Удаление ароматических примесей из потока алкенов при помощи кислотного катализатора, такого как кислота льюиса

Изобретение относится к эффективному способу удаления ароматических примесей из потока алкенов, в частности к способу получения химической композиции, содержащей ароматическое соединение α в массовой концентрации В на основании общей массы химической композиции, предусматривающему a. подачу следующих компонентов реакции: i. химической композиции, содержащей следующее: a) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции и b) олефин в количестве от приблизительно 50 до приблизительно 99,99 масс. % на основании общей массы химической композиции, где олефин b) представляет собой С410олефин, и ii. кислоту, где кислота содержит кислоту Льюиса; и b. приведение в реакцию компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции; причем концентрация В меньше, чем концентрация А. Изобретение также относится к способу получения продукта последующей переработки, предусматривающему i. получение алкена при помощи вышеуказанного способа и ii. проведение реакции алкена с получением продукта последующей переработки. 2 н. и 17 з.п. ф-лы, 1 пр., 1 табл., 1 ил.

 

Область техники

В настоящем документе раскрыт способ удаления ароматических примесей из потока алкенов при помощи кислотного катализатора. Также раскрыт способ получения продуктов последующей переработки, предпочтительно полимеров и формованных изделий.

Уровень техники

Алкены, в частности α-олефины, уже в течение длительного времени требуются в химической промышленности. Из-за наличия двойной связи их можно превращать в ряд других ценных соединений, таких как спирты, альдегиды, кетоны и органические галогениды, среди прочего. В реакциях полимеризации их можно использовать в качестве мономера или сомономера, и они являются особенно ценными при получении пластмасс. Ввиду токсичности, экологической безопасности и эффективности производства желательно получать поток алкенов со сниженным содержанием некоторых ароматических соединений, в частности бензола. Снижение содержания некоторых ароматических соединений также является проблемой с точки зрения соответствия различным нормам государственного природоохранного законодательства. Остается необходимость в данной области техники в способах снижения содержания некоторых ароматических соединений, в частности бензола, в потоках алкенов.

Сущность изобретения

Согласно различным вариантам осуществления раскрыты способы получения химической композиции, содержащей ароматическое соединение.

Способ получения химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции, предусматривает: а. подачу следующих компонентов реакции: i. химической композиции, содержащей следующее: a) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции и b) олефин в количестве от приблизительно 50 до приблизительно 99,99 масс. % на основании общей массы химической композиции, и ii. кислоты; и b. проведения реакции компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции; причем концентрация В меньше, чем концентрация А. Эти и другие признаки и характеристики более подробно описаны ниже.

Краткое описание чертежей

Далее следует краткое описание графических материалов, на которых подобные элементы пронумерованы одинаково и которые представлены для целей иллюстрации типичных вариантов осуществления, раскрытых в настоящем документе, а не с целями их ограничения.

На фиг. 1 представлена схематическая принципиальная технологическая схема для снижения содержания некоторых ароматических соединений.

Подробное описание изобретения

Настоящая заявка в общем основана на преодолении по меньшей мере одной из проблем, существующих в предшествующем уровне техники, в отношении снижения содержания некоторых ароматических соединений в потоке алкенов, в частности снижения содержания бензола в потоке алкенов, в частности, если алкен представляет собой альфа-олефин. Она относится, в частности, к низким концентрациям ароматического соединения, которое следует удалять в промышленном способе.

Другой проблемой является обеспечение эффективного и постоянного источника алкенов для получения продуктов последующей переработки и формованных изделий.

Вклад в решение по меньшей мере одной из проблем, определенных в настоящем документе, осуществляется за счет способа получения химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции, предусматривающего:

а. подачу следующих компонентов реакции:

i. химической композиции, содержащей следующее:

а) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции,

b) олефина количестве от приблизительно 50 до приблизительно 99,99 масс. %, предпочтительно от приблизительно 80 до приблизительно 99,99 масс. %, более предпочтительно от приблизительно 95 до приблизительно 99,99 масс. %, наиболее предпочтительно от приблизительно 99 до приблизительно 99,99 масс. %, на основании общей массы химической композиции,

ii. кислоты;

b. приведение в реакцию компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции;

причем концентрация В меньше, чем концентрация А.

Согласно одному варианту осуществления способа олефин b) представляет собой α-олефин.

Согласно одному варианту осуществления способа олефин b) представляет собой С220олефин, предпочтительно С215олефин, более предпочтительно С410олефин.

Согласно одному варианту осуществления способа олефин b) представляет собой С620олефин, предпочтительно С615олефин, более предпочтительно С610олефин.

Согласно одному варианту осуществления способа концентрация А составляет от приблизительно 2 частей на миллион (ppm) до приблизительно 10 массовых процентов (масс. %), предпочтительно от приблизительно 3 частей на миллион до приблизительно 5 масс. %, более предпочтительно от приблизительно 4 частей на миллион до приблизительно 1 масс. %, на основании общей массы химической композиции i.

Согласно одному варианту осуществления способа отношение А:В составляет от приблизительно 1:0 до приблизительно 1:0,1, предпочтительно от приблизительно 1:0 до приблизительно 1:0,01, более предпочтительно от приблизительно 1:0,1 до приблизительно 1:0,01.

Согласно одному варианту осуществления способа ароматическое соединение представляет собой бензол.

Согласно одному варианту осуществления способа дополнительный олефин присутствует в качестве компонента а), причем дополнительный олефин отличается от олефина b).

Согласно одному варианту осуществления способа дополнительный олефин представляет собой С220олефин, предпочтительно С215олефин, более предпочтительно С410олефин.

Согласно одному варианту осуществления способа кислота содержит кислоту Льюиса.

Согласно одному варианту осуществления способа кислота Льюиса имеет вид AlaXbRc, где:

- X представляет собой галоген,

- R представляет собой алкильную группу или водород, предпочтительно этил,

- а равняется 1 или 2,

- b представляет собой целое число от 0 до 3*а, предпочтительно от а до 2*а, и

- с представляет собой целое число равное 3*a-b.

Согласно одному варианту осуществления способа кислота Льюиса представляет собой Al2Cl3Eth3.

Согласно одному варианту осуществления способа кислота дополнительно содержит протонное соединение.

Согласно одному варианту осуществления способа протонное соединение содержит имидазолий, аммоний или комбинацию, содержащую по меньшей мере одно из вышеуказанного.

