Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов. Это достигается тем, что в способе определения эффективности взрывозащитного устройства в испытательном макете взрывоопасного объекта, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом, устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте, и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования.

Наиболее близким техническим решением к заявленному объекту является способ определения эффективности взрывозащитного устройства патенту РФ №2488074, F16D 3/04 (прототип), в котором испытывают корпус клапана, затвор, теплоизолирующий и разрывной элементы.

Недостатком известного решения является сравнительно невысокая надежность срабатывания разрывной мембраны.

Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов.

Это достигается тем, что в стенде для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта, в испытательном боксе устанавливается макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрация протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором - крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом, устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

На фиг. 1 показана общая принципиальная схема стенда для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта, на фиг. 2 - схема потолочной части макета, на фиг. 3 - схема размещения тензорезисторов на динамометре, скорректированная с общей принципиальной схемой устройства по позициям блока 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта, на фиг. 4 - схема варианта выполнения потолочной части макета.

Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта содержит макет 1 взрывоопасного объекта с установленным в нем взрывным осколочным элементом 14, с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.

Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина.

На штырях 19 (фиг. 2), к их горизонтальной перекладине (листам-упорам), закреплены динамометры 20 (фиг. 3), предназначенные для измерения взрывного усилия, развиваемого взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19 над проемом 15. Каждый из динамометров 20 выполнен в виде по крайней мере двух листовых рессор 21 и 22, один конец каждой из которой жестко закреплен на листах-упорах, а второй - на свободно размещенной и охватывающей штыри втулке 23. При этом листовые рессоры 21 и 22 выполнены арочного типа с выпуклостью, направленной в сторону от штырей, а на периферийной части выпуклости каждой листовой рессоры 21 и 22 закреплены тензорезисторы 24 и 25, причем на одной рессоре 21 - с внутренней стороны, а на другой 22 - с внешней для регистрации как напряжений сжатия, так и растяжения, при этом сигналы с тензорезисторов 24 и 25 поступают по каналам 26 и 27 на тензоусилитель 28, а с него - на блок 17 (фиг. 1) записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 (фиг. 1) записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1, и закрытым взрывозащитным элементом 16 по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен с входом блока 17 записывающей и регистрирующей аппаратуры.

К горизонтальной перекладине штырей 19 (фиг. 2 и 3) закреплена верхняя часть 31 индуктивного датчика перемещения (фиг. 3), предназначенного для измерения вертикального подъема взрывозащитного элемента 16 от взрывного усилия через проем 15, расположенный в потолочной части макета 1, а нижняя часть 32 индуктивного датчика перемещения жестко закреплена в потолочной части макета 1, находящейся рядом с взрывозащитным элементом 16, при этом сигнал с индуктивного датчика перемещения по каналу 33 поступает на тензоусилитель 28, а с него – на блок 17 (фиг. 1) записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 (фиг. 1) записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

Индуктивный датчик перемещения предназначен для регистрации вертикального подъема взрывозащитного элемента 16 от взрывного усилия, развиваемого от взрывных осколочных элементов 14.

По обе стороны от датчика давления 9 расположены датчики температуры 29 и влажности 30 (фиг. 1), контролирующие термовлажностный режим в макете 1, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Устройство монтируется следующим образом. Поддон 3 с помощью проставок 10 и болтов (не показано) крепится к опорным лапам (не показано) макета 1, а также через проставки (не показано) крепится болтовым соединением на раму транспортной системы 6. Защитный чехол 2 после предварительной примерки и отладки подвесной системы 5 подвязывается к потолку испытательного бокса 8 над макетом 1, поддоном 3 и транспортной системой 6. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей, чехол монтируется вокруг макета 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1.

В макете 1 устанавливают набор взрывных осколочных элементов 14, состоящего по крайней мере из двух взрывных осколочных элементов, соединенных соответственно с инициаторами взрыва 13, при этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту, по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов, и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов.

Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта работает следующим образом.

В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17 и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором - крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют с входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 29 и влажности 30, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры. При этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту, по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов, и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов. После обработки полученных экспериментальных данных составляют математическую модель, прогнозирующую аварии на взрывоопасном объекте.

Возможен вариант (фиг. 4), когда к горизонтальной перекладине штырей 19, на которой закреплена верхняя часть 31 индуктивного датчика перемещения, предназначенного для измерения вертикального подъема взрывозащитного элемента 16 от взрывного усилия через проем 15, со стороны взрывозащитного элемента 16, жестко закреплена демпфирующая пластина 34, к которой оппозитно панели и в направлении ударной волны присоединено буферное устройство 35, выполненное в виде конуса, вершина которого находится на оси проема 15 защищаемого объекта.

Возможен вариант (фиг. 4), когда внутренняя полость демпфирующей пластины 34, заполнена трехслойной симметричной дисперсной системой, при этом центральный слой (не показан), являющийся слоем симметрии демпфирующей пластины 34, как объемного тела с внутренней полостью, и поверхностями, эквидистантными поверхностям панели, выполняют из вибродемпфирующего материала, а прилегающие к нему слои заполняют дисперсной системой воздух-свинец.

