Термолюминесцентное вещество

Изобретение относится к материалам дозиметрии ионизирующих излучений и может быть использовано в приборах регистрации излучений в окружающей среде, в радиологических исследованиях пищевых продуктов. Термолюминесцентное вещество имеет состав PbCd2B6O12: Eu3+ и получено при добавлении оксида европия Eu2O3 в шихту, содержащую следующие компоненты, мас.%: PbO - 24,99, CdO - 30,27, Н3ВО3 - 43,71, Eu2O3 - 1,03. Шихту подвергают трехступенчатому отжигу на воздухе при температурах 200 оС, 400 оС и 600 оС в течение 10, 20 и 80 ч соответственно. Полученное термолюминесцентное вещество является влагоустойчивым и имеет высокую интенсивность термолюминесценции. 1 табл., 2 ил., 3 пр.

 

Изобретение относится к материалам для оптоэлектроники и может быть использовано в производстве сцинтилляционных устройств и приборов регистрации излучений, датчиках контроля радиационного фона окружающей среды.

Термолюминесцентный материал соответствует химической формуле PbCd2B6O12: Eu3+ и содержит, мас.%: PbO - 24,99, CdO - 30,27, Н3ВО3 - 43,71, Eu2O3 - 1,03. Интенсивность термолюминесценции 0,31 отн. ед., таблица.

Термолюминесценция (ТЛ) - один из методов дозиметрического контроля ионизирующих излучений. В некоторых веществах под действием излучения образуются носители зарядов (электроны и дырки), локализующиеся в центрах захвата. В результате происходит накопление поглощенной энергии, которая высвобождается при внешнем воздействии (стимулировании). Для термолюминесценции внешним воздействием является нагрев вещества. При нагревании вещества наблюдается свечение только в случае, если кристаллы предварительно облучались любым ионизирующим излучением.

Известны термолюминесцентные материалы на основе фторида лития LiF: Mg, Ti (TLD-100), его изотопные варианты с Li6 и Li7 (TLD-600 и TLD-700) (производство Harshaw, США) [1] и тетрабората лития Li2B4O7: Mn [2].

[1]. The Harshaw Chemical Company. Crystal and Electronic Products. 6801 Cochran Rd. Solon, Ohio 44139, USA.

[2]. Schulman J.H., Kirk. R.D., West E.J. Use of lithium borate for thermoluminescence dosimetry. Proceedings of the International Conference on Luminescence Dosimetry, Stanford University, CONF-650637, 1967, pp. 113-118).

Основным недостатком этих материалов является гигроскопичность из-за наличия в их химическом составе щелочного металла. Поэтому влажность является препятствием для получения материалов, а также оказывает неблагоприятное влияние на их термолюминесцентные характеристики.

Наиболее близким по составу к заявляемому изобретению, прототипом, является термолюминесцентный материал на основе тетрабората лития Li2B4O7, легированного ионами марганца Mn [2]. Термолюминесцентный фосфор Li2B4O7: Mn был произведен для измерения радиационной дозы.

Недостатком материала является низкая интенсивность (чувствительность) термолюминесценции, а эмиссия (ТЛ), наблюдаемая при 600 нм, далека от максимума чувствительности большинства фотоумножителей.

Целью изобретения является разработка влагоустойчивого материала и увеличение его интенсивности термолюминесценции.

Поставленная цель достигается тем, что термолюминесцентное вещество содержит в основе смешанный борат свинца-кадмия, дополнительно содержит ионы Eu3+, образуя при этом вещество состава PbCd2B6O12: Eu3+. Состав термолюминесцентного вещества соответствует мас.%: PbO - 24,99, CdO - 30,27, Н3ВО3 - 43,71, Eu2O3 - 1,03. Соотношение компонентов заявляемого состава обусловлено областью фазовой однородности двойного бората PbCd2B6O12: Eu3+, образующегося в системе PbO-CdO-B2O3: Eu3+.

Термолюминесцентный материал PbCd2B6O12: Eu3+ изоструктурен борату PbCd2B6O12 и кристаллизуется в моноклинной сингонии с пр. гр. Р 21/n [3]. ([3] Нао Y.-C., Xu X., Kong F., Song J.-L. and Mao J.-G. PbCd2B6O12 and EuZnB5O10: syntheses, crystal structures and characterizations of two new mixed metal borates // Crys EngComm, 2014, V. 16, P. 7689-7695).

Кристаллическая структура PbCd2B6O12: Eu3+ представляет собой трехмерный каркас [Cd2B6O12]2-, состоящий из [(B6O12)6-]n слоев, параллельных плоскости ab, димеров из Cd(1)O7 - полиэдров и одномерных цепочек Cd(2)O6 - октаэдров, а ионы Pb2+ и Eu3+ расположены в пустотах каркаса.