Согласно одному варианту осуществления способа кислота Льюиса находится на стадии b. в концентрации от приблизительно 0,1 до приблизительно 50 масс. %, предпочтительно от приблизительно 0,5 до приблизительно 20 масс. %, более предпочтительно от приблизительно 1 до приблизительно 5 масс. %, на основании общей массы компонентов реакции.

Согласно одному варианту осуществления способа кислота Льюиса находится на стадии b. в концентрации от приблизительно 1 до приблизительно 20 масс. %, предпочтительно от приблизительно 2 до приблизительно 10 масс. %, более предпочтительно от приблизительно 3 до приблизительно 5 масс. %.

Согласно одному варианту осуществления способа химическая композиция i. представляет собой гомогенную жидкость.

Согласно одному варианту осуществления способа реакцию b. проводят при температуре от приблизительно 0 до приблизительно 250°С, предпочтительно от приблизительно 30 до приблизительно 200°С, более предпочтительно от приблизительно 80 до приблизительно 150°С.

Вклад в достижение по меньшей мере одной из указанных выше целей осуществляется за счет способа получения продукта последующей переработки, предусматривающего:

i. получение алкена способом, описанным в настоящем документе; и

ii. проведение реакции алкена с образованием продукта последующей переработки.

Согласно одному варианту осуществления способа получения продукта последующей переработки продукт последующей переработки представляет собой полимер.

Согласно одному варианту осуществления способа получения продукта последующей переработки продукт последующей переработки представляет собой полиэтен или полипропен (например, полиэтилен или полипропилен).

Согласно одному варианту осуществления способа получения продукта последующей переработки продукт последующей переработки превращают в формованное изделие.

Вклад в решение по меньшей мере одной из проблем, определенных в настоящем документе, осуществляют за счет способа обработки потока олефинов, предпочтительно потока α-олефинов, для снижения содержания некоторого ароматического соединения α, предпочтительно бензола.

Согласно одному варианту осуществления содержание ароматического соединения α снижают посредством реакции алкилирования с получением алкилированного ароматического соединения, отличного от ароматического соединения α. Согласно одному аспекту данного варианта осуществления алкилированное ароматическое соединение может отличаться от ароматического соединения α одним дополнительным алкилированием или множеством дополнительных алкилирований. Алкилированное ароматическое соединение предпочтительно отличается от ароматического соединения α одним, двумя или тремя дополнительными алкилированиями. Согласно одному аспекту данного варианта осуществления продукционная композиция содержит по меньшей мере два или более отдельных алкилированных ароматических соединений, которые могут отличаться различным числом алкильных групп, или различным типом алкильных групп, или комбинацией обоих вариантов. Согласно другому аспекту по меньшей мере 50 масс. %, предпочтительно по меньшей мере 90 масс. %, более предпочтительно по меньшей мере 99 масс. %, алкилированного ароматического продукта состоит из одного продукта алкилирования.

Согласно одному варианту осуществления реакция ароматического соединения, предпочтительно реакция алкилирования, катализируется кислотой. Согласно одному аспекту данного варианта осуществления может присутствовать дополнительный катализатор, отличный от кислотного катализатора.

Специалист в данной области техники может выбрать условия реакции, как он считает, подходящие для повышения предпочтительных параметров реакции.

Предпочтительно, чтобы реакцию проводили в жидкой фазе, предпочтительно в одной гомогенной жидкой фазе.

Предпочтительно, чтобы реакцию проводили при температуре от приблизительно 0 до приблизительно 250°С, предпочтительно от приблизительно 0 до приблизительно 200°С, более предпочтительно от приблизительно 0 до приблизительно 150°С.

Предпочтительно, чтобы реакцию проводили под давлением, которое позволяет жидкофазную реакцию. Согласно одному варианту осуществления реакцию проводят под давлением от приблизительно 0,1 мегапаскаль (МПа) до приблизительно 12 МПа (от приблизительно 1 до приблизительно 120 бар), предпочтительно от приблизительно 1 МПа до приблизительно 6 МПа (от приблизительно 10 до приблизительно 60 бар), более предпочтительно от приблизительно 2 МПа до приблизительно 5,5 МПа (от приблизительно 20 до приблизительно 55 бар).

Вклад в решение по меньшей мере одной из проблем, раскрытых в настоящем документе, осуществляется за счет способа обработки химической композиции, содержащей следующее:

a) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции, и

b) олефин количестве от приблизительно 50 до приблизительно 99,99 масс. %, предпочтительно от приблизительно 80 до приблизительно 99,99 масс. %, более предпочтительно от приблизительно 95 до приблизительно 99,999 масс. %, наиболее предпочтительно от приблизительно 99 до приблизительно 99,9999 масс. %, на основании общей массы химической композиции.

Олефин можно выбирать согласно конкретному применению. Предпочтительные олефины представляют собой α-олефины и/или олефины, которые используют в качестве мономеров и/или сомономеров в реакциях полимеризации. Предпочтительные α-олефины в этом контексте являются такими, которые содержат от приблизительно 2 до приблизительно 30, предпочтительно от приблизительно 2 до приблизительно 15, более предпочтительно от приблизительно 2 до приблизительно 8, атомов углерода. Предпочтительными α-олефинами являются этен, пропен, бут-1-ен, пент-1-ен, гекс-1-ен, гепт-1-ен, окт-1-ен, нон-1-ен, дец-1-ен и высшие α-олефины. Предпочтительные α-олефины представляют собой гекс-1-ен, гепт-1-ен или окт-1-ен.

Поток алкенов может содержать один олефин или может содержать по меньшей мере два или более различных олефинов. Согласно одному варианту осуществления по меньшей мере 50 масс. %, более предпочтительно по меньшей мере 90 масс. %, наиболее предпочтительно по меньшей мере 99 масс. %, химической композиции i) составляет один алкен. Согласно другому варианту осуществления химическая композиция содержит по меньшей мере 10 масс. %, предпочтительно по меньшей мере 15 масс. %, более предпочтительно по меньшей мере 20 масс. %, первого олефина и по меньшей мере 10 масс. %, предпочтительно по меньшей мере 15 масс. %, более предпочтительно по меньшей мере 20 масс. %, второго олефина, отличного от первого олефина.

