Способ построения гидродинамической модели источника штормовых нагонов и экстремальных течений под воздействием подвижного атмосферного тайфуна

Изобретение касается гидродинамического моделирования источника штормовых нагонов и экстремальных течений под воздействием подвижного атмосферного тайфуна. Сущность: определяют внешнее возмущение для прямого вычислительного эксперимента при моделировании штормовых нагонов и экстремальных течений вблизи побережья с возможностью выбора наиболее вероятных или потенциально опасных маршрутов атмосферных тайфунов и глубоких циклонов над открытым морем. При этом возмущение уровня моря задают в дифференциальных приращениях атмосферного давления в форме гауссова источника - колокола внутри окружности на равноугольной меркаторской карте. Подвижный очаг атмосферного давления дополняют ветровыми напряжениями со спиральным затягиванием поверхностных вод к центру циклонического вихря. Для исключения ударных нагрузок на водную поверхность все геометрические элементы формы и траектории атмосферного вихря, так же как и все его аэрогидродинамические характеристики, плавно распределяют с помощью гладких сплайновых аппроксимаций между контрольными географическими пунктами на произвольно выбираемом маршруте атмосферного тайфуна или глубокого циклона. Применяемые методы сплайн-интерполяции геометрических и гидрометеорологических параметров построены на индексах контрольных точек во времени, что формально допускает возможность временной остановки движения циклона, в том числе с последующим возвратом его на пройденную траекторию, при этом ударные нагрузки на поверхности моря не проявляются. Технический результат: точное определение маршрута движения, исходной геометрической формы и гидродинамических параметров очага возмущения водной поверхности при прохождении тайфунов и глубоких циклонов. 2 ил.

 

Изобретение относится к гидрометеорологии и наукам об Атмосфере, Океане и Земле, к реализации комплексного численного моделирования гидромеханики их взаимодействия при проявлении морских наводнений, экстремальных течений и других опасных морских явлений в открытом океане и вблизи побережья.

Назначение

Настоящим изобретением определяется алгоритмическое обеспечение механизма гидродинамического взаимодействия океана и атмосферы для реализации прямых вычислительных экспериментов при моделировании опасных морских явлений, штормовых нагонов и экстремальных течений в открытом океане, на шельфе и в акваториях прибрежного мелководья.

Предметом изобретения является строгое и однозначное определение маршрута движения, исходной геометрической формы и гидродинамических параметров очага возмущения водной поверхности при прохождении тайфунов и глубоких циклонов, минимально необходимые для выработки достоверных прогнозов морских наводнений и экстремальных течений вблизи морского побережья, включая бухты и гавани портов.

Уровень техники

Морские оперативные службы, так же как и режимные отделы инженерных изысканий в области контроля и прогноза динамики взаимодействия атмосферы и океана [1], в настоящее время активно задействуют прямые вычислительные эксперименты с использованием высокоэффективных компьютеров и систем дистанционных измерений реального гидродинамического состояния морских акваторий и атмосферы