Данное изобретение иллюстрируется следующими примерами:

Пример 1. Шихту, содержащую 0,9450 г (25,48 мас.%) PbO, 1,1190 г (30,23 мас.%) CdO, 1,6191 г (43,66 мас.%) Н3ВО3 и 0,0231 г (0,63 мас.%) Eu2O3, гомогенизировали тщательным растиранием в агатовой ступке в среде этилового спирта. Полученную смесь подвергали трехступенчатому отжигу в платиновом тигле на воздухе при 200°C, затем 400°C и 600°C в течение 10, 20 и 80 часов соответственно.

Пример 2. Шихту, содержащую 0,9270 г (24,99 мас.%) PbO, 1,1229 г. (30,27 мас.%) CdO, 1,6215 г (43,71 мас.%) H3BO3 и 0,0384 г (1,03 мас.%) Eu2O3, гомогенизировали тщательным растиранием в агатовой ступке в среде этилового спирта. Полученную смесь подвергали трехступенчатому отжигу в платиновом тигле на воздухе при 200°C, затем 400°C и 600°C в течение 10, 20 и 80 часов соответственно.

Полученное термолюминесцентное вещество имеет интенсивность термолюминесценции почти в 2 раза выше [1, 4], чем прототип. Результаты измерений интенсивности термолюминесценции приведены в таблице.

Пример 3. Шихту, содержащую 0,9090 г (24,49 мас.%) PbO, 1,1247 г (30,30 мас.%) CdO, 1,6242 г (43,76 мас.%) H3BO3 и 0,0231 г (1,45 мас.%) Eu2O3, гомогенизировали тщательным растиранием в агатовой ступке в среде этилового спирта. Полученную смесь подвергали трехступенчатому отжигу в платиновом тигле на воздухе при 200°C, затем 400°C и 600°C в течение 10, 20 и 80 часов соответственно.

Термолюминесцентный анализ проводили на установке, регистрирующей интенсивность излученного света в зависимости от температуры. Установка состояла из печи, терморегулятора, самописца и фотоэлектронного умножителя ФЭУ-85 (область спектральной чувствительности 300-600 нм).

В качестве источника облучения использовали контрольный стронций-иттриевый β-источник с дозой облучения 7,5⋅10-3 Гр. Результаты измерений термолюминесцентной чувствительности нормировались по сигналу от эталона, которым служил промышленный фторид лития LiF: Mg, Ti (ТД-100).

На фиг. 1 показаны зависимости интенсивности термолюминесценции Iотн образцов с различным содержанием ионов активатора от времени воздействия β-источником облучения. Из фиг. 1 видно, что максимальный выход ТЛ наблюдается для всех образцов при минимальной выдержке их под действием излучения β-источника, соответствующей 0,5 ч. В двух других образцах интенсивность ТЛ ниже приблизительно в 3 раза и практически не зависит от продолжительности воздействия облучением. На фиг. 2 представлены кривые термического высвечивания образцов PbCd2B6O12 с разным содержанием ионов активатора (1-0,63, 2-1,03, 3-1,45 мас.%) при минимальном воздействии облучателя - 0,5 ч. Сравнительный анализ экспериментальных данных (фиг. 1 и фиг. 2) показывает, что максимальная интенсивность ТЛ наблюдается при содержании активатора 1,03 мас.%.

Как следует из полученных результатов, техническим результатом изобретения является повышение интенсивности термолюминесценции заявляемым составом вещества PbCd2B6O12: Eu3+. Интенсивность свечения термолюминесцентного бората состава PbCd2B6O12: Eu3+ с содержанием ионов активатора 1,03 мас.% превышает интенсивность термолюминесценции прототипа - промышленного термолюминофора Li2B4O7: Mn (ТЛД-800).

Полученное соединение может найти техническое применение как материал для дозиметрии слабого ионизирующего излучения.

Примечание: источник возбуждения - контрольный стронций-иттриевый β-источник; Iотн* соответствует интенсивности термолюминесцентного материала относительно эталона (промышленного термолюминофора LiF: Mg, Ti (ТД-100)); b - чувствительность к свету.

([4]. Серия норм МАГАТэ по безопасности. Оценка профессионального облучения от внешних источников ионизирующего излучения № RS-g-1.3; http://www-pub.iaea.org/MTCD/publications/PDF/Pub1076r_web.pdf.).

Краткое описание чертежей

Фиг. 1. Зависимости интенсивности термолюминесценции для образцов с разным содержанием ионов Eu3+ (1-0,63, 2-1,03, 3-1,45 мас.%) от времени облучения.