Согласно дополнительному варианту осуществления поток алкенов содержит более чем различные алкены, причем предпочтительно по меньшей мере один из этих алкенов представляет собой С620алкен, предпочтительно С615алкен, более предпочтительно С610алкен. Согласно одному аспекту этого варианта осуществления поток алкенов содержит гекс-1-ен, предпочтительно в количестве от 50 до приблизительно 99 масс. %, более предпочтительно от приблизительно 65 до приблизительно 95 масс. %, наиболее предпочтительно от приблизительно 75 до приблизительно 90 масс. %, на основании общей массы потока алкенов. Согласно одному аспекту этого варианта осуществления поток алкенов содержит гепт-1-ен, предпочтительно в количестве от приблизительно 1 до приблизительно 30 масс. %, более предпочтительно от приблизительно 3 до приблизительно 20 масс. %, наиболее предпочтительно от приблизительно 8 до приблизительно 15 масс. %, на основании общей массы потока алкенов. Согласно одному аспекту этого варианта осуществления поток алкенов содержит окт-1-ен, предпочтительно в количестве от приблизительно 0,1 до приблизительно 10 масс. %, более предпочтительно от приблизительно 0,5 до приблизительно 7 масс. %, наиболее предпочтительно от приблизительно 1 до приблизительно 5 масс. %, на основании общей массы потока алкенов. Согласно одному аспекту этого варианта осуществления поток алкенов содержит алкен с более чем 8 атомами углерода, предпочтительно в количестве от приблизительно 0,1 до приблизительно 10 масс. %, более предпочтительно от приблизительно 0,5 до приблизительно 7 масс. %, наиболее предпочтительно от приблизительно 1 до приблизительно 5 масс. %, на основании общей массы потока алкенов. Согласно одному аспекту этого варианта осуществления ароматическое соединение α, которое предпочтительно представляет собой бензол, находится в потоке алкенов в концентрации А в количестве от приблизительно 2 частей на миллион до приблизительно 1000 частей на миллион, предпочтительно от приблизительно 20 частей на миллион до приблизительно 700 частей на миллион, более предпочтительно от приблизительно 100 частей на миллион до приблизительно 400 частей на миллион. Согласно одному аспекту этого варианта осуществления ароматическое соединение находится в продукционном потоке в концентрации В в количестве от приблизительно 0 частей на миллион до приблизительно 1 частей на миллион, предпочтительно от приблизительно 0,01 части на миллион до приблизительно 0,5 части на миллион, более предпочтительно от приблизительно 0,1 части на миллион до приблизительно 0,4 части на миллион.

Ароматическое соединение α можно выбирать согласно конкретному применению. Предпочтительные ароматические соединения α имеют в основе бензольное кольцо или нафталиновое кольцо, предпочтительно имеют в основе бензольное кольцо. Ароматическое соединение α может само по себе быть однократно алкилированным, многократно алкилированным или неалкилированным. Ароматическое соединение α предпочтительно является неалкилированным. Предпочтительные ароматические соединения α представляют собой бензол, толуол, ксилол, стирол или производное любого из вышеуказанных соединений, или смесь по меньшей мере двух или более вышеуказанных соединений, предпочтительно бензол. Предпочтительные заместители ароматического соединения α представляют собой галоген, предпочтительно F, Cl, Br или I, предпочтительно F или Cl. Предпочтительные изомеры ксилола в данном контексте представляют собой орто-, мета- или пара-, или комбинацию по меньшей мере двух или более из них. Предпочтительное ароматическое соединение α представляет собой бензол.

Согласно одному варианту осуществления содержание ароматических соединений в композиции i) составляет по меньшей мере 50 масс. %, предпочтительно по меньшей мере 90 масс. %, более предпочтительно по меньшей мере приблизительно 99 масс. %, одного ароматического соединения на основании общей массы ароматических соединений в композиции i). Согласно другому варианту осуществления содержание ароматических соединений в композиции i) составляет по меньшей мере 10 масс. %, предпочтительно по меньшей мере 15 масс. %, более предпочтительно по меньшей мере 20 масс. %, первого ароматического соединения и по меньшей мере приблизительно 10 масс. %, предпочтительно по меньшей мере приблизительно 15 масс. %, более предпочтительно по меньшей мере приблизительно 20 масс. %, второго ароматического соединения, в каждом случае на основании общей массы ароматических соединений в композиции i).

Кислота ii. предпочтительно катализирует реакцию, которая снижает содержание ароматического соединения α в композиции i). Специалист в данной области обладает знаниями в отношении кислот и их использования в качестве химических катализаторов. Он может выбрать любую кислоту, которая, как он считает, подходит для улучшения предпочтительных параметров реакции.

Предпочтительные катализаторы представляют собой жидкие кислоты, предпочтительно содержащие кислоту Льюиса.

Предпочтительные кислоты Льюиса в данном контексте представляют собой соединения, которые способны принимать по меньшей мере одну или более одной неподеленной пары электронов. Специалист в данной области техники обладает знаниями о кислотах Льюиса и может выбрать кислоту Льюиса, которая, как он видит, подходит для повышения предпочтительных параметров реакции.

Предпочтительные кислоты Льюиса содержат по меньшей мере один или два или более центров или атомов на кислоте Льюиса, которые способны принимать по меньшей мере одну или две или более неподеленных пар электронов. Согласно одному варианту осуществления кислота Льюиса содержит по меньшей мере одно, или два, или более, выбранных из списка, состоящего из следующего: В, Al, Р, As, Sb, Si, Ge, Se, Те, I, Be, S, или комбинацию, содержащую по меньшей мере одно из вышеуказанного; предпочтительно выбранных из списка, состоящего из следующего: В, Al, Р, As, Sb или Si, или комбинацию, содержащую по меньшей мере одно из вышеуказанного; более предпочтительно выбранных из списка, состоящего из следующего: В, Al, или комбинацию, содержащую по меньшей мере одно из вышеуказанного. Наиболее предпочтительные кислоты Льюиса содержат по меньшей мере один, или два, или более атомов Al.

Предпочтительные кислоты Льюиса, содержащие Al, имеют общую формулу

AlnY3n,

где:

- n представляет собой целое число от приблизительно 1 до приблизительно 10, предпочтительно от приблизительно 1 до приблизительно 5, предпочтительно 1 или 2, наиболее предпочтительно 1;

- Y представляет собой углеводородный остаток, предпочтительно алкильную группу, галоген, алкоксигруппу, тиоалкильную группу или водород, причем Y в одной молекуле могут быть одинаковыми или отличными друг от друга. Y предпочтительно представляет собой алкил, Н или галоген.

Согласно одному варианту осуществления кислота Льюиса имеет общий вид

AlaXbRc,

где:

- X представляет собой галоген, предпочтительно F, Br или Cl, более предпочтительно Cl;

- R представляет собой алкильную группу, предпочтительно C110алкил, более предпочтительно С15алкил, наиболее предпочтительно этил;

- a равняется 1 или 2;

- b представляет собой целое число от 0 до 3*а; а

- с представляет собой целое число равное 3*a-b.

