

Изобретение может быть использовано в производстве шин, напольных покрытий, изоляционных материалов. Предложен осажденный диоксид кремния, у которого удельная поверхность по методу BET составляет от 45 до 550 м2/г, при этом суммарное содержание поликарбоновой кислоты и соответствующего карбоксилата, выраженное как суммарное содержание углерода, составляет по меньшей мере 0,15 мас.%.

Изобретение может быть использовано в производстве бумаги, продуктов питания, сельскохозяйственных изделий, красок, лаков. Крошка включает в свой состав по меньшей мере один содержащий карбонат кальция материал и характеризуется содержанием сухого вещества в интервале 78,0-90,0 мас.% в расчете на общую массу.

Изобретение относится к технологии получения новых магнитных материалов - оксиборатов Cu2Mn3+1-xGaxBO5 (0≤x<1), включающих ионы переходных металлов, которые могут найти применение в химической промышленности, развитии магнитных информационных технологий, создании магнитных датчиков.

Изобретение может быть использовано при производстве катализаторов, присадок к дизельному топливу, люминофоров, а также в оптическом стекловарении. Для осуществления способа проводят обработку высокочистого диоксида церия при 70-80оС концентрированной азотной кислотой, содержащей 1,5-5 мас.% плавиковой кислоты от стехиометрического, последующее добавление перекиси водорода в 1,5-5-кратном избытке от стехиометрического количества, нагрев реакционной массы до 90-100°С при перемешивании, охлаждение и фильтрацию полученного раствора.

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с выпускным отверстием.

Изобретение может быть использовано в производстве строительных материалов на известковой или цементной основе, асфальта. Способ восстановления шестивалентного хрома в оксидных твердых материалах включает смешивание оксидного твердого материала, содержащего Cr(VI), с углеродсодержащим соединением.

Изобретение относится к системе для производства ароматического соединения, содержащей: первое производственное устройство, синтезирующее аммиак, метанол или водород из природного газа; второе производственное устройство, синтезирующее ароматическое соединение из природного газа посредством каталитической реакции и подающее газовую смесь, в основном включающую непрореагировавший метан и водород в качестве побочного продукта, в первое производственное устройство для получения аммиака, метанола или водорода; и устройство отделения водорода, выделяющее водород из продувочного газа, образующегося при реакции синтеза в первом производственном устройстве, и подающее водород во второе производственное устройство для восстановления катализатора, используемого в каталитической реакции.
Наверх