Возможен вариант выполнения демпфирующей пластины 34, когда центральный слой, являющийся слоем симметрии объемного тела с внутренней полостью, и поверхностями, эквидистантными поверхностям панели, выполняют комбинированным, состоящим из трех слоев: средний слой выполняют из жесткого вибродемпфирующего материала, например типа «Агат» или «Антивибрит», а симметрично расположенные относительно него верхний и нижний слои выполняют из сплошного демпфирующего материала, в котором использована губчатая резина, или иглопробивной материал типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или нетканый вибродемпфирующий материал (не показано).

Возможен вариант (фиг. 4), когда буферное устройство 35, жестко закрепленное на демпфирующей пластине 34, выполнено в виде полого конуса из резинокордной оболочки, заполненной сжатым воздухом (газом), в котором размещена разрывная мембрана 36 с тензоэлементом, сигнал с которого через тензоусилитель 28, поступает в блок 18 обработки записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

1. Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта, содержащий системы мониторинга и обработки полученной информации об опасной зоне, он содержит размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, при этом защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, а внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко вмонтирован в потолок макета, а на втором - имеется горизонтальная перекладина, а между взрывным осколочным элементом и проемом, выполненным в потолочной части макета, и закрытым взрывозащитным элементом по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен с входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены с входом блока записывающей и регистрирующей аппаратуры, отличающийся тем, что в макете установлен набор взрывных осколочных элементов, состоящий по крайней мере из двух взрывных осколочных элементов, соответственно соединенных с инициаторами взрыва, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов, и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов, а на штырях, к их горизонтальной перекладине, закрепляют динамометры, предназначенные для измерения взрывного усилия, развиваемого взрывозащитным элементом, который устанавливают по свободной посадке на трех упругих штырях над проемом, причем каждый из динамометров выполняют в виде по крайней мере двух листовых рессор, один конец каждой из которой жестко закрепляют на листах-упорах, а второй - на свободно размещенной и охватывающей штыри втулке, при этом листовые рессоры выполняют арочного типа с выпуклостью, направленной в сторону от штырей, а на периферийной части выпуклости каждой листовой рессоры закрепляют тензорезисторы, причем на одной рессоре - с внутренней стороны, а на другой - с внешней для регистрации как напряжений сжатия, так и растяжения, а к горизонтальной перекладине штырей закреплена верхняя часть индуктивного датчика перемещения, предназначенного для измерения вертикального подъема взрывозащитного элемента от взрывного усилия через проем, расположенный в потолочной части макета, при этом нижняя часть индуктивного датчика перемещения жестко закреплена в потолочной части макета, находящейся рядом с взрывозащитным элементом, а сигнал с индуктивного датчика перемещения поступает на тензоусилитель, а с него - на блок записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем буферное устройство жестко закреплено на демпфирующей пластине и выполнено в виде полого конуса из резинокордной оболочки, заполненной сжатым воздухом, в котором размещена разрывная мембрана с тензоэлементом, сигнал с которого через тензоусилитель, поступает в блок обработки записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта.

2. Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта по п. 1, отличающийся тем, что к горизонтальной перекладине штырей, на которой закреплена верхняя часть индуктивного датчика перемещения, предназначенного для измерения вертикального подъема взрывозащитного элемента от взрывного усилия через проем, со стороны взрывозащитного элемента, жестко закреплена демпфирующая пластина, к которой оппозитно панели и в направлении ударной волны присоединено буферное устройство, выполненное в виде конуса, вершина которого находится на оси проема защищаемого объекта.



 

Похожие патенты:

Изобретение относится к области хранения и транспортировки взрывчатых веществ (ВВ) и взрывоопасных легковоспламеняющихся жидких грузов. Транспортно-технологический взрывобезопасный контейнер включает в себя емкость в виде металлического сосуда с узлами заполнения и опорожнения.

Изобретение относится к машиностроению и может быть использовано для взврывозащиты технологического оборудования. Используют систему мониторинга с обработкой полученной информации об опасной зоне в испытательном боксе, где устанавливают макет взрывоопасного объекта.

Изобретение относится к средствам обеспечения безопасности взрывных работ. Взрывозащитная камера оснащена взрывозащитным клапаном, содержащим корпус, теплоизолирующий и разрывной элементы, и футерованный грузовой затвор, подвижно соединенный с корпусом клапана.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования.Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов.Это достигается тем, что в способе определения эффективности взрывозащитного устройства в испытательном макете взрывоопасного объекта в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

Изобретение относится к области хранения и транспортировки взрывчатых веществ. Взрывобезопасный контейнер включает емкость в виде металлического сосуда с узлами заполнения и опорожнения.

Изобретение относится к стендам для определения эффективности предохранительных конструкций. Стенд содержит систему мониторинга и обработки полученной информации об опасной зоне.

Изобретение относится к машиностроению, в частности к предохранительным устройствам систем безопасности для взрывоопасного оборудования. Технический результат - повышение эффективности защиты технологического оборудования от аварийных ситуаций путем увеличения быстродействия и надежности срабатывания системы.

Изобретение относится к области взрывозащиты технологического оборудования. Стенд для исследований параметров взрывозащитных устройств содержит системы мониторинга и обработки полученной информации об опасной зоне, размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон.

Изобретение относится к контейнерам для осуществления перевозки, хранения и подрыва взрывных устройств или взрывчатых веществ (ВВ), а также для подрыва устройств, начиненных отравляющими веществами.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов. Это достигается тем, что в способе определения эффективности взрывозащитного устройства в испытательном макете взрывоопасного объекта, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом, устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте, и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. 1 з.п. ф-лы, 4 ил.

Наверх