Согласно одному варианту осуществления предпочтительные кислоты Льюиса представляют собой по меньшей мере одну, или две, или более, выбранных из: AlCl3, AlBr3, AlH3, AlF3, Al(алкил)3, или комбинацию, содержащую по меньшей мере одно из вышеуказанного, предпочтительно AlEth3, ВН3, BF3, BCl3, или комбинацию, содержащую по меньшей мере одно из вышеуказанного.

Согласно другому варианту осуществления кислота Льюиса имеет общий вил Al2ClnEth6-n, где n представляет собой целое число от приблизительно 2 до приблизительно 6. Согласно одному аспекту данного варианта осуществления кислота Льюиса представляет собой Al2Cl3Eth3.

Согласно одному варианту осуществления кислотный катализатор содержит протонное соединение в дополнение к кислоте Льюиса.

Согласно одному аспекту данного варианта осуществления протонное соединение содержит по меньшей мере одну или более одной связи N-H, предпочтительно находящейся на положительном ионе. В данном контексте предпочтительно, чтобы протонное соединение содержало по меньшей мере один или более одного катиона, выбранного из следующих: аммоний или его производное, имидазолий или его производное, пиразолий или его производное, оксазолий или его производное, пиридиний или его производное, изоксазолий или его производное, тиазолий или его производное, предпочтительно аммоний или его производное или имидазолий или его производное, или комбинации, содержащей по меньшей мере одно из вышеуказанного.

Предпочтительные производные вышеуказанных протонных соединений содержат алкильные заместители. Предпочтительные производные аммония представляют собой первичный, вторичный или третичный аммоний, причем предпочтительные алкильные группы представляют собой метил, этил, пропил, бутил, пентил или гексил, предпочтительно метил или этил.

Предпочтительные производные имидазолия представляют собой алкилзамещенный имидазолий, причем алкильные группы предпочтительно представляют собой одну или более одной, выбранной из следующего: метил, этил, пропил, бутил, пентил, гексил, предпочтительно метил или бутил, или комбинации, содержащей по меньшей мере одно из вышеуказанного. Имидазолий предпочтительно замещен в одном или более чем одном из следующих положений: 1, 2, 4, 5, предпочтительно 1 или 4. Предпочтительные производные имидазолия представляют собой диметилимидазолий, предпочтительно 1,4-диметилимидазолий; дибутилимидазолий, предпочтительно 1,4-дибутил имидазолий; метилимидазолий, предпочтительно 1-метилимидазолий или 4-метилимидазолий; метилбутилимидазолий, предпочтительно 1-метил-4-бутиимидазолий или 1-бутил-4-метилимидазолий.

Предпочтительные противоионы для протонных катионов, предпочтительно катионов аммония или имидазолия в данном контексте, представляют собой галогениды, предпочтительно хлорид, бромид или йодид. Предпочтительное протонное соединение представляет собой хлорид бутилимидазолия.

Согласно одному варианту осуществления способ получения химической композиции, предпочтительно потока олефинов, со сниженным содержанием некоторого ароматического соединения, предпочтительно со сниженным содержанием бензола, соединяют с дополнительными последующими реакциями для получения продуктов последующей переработки. Предпочтительные продукты последующей переработки представляют собой полученные при реакциях полимеризации, реакциях гидрирования, реакциях галогенирования и других реакциях химической функционализации, предпочтительно реакциях полимеризации. Предпочтительные мономерные продукты последующей переработки представляют собой мономер винилхлорида (МВХ), мономер этиленгликоля (МЭГ), этиленоксид (ЭО), акрилонитрил, бутадиен, стирол, мономер винилацетата (МВА). Предпочтительные олигомеры представляют собой олефины, предпочтительно линейные олефины, предпочтительно альфа-олефины, предпочтительно линейные альфа-олефины, такие как 1-бутен, 1-гексен, 1-октен, 1-децен, 1-додецен, 1-тетрадецен, 1-гексадецен или 1-октадецен. Предпочтительные реакции полимеризации могут представлять собой реакции монополимеризации или реакции сополимеризации. Предпочтительные продукты полимеризации представляют собой политены, замещенные политены, производные политенов, поилвинилхлориды, полиэтиленгликоли (ПЭГ), акрилонитрилбутадиенстиролы (АБС), поливинилацетаты, полиолефины, предпочтительно полиальфаолефины (ПАО), бутадиен-стирольный каучук (БСК) и другие полимеры, содержащие по меньшей мере один из вышеописанных мономеров. Предпочтительные полимеры представляют собой политены или производные политенов. Предпочтительные формы политена и его производных представляют собой полиэтилен сверхвысокой молекулярной массы (ПЭСВММ), полиэтилен сверхнизкой молекулярной массы (ПЭСНММ или воск ПЭ), полиэтилен высокой молекулярной массы (ПЭВММ), полиэтилен высокой плотности (ПЭВП), сшитый полиэтилен высокой плотности (СПЭВП), сшитый полиэтилен (ПЭ-С или XLPE), полиэтилен средней плотности (ПЭСП), линейный полиэтилен низкой плотности (ЛПЭНП), полиэтилен низкой плотности (ПЭНП) или полиэтилен очень низкой плотности (ПЭОНП), хлорированный полиэтилен (ХПЭ) или комбинации по меньшей мере двух из них, предпочтительно ПЭВП, ЛПЭНП или ПЭНП. Предпочтительные продукты функционализации представляют собой ароматические или неароматические соединения, насыщенные или ненасыщенные соединения, кетоны, альдегиды, сложные эфиры, амиды, амины, карбоновые кислоты, спирты и пр.

Согласно одному варианту осуществления продукты последующей переработки дополнительно обрабатывают, в частности, в том случае, когда продукт последующей переработки представляет собой полимер, в частности, когда он представляет собой политен или его производное. Согласно одному варианту осуществления эта дополнительная обработка предпочтительно включает получение формованных изделий, таких как пластмассовые детали электронных устройств, автомобильные детали, такие как бамперы, приборные панели или другие кузовные детали, фурнитура или другие детали или товары, или упаковка, например, пластиковые сумки, пленки или контейнеры.