Фиг. 2. Кривые термического высвечивания образцов PbCd2B6O12 с разным содержанием ионов активатора (1-0,63, 2-1,03, 3-1,45 мас.%) при минимальном воздействии облучателя - 0,5 ч.

Термолюминесцентное вещество, содержащее оксиды свинца PbO, кадмия CdO, борную кислоту Н3ВО3, отличающееся тем, что имеет состав PbCd2B6O12 : Eu3+ и получено при добавлении в указанную шихту оксида европия Eu2O3 при следующем соотношении компонентов, мас.%: PbO - 24,99, CdO - 30,27, Н3ВО3 - 43,71, Eu2O3 - 1,03.



 

Похожие патенты:

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ).

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а также для регистрации тепловых нейтронов.

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900÷1000°C в течение 1-3 часов.

Изобретение относится к химической промышленности и дозиметрии излучений. Для получения прозрачного тканеэквивалентного детектора излучений на основе Li2B4O7 осуществляют следующие этапы: a) смешивают компоненты исходного реагента детектора, включающие деионизированную воду, борную кислоту H3BO3, примесь Mn и связующий материал двуокись кремния SiO2; b) повышают температуру смеси до 75-85°C, добавляют карбонат лития Li2CO3 и побочную примесь Be2+, которая не уменьшает прозрачность детектора в диапазоне длин волн 320-750 нм; c) осуществляют старение, сушку и предварительный обжиг полученного исходного реагента; d) измельчают, шлифуют и просеивают исходный реагент; e) формуют под давлением; f) спекают сформованные корпуса детектора.

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия.
Изобретение относится к технологии изготовления термолюминесцентных дозиметров и может быть использовано в исследованиях воздействия радиации на вещества и биологические объекты, а также в аппаратуре дозиметрического контроля.

Изобретение может быть использовано в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, рентгеновской аппаратуры.

Изобретение относится к области измерения ионизирующих излучений при текущем и аварийном индивидуальном дозиметрическом контроле. .

Изобретение относится к радиационной физике, является устройством для определения поглощенной дозы ионизирующего -излучения в термолюминесцентном детекторе и может быть использовано при персональной дозиметрии, при мониторинге радиационной обстановки в различных условиях.

Изобретение относится к радиационной физике, является способом оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов и может быть использовано при персональной дозиметрии при мониторинге радиационной обстановки в различных условиях.
Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных ламп, светоизлучающих диодов, плазменных дисплейных панелей, электронно-лучевых трубок и медицинских приборов для лечения онкозаболеваний методом фотодинамической терапии.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение может быть использовано в светодиодах. Смешивают гидроксиды иттрия, церия, галлия и алюминия.

Изобретение относится к новому люминесцентному веществу, которое может быть использовано в качестве активных сред низкопороговых твердотельных лазеров инфракрасного диапазона с оптической накачкой, в устройствах информатики и лазерной техники для отображения знаковой, графической и телевизионной информации, в качестве сцинтилляторов.

Изобретение может быть использовано при изготовлении светящихся красок, дорожной разметки, эвакуационных знаков. Реакционную смесь готовят путем механического перемешивания в планетарной мельнице в течение 20 минут порошков пероксида стронция, оксида диспрозия(III), оксида европия(III), оксида алюминия и металлического алюминия.

Изобретение относится к квантовой электронике, лазерной оптике, функциональной электронике и может быть использовано при изготовлении оптических устройств, активных сред низкопороговых твердотельных лазеров инфракрасного диапазона с оптической накачкой, устройств для отображения знаковой, графической и телевизионной информации, а также сцинтилляторов.

Изобретение относится к материаловедению и может быть использовано для получения надежного люминесцентного маркера в медицине и биологии. Сначала смешивают водные растворы, содержащие катионы Са2+ и Eu3+, при контроле их концентрации и соотношении в растворе.
Изобретение может быть использовано в биомедицине для визуализации кровеносных сосудов, в электронике для ап-конверсионных преобразователей в ячейках кремниевых солнечных батарей.

Изобретения могут быть использованы в медицинских томографических устройствах, в устройствах для измерения излучения в области физики высоких энергий и разведки природных ресурсов.

Изобретение может быть использовано при производстве люминесцентных материалов для источников и преобразователей света. Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5, содержит смесь порошков оксида иттрия(III), оксида алюминия, оксида церия(III), оксида гадолиния(III), восстановителя - металлического алюминия и перхлората натрия в качестве окислителя при следующих соотношениях компонентов, мас.
Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных ламп, светоизлучающих диодов, плазменных дисплейных панелей, электронно-лучевых трубок и медицинских приборов для лечения онкозаболеваний методом фотодинамической терапии.
Наверх