На фиг. 1 показана схематическая принципиальная технологическая схема 100 для снижения содержания некоторого ароматического соединения α, предпочтительно бензола, в химической композиции, предпочтительно потоке олефинов, предпочтительно потоке α-олефинов, причем химическая композиция поступает в способ с содержанием А ароматического соединения 101, а выходит из способа с содержанием В ароматического соединения α 105. Химическую композицию 101 можно сначала необязательно подвергать предварительной обработке 102, предпочтительно одной или нескольким, выбранным из следующего: нагревание, охлаждение, фильтрация, дистилляция или комбинация, содержащая по меньшей мере одно из вышеуказанного. Химическую композицию затем приводят в контакт с кислотой 103, предпочтительно содержащей кислоту Льюиса, предпочтительно алкилгалогенидом алюминия. Химическую композицию затем необязательно подвергают последующей обработке 104, предпочтительно одной или нескольким, выбранным из следующего: нагревание, охлаждение, фильтрация, дистилляция или комбинация, содержащая по меньшей мере одно из вышеуказанного. После способа снижения содержания ароматического соединения α химическую композицию 105 можно необязательно использовать в качестве реагента в дальнейшей реакции 106 ниже по потоку, предпочтительно реакции полимеризации, для получения продукта последующей переработки, предпочтительно поли-α-олефина.

Содержание ароматического соединения α определяли при помощи капиллярной газовой хроматографии. Если ароматическое соединение α представляло собой бензол, использовали международный стандартный метод ASTM - ASTM D6229 - 06(2010).

Следующий пример является только иллюстративным для устройства, раскрытого в настоящем документе, и не предназначен для ограничения его объема.

Примеры

Пример 1

100 миллилитров (мл) углеводородной смеси с составом, указанным в столбце 2 таблицы 1, приводили в реакцию с 5 мл полуторного хлорида алюминия в реакторе периодического действия (настольном миниреакторе - 300 мл автоклаве Парра модели 4566). Реакцию проводили под давлением 2 мегапаскаль (МПа) (20 бар) при 120°С в течение 10 минут при перемешивании. Углеводородная смесь после реакции указана в 3 столбце таблицы 1.

Способ, раскрытый в настоящем документе, включает, по меньшей мере, следующие варианты осуществления.

Вариант осуществления 1: Способ получения химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции, предусматривающий: a. подачу следующих компонентов реакции: i. химической композиции, содержащей следующее: а) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции и b) олефин в количестве от приблизительно 50 до приблизительно 99,99 масс. % на основании общей массы химической композиции, и ii. кислоты; и b. проведения реакции компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции; причем концентрация В меньше, чем концентрация А.

Вариант осуществления 2: Способ согласно варианту осуществления 1, в котором олефин b) представляет собой α-олефин.

Вариант осуществления 3: Способ согласно любому из предшествующих вариантов осуществления, в котором олефин b) представляет собой С220олефин.

Вариант осуществления 4: Способ согласно любому из предшествующих вариантов осуществления, в котором концентрация А представляет собой количество от приблизительно 2 частей на миллион до приблизительно 10 масс. % на основании общей массы химической композиции i.

Вариант осуществления 5: Способ согласно любому из предшествующих вариантов осуществления, в котором отношение концентрация А : концентрация В составляет от приблизительно 1:0 до приблизительно 1:0,1.

Вариант осуществления 6: Способ согласно любому из предшествующих вариантов осуществления, в котором ароматическое соединение представляет собой бензол.

Вариант осуществления 7: Способ согласно любому из предшествующих вариантов осуществления, в котором дополнительный олефин присутствует в качестве компонента а), причем дополнительный олефин отличается от олефина b).

Вариант осуществления 8: Способ согласно варианту осуществления 7, в котором дополнительный олефин представляет собой С220олефин.

Вариант осуществления 9: Способ согласно любому из предшествующих вариантов осуществления, в котором кислота содержит кислоту Льюиса.

Вариант осуществления 10: Способ согласно варианту осуществления 9, в котором кислота Льюиса имеет вид AlaXbRc, где: X представляет собой галоген, R представляет собой алкильную группу или водород, а равняется 1 или 2, b представляет собой целое число от 0 до 3*а, а с представляет собой целое число равное 3*a-b.

Вариант осуществления 11: Способ согласно вариантам осуществления 9 или 10, в котором кислота Льюиса представляет собой Al2Cl3Eth3.

Вариант осуществления 12: Способ согласно вариантам осуществления 9-11, в котором кислота дополнительно содержит протонное соединение.

Вариант осуществления 13: Способ согласно варианту осуществления 12, в котором протонное соединение содержит имидазолий, аммоний или комбинацию, содержащую по меньшей мере одно из вышеуказанного.

Вариант осуществления 14: Способ согласно любому из вариантов осуществления 9-13, в котором кислота Льюиса находится на стадии b. в концентрации от приблизительно 0,1 до приблизительно 50 масс. % на основании общей массы компонентов реакции.

Вариант осуществления 15: Способ согласно любому из вариантов осуществления 9-14, в котором кислота Льюиса находится на стадии b. в концентрации от приблизительно 1 до приблизительно 20 масс. %.

Вариант осуществления 16: Способ согласно любому из предшествующих вариантов осуществления, в котором химическая композиция i. представляет собой гомогенную жидкость.

Вариант осуществления 17: Способ согласно любому из предшествующих вариантов осуществления, в котором реакцию b. проводят при температуре от приблизительно 0 до приблизительно 250°С.

Вариант осуществления 18: Способ получения продукта последующей переработки, предусматривающий: i. получение алкена при помощи способа согласно любому из предшествующих вариантов осуществления и ii. проведение реакции алкена с получением продукта последующей переработки.

Вариант осуществления 19: Способ согласно варианту осуществления 18, в котором продукт последующей переработки представляет собой полимер.

Вариант осуществления 20: Способ согласно варианту осуществления 18 или 19, в котором продукт последующей переработки представляет собой политен или полипропен.

Вариант осуществления 21: Способ согласно вариантам осуществления 18-20, в котором в котором продукт последующей переработки превращают в формованное изделие.

В общем, настоящее изобретение может альтернативно содержать, состоять из или состоять главным образом из любых подходящих компонентов, раскрытых в настоящем документе. Настоящее изобретение может дополнительно или альтернативно быть составлено так, чтобы не содержать или по существу не содержать какие-либо компоненты, материалы, ингредиенты, вспомогательные вещества или продукты, используемые в композициях предшествующего уровня техники или которые в других случаях не обязательны для достижения функции и/или целей настоящего изобретения. Конечные точки всех диапазонов, относящихся к одинаковому компоненту или свойству, являются включающими и независимо объединяемыми (например, диапазоны «меньше или равный 25 масс. %, или от 5 масс. % до 20 масс. %», являются включающими конечные точки и все промежуточные значения диапазонов «от 5 масс. % до 25 масс. %» и пр.). Раскрытие более узкого диапазона или более конкретной группы в дополнение к более широкому диапазону не является отрицанием более широко диапазона или большей группы. «Комбинация» включает сочетания, смеси, сплавы, продукты реакций и подобное. Кроме того, выражения «первый», «второй» и подобные в настоящем документе не означают какой-либо порядок, количество или важность, а скорее используются для отграничения одного элемента от другого. Выражения в единственном числе в настоящем документе не означают ограничение количества и должны рассматриваться как охватывающие как формы единственного, так и множественного числа, если иное не указано в настоящем документе или явно не противоречит контексту. «Или» означает «и/или». Суффикс множественного числа при использовании в настоящем документе предназначен для включения как формы единственного, так и формы множественного числа выражения, которое он модифицирует, таким образом включая одно или несколько таких выражений (например, пленка(и) включает одну или несколько пленок). Ссылка во всем описании на «один вариант осуществления», «другой вариант осуществления», «вариант осуществления» и т.д. означает, что конкретный элемент (например, признак, структура и/или характеристика), описанный касательно варианта осуществления, включен по меньшей мере в один вариант осуществления, описанный в настоящем документе, и может присутствовать или может не присутствовать в других вариантах осуществления. Кроме того, следует понимать, что описанные элементы можно объединять любым подходящим образом в различных вариантах осуществления.

Модификатор «приблизительно», используемый в отношении количества, включает указанное значение и имеет значение, обусловленное контекстом (например, включает степень погрешности, связанную с измерением конкретного количества). Обозначение «+10%» означает, что указанное измерение может составлять от количества, которое составляет минус 10%, до количества, которое составляет плюс 10%, указанного значения. Выражения «передний», «задний», «нижний» и/или «верхний» используют в настоящем документе, если иное не указано, только для удобства описания, и они не ограничены каким-либо одним положением или ориентацией в пространстве. «Необязательный» или «необязательно» означает, что описанное следующим шагом событие или условие может или может не происходить, и что описание включает случаи, где событие происходит, и случаи, когда нет. Если иное не указано, технические и научные выражения, используемые в настоящем документе, имеют такое же значение, как обычно понимается специалистом в области техники, к которой относится настоящее изобретение. «Комбинация» включает сочетания, смеси, сплавы, продукты реакций и подобное.

Все цитируемые патенты, патентные заявки и другие ссылки включены в настоящий документ ссылкой во всей их полноте. Однако, если выражение в настоящей заявке противоречит или вступает в конфликт с выражением во включенной ссылке, выражение из настоящей заявки имеет преимущество перед противоречащим выражением из включенной ссылки.

Хотя конкретные варианты осуществления были описаны, альтернативы, модификации, варианты, улучшения и существенные эквиваленты, которые являются или могут быть на данный момент непредвиденными, могут возникать у заявителей или специалистов в данной области техники. Следовательно, приложенная формула изобретения, как подана, и как ее можно изменить, предназначена для включения всех таких альтернатив, модификаций, вариантов, улучшений и существенных эквивалентов.

1. Способ получения химической композиции, содержащей ароматическое соединение α в массовой концентрации В на основании общей массы химической композиции, предусматривающий:

a. подачу следующих компонентов реакции:

i. химической композиции, содержащей следующее:

a) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции и

b) олефин в количестве от приблизительно 50 до приблизительно 99,99 масс. % на основании общей массы химической композиции, где олефин b) представляет собой С410олефин, и

ii. кислоту, где кислота содержит кислоту Льюиса; и

b. приведение в реакцию компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции;

причем концентрация В меньше, чем концентрация А.

2. Способ по п. 1, в котором олефин b) представляет собой α-олефин.

3. Способ по п. 1 или 2, в котором концентрация А представляет собой количество от приблизительно 2 частей на миллион до приблизительно 10 масс. % на основании общей массы химической композиции i.

4. Способ по п. 1 или 2, в котором отношение концентрация А: концентрация В составляет от приблизительно 1:0 до приблизительно 1:0,1.

5. Способ по п. 1 или 2, в котором ароматическое соединение представляет собой бензол.

6. Способ по п. 1 или 2, в котором дополнительный олефин присутствует в качестве компонента а), причем дополнительный олефин отличается от олефина b).

7. Способ по п. 6, в котором дополнительный олефин представляет собой С220олефин.

8. Способ по п. 1, в котором кислота Льюиса имеет вид AlaXbRc, где:

X представляет собой галоген,

R представляет собой алкильную группу или водород,

а равняется 1 или 2,

b представляет собой целое число от 0 до 3* а, и

с представляет собой целое число равное 3*a-b.

9. Способ по п. 1 или 8, в котором кислота Льюиса представляет собой Al2Cl3Eth3.

10. Способ по п. 1 или 8, в котором кислота дополнительно содержит протонное соединение.

11. Способ по п. 10, в котором протонное соединение содержит имидазолий, аммоний или комбинацию, содержащую по меньшей мере одно из вышеуказанного.

12. Способ по п. 1 или 8, в котором кислота Льюиса находится на стадии b. в концентрации от приблизительно 0,1 до приблизительно 50 масс. % на основании общей массы компонентов реакции.

13. Способ по п. 9, в котором кислота Льюиса находится на стадии b. в концентрации от приблизительно 1 до приблизительно 20 масс. %.

14. Способ по любому из пп. 1-2, 7-8, 11 и 13, в котором химическая композиция i. представляет собой гомогенную жидкость.

15. Способ по любому из пп. 1-2, 7-8, 11 и 13, в котором реакцию b. проводят при температуре от приблизительно 0 до приблизительно 250°C.

16. Способ получения продукта последующей переработки, предусматривающий:

i. получение алкена при помощи способа по любому из пп. 1-15; и

ii. проведение реакции алкена с получением продукта последующей переработки.

17. Способ по п. 16, в котором продукт последующей переработки представляет собой полимер.

18. Способ по п. 16 или 17, в котором продукт последующей переработки представляет собой политен или полипропен.

19. Способ по п. 16 или 17, в котором продукт последующей переработки превращают в формованное изделие.



 

Похожие патенты:

Изобретение относится к способу получения бензиновых фракций углеводородов путем контактирования олефинсодержащих фракций с цеолитсодержащим катализатором. При этом используют катализатор типа ZSM-5 с дезактивированной внешней поверхностью, полученный обработкой Н-формы цеолита ZSM-5 тетраэтоксисиланом на стадии формовки, с добавлением бемита и последующим кальцинированием, а в качестве олефинсодержащей фракции используют бутан-бутиленовую фракцию, температуру контактирования увеличивают постепенно с 300 до 450°С при объемной скорости подачи сырья в интервале от 1 до 6 ч-1.

Изобретение относится к способу получения несмешанной композиции синтетического углеводородного топлива, включающему приведение в контакт одного или нескольких олефинов с катализатором олигомеризации в реакционной зоне в условиях, обеспечивающих олигомеризацию олефинов, и удаление из реакционной зоны потока продукта, содержащего продукты олигомеризации олефинов, в котором из потока продукта извлекают фракцию, которая имеет следующие свойства: (a) распределение точки кипения характеризуется следующим: (i) 10% улетучивается до 205°С или менее и (ii) конечная точка кипения составляет 300°С или менее согласно измерению в соответствии с ASTM D86; (b) точка замерзания составляет -47°С или менее согласно измерению в соответствии с ASTM D2386; (c) плотность при 15°С равна по меньшей мере 775,0 кг/м3 согласно измерению в соответствии с ASTM D4052; (d) общая концентрация моноциклических ароматических и моноциклических неароматических углеводородов составляет по меньшей мере 1% об.; и (e) концентрация циклических углеводородов составляет 30% об.

Изобретение относится к способу получения бензина из легких олефинов, включающему: олигомеризацию С4 и С5 олефинов в олефиновом потоке сырья для олигомеризации, содержащем С4 и С5 углеводороды, над твердым фосфорнокислотным катализатором при температуре 150°С-250°C с получением потока олигомеризата, содержащего более тяжелые олефины; разделение указанного потока олигомеризата с получением легкого потока, содержащего С4 углеводороды, промежуточного потока, содержащего С5 углеводороды, и жидкого потока, содержащего С6+ углеводороды; и направление указанного жидкого потока в бак для бензина или смешивающий трубопровод бензина, необязательно после насыщения.

Изобретение относится к способу получения дистиллята, включающему в себя: подачу потока сырья для олигомеризации, содержащего С4 олефины, в зону олигомеризации; рециркуляцию потока бензина, содержащего C8 олефины, в указанную зону олигомеризации; олигомеризацию С4 олефинов с С4 олефинами и С8 олефинами в указанной зоне олигомеризации; причем указанный способ включает в себя олигомеризацию большей доли нормальных бутенов, чем изобутенов.

Изобретение относится к способу получения бензиновых фракций путем контактирования олефинсодержащих газов в условиях олигомеризации с цеолитсодержащим катализатором с микро-мезопористой структурой (микропористым цеолитом ZSM-5 с мольным отношением Si/Al от 20 до 40), полученным одностадийной обработкой щелочным водным раствором с добавлением ПАВ.

Заявленная группа изобретений относится к способам модифицирования цеолитов и может быть использована для получения цеолита с дезактивированными кислотными центрами, располагающимися на внешней поверхности цеолитных кристаллов, и их применения.

Изобретение относится к вариантам способа конверсии тяжелого углеводородного сырья, обладающего большой гибкостью в отношении получения пропилена, бензина и среднего дистиллята.

Настоящее изобретение относится к способу получения маловязких, низкозастывающих синтетических полиальфаолефиновых базовых масел, предусматривающему реакцию соолигомеризации этилена с октеном-1 или деценом-1 в присутствии катализатора при постоянной температуре и давлении этилена, фракционирование полученного жидкого продукта и выделение целевой масляной фракции, при этом реакцию соолигомеризации проводят при температуре 150-180°С и давлении этилена 4,0-6,0 МПа в реакторе периодического действия при перемешивании со скоростью 500-550 об/мин, в качестве катализатора используют сульфатированный оксид алюминия, а выделяют масляную фракцию с температурой кипения паров >250°С при атмосферном давлении.

Изобретение относится к способу олигомеризации этилена в высшие олефины С10-С30 в присутствии каталитической системы на основе комплекса хрома с триазольным лигандом нижеуказанной общей формулы, где заместитель R выбран из группы: R=Н, (4,5-бис(дифенилфосфанил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К1, R=(CH2)5СН3, (4,5-бис(дифенилфосфанил)-1-гексил-1Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К2, R=(CH2)2S(CH2)7CH3, (4,5-бис(дифенилфосфанил)-1-(2-октилтио)этил)-1Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К3, R=СН3, (4,5-бис(дифенилфосфанил)-2-(метил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К4, R=n-Bu, (4,5-бис(дифенилфосфанил)-2-(бутил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К5, R=(СН2)5СН3, (4,5-бис(дифенилфосфанил)-2-(гексил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К6, R=(СН2)7СН3, (4,5-бис(дифенилфосфанил)-2-(октил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К7, R=аллил, (4,5-бис(дифенилфосфанил)-2-(аллил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К8, R=(СН2)4СН=СН2, (4,5-бис(дифенилфосфанил)-2-(гекс-5-ен-1-ил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К9, R=CH2CN, (4,5-бис(дифенилфосфанил)-2-(цианометил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К10, R=СН2С6Н4СН=СН2-о, (4,5-бис(дифенилфосфанил)-2-(винилбензил)-2Н-1,2,3-триазол)-Р,Р)-трихлорохром(III) - К11, R=CH2COOEt, (этил (2-(4,5-бис(дифенилфосфанил)-2Н-1,2,3-триазол-2-ил)ацетат)-Р,Р)-трихлорохром(III) - К12 в толуоле при концентрации [Cr] в реакционной смеси от 10 до 60 мкмоль/л, совместно с раствором МАО в толуоле при мольном соотношении [Cr]:[МАО] от 1:1000 до 1:300, при поддержании постоянных температуры 50-120°С и давления этилена 1-5 МПа в течение от 30 мин до 2 ч, затем реакционную смесь обрабатывают метанолом, раствором HCl и толуолом с последующим отделением водного слоя и следов полимера.

Изобретение относится к способу конверсии тяжелого сырья. Способ получения средних дистиллятов из тяжелого сырья (1) типа вакуумного газойля или остатков атмосферной перегонки последовательно осуществляют в 4 этапа, содержащих: a) этап предварительной обработки (PRET), который осуществляют на установке гидрокрекинга или гидрообработки, позволяющий уменьшить количество серосодержащих и азотсодержащих примесей в сырье, а также количество диолефинов, в ходе которого получают бензиновую фракцию C5-160°C (3), первую фракцию среднего дистиллята (4) с интервалом температуры кипения 160-360°C и часть (5), называемую неконвертированной, которая имеет, по существу, тот же интервал температур кипения, что и исходное тяжелое сырье, b) этап каталитического крекинга (FCC) указанной неконвертированной части (5), отбираемой с этапа предварительной обработки (PRET), в ходе которого получают фракцию (7) сухих газов, используемых в качестве топлива, фракцию C3 (8), фракцию C4 (9), фракцию бензина C5-160°C (10) и вторую фракцию средних дистиллятов (11), причем бензиновую фракцию (10) подают на установку очистки (PUR), c) этап олигомеризации (OLG), на который подают фракцию C3 (8), фракцию C4 (9), отбираемые с установки каталитического крекинга, и фракцию бензина (10') с установки очистки (PUR), и в ходе которого получают фракцию C3/C4 (14), фракцию бензина C5-160°C (15), которые добавляют к бензиновому пулу, и третью фракцию средних дистиллятов (16), которую подают на установку гидрообработки (HDT), d) этап полного гидрирования (HDT) фракции средних дистиллятов (16), отбираемой с этапа олигомеризации, для достижения соблюдения требований, предъявляемых к коммерчески распространяемому газойлю.

Изобретение относится к области нейтрализации сероводорода в углеводородных средах и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности для очистки сероводородсодержащих нефтей, газоконденсата, водонефтяных эмульсий и нефтепродуктов.

Изобретение относится к процессам нейтрализации сероводорода и меркаптанов в разнообразных углеводородных средах для целей уменьшения коррозии оборудования и трубопроводов, повышения безопасности работ и экологической безопасности на месторождениях, а также при очистке нефтепродуктов на нефтеперерабатывающих заводах.
Изобретение относится к способу нейтрализации сероводорода и низкомолекулярных меркаптанов в сырой и подготовленной нефти, газовом конденсате, углеводородных газах, нефтепродуктах, тяжелых нефтяных остатках и может быть использовано в нефтегазодобывающей и нефтегазоперерабатывающей промышленности.

Изобретение относится к области нейтрализации сероводорода в углеводородных средах и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности для очистки сероводородсодержащих нефти и водонефтяных эмульсий.

Настоящее изобретение относится к способу получения высокоэффективного нефтерастворимого поглотителя сероводорода. В предлагаемом способе осуществляют взаимодействие индивидуального вторичного амина и индивидуального ароматического альдегида или смесей индивидуальных ароматических альдегидов, при этом в качестве индивидуального вторичного амина используют диметиламин в газообразном виде.

Изобретения относятся к способам улучшения сырой нефти. Изобретение касается способа улучшения углеводородного сырья, содержащего гетероатомы, путем удаления гетероатомных загрязнителей, включающего приведение в контакт углеводородного сырья, содержащего гетероатомы, с окислителем; приведение в контакт окисленного углеводородного сырья, содержащего гетероатомы, с по меньшей мере одним каустическим средством и по меньшей мере одним усилителем селективности при температуре в диапазоне от 150C до 350°C и давлении в диапазоне от приблизительно 0 до приблизительно 2000 фунтов на квадратный дюйм (избыточное) (от приблизительно 0 до приблизительно 13790 кПа), где по меньшей мере одно каустическое средство представляет собой неорганический оксид, содержащий элемент группы IA или IIA, неорганический гидроксид, содержащий элемент группы IA или IIA или их смесь, а усилитель селективности представляет собой спирт, полиол, или их смесь; удаление гетероатомных загрязнителей из углеводородного сырья с получением углеводородного продукта, по существу не содержащего гетероатомов.

Описаны реакционная система и способы удаления гетероатомов из окисленных, содержащих гетероатомы углеводородных фракций, и получаемые посредством этого продукты.

Изобретение относится к обработке сернистого нефтяного газа и жидкого углеводорода с удалением или уменьшением в них концентрации серы. Изобретение касается способа, включающего контакт текучей среды с эффективным количеством композиции, включающей поглотитель сероводорода, где количество поглотителя сероводорода достаточно для взаимодействия с сероводородом, чтобы уменьшить его количество в паровой фазе; продукт реакции между поглотителем сероводорода и сероводородом остается в растворенном состоянии в углеводородной текучей среде и поглотитель сероводорода содержит: 10-25% N,N′-оксибис(метилен)бис(N,N-дибутиламина), 50-80% N,N′-(метиленбис(окси)бис(метилен))бис(N,N-дибутиламина и 10-25% N,N,N′,N′-тетрабутилметандиамина.

Изобретение относится к обработке сернистого нефтяного газа и жидкого углеводорода для удаления из них сероводорода. Изобретение касается способа, включающего приведение флюида в контакт с эффективным количеством композиции, включающей поглотитель сульфидов, представляющий собой алкилтриазин и нитроксидный промотор, где количество нитроксидного промотора составляет 1-25%.

Изобретение относится к области нейтрализации (поглощения) сероводорода в углеводородных и/или водных средах химическими реагентами-нейтрализаторами и может быть использовано в нефтегазодобывающей, нефтегазоперерабатывающей и других отраслях промышленности.

Изобретение относится к нефтепереработке, в частности к способу очистки от сероводорода нефти, газоконденсата и их фракций, а также водонефтяных эмульсий. .

Изобретение относится к эффективному способу удаления ароматических примесей из потока алкенов, в частности к способу получения химической композиции, содержащей ароматическое соединение α в массовой концентрации В на основании общей массы химической композиции, предусматривающему a. подачу следующих компонентов реакции: i. химической композиции, содержащей следующее: a) ароматическое соединение α с массовой концентрацией А на основании общей массы химической композиции и b) олефин в количестве от приблизительно 50 до приблизительно 99,99 масс. на основании общей массы химической композиции, где олефин b) представляет собой С4-С10олефин, и ii. кислоту, где кислота содержит кислоту Льюиса; и b. приведение в реакцию компонентов с получением химической композиции, содержащей ароматическое соединение α с массовой концентрацией В на основании общей массы химической композиции; причем концентрация В меньше, чем концентрация А. Изобретение также относится к способу получения продукта последующей переработки, предусматривающему i. получение алкена при помощи вышеуказанного способа и ii. проведение реакции алкена с получением продукта последующей переработки. 2 н. и 17 з.п. ф-лы, 1 пр., 1 табл., 1 ил.

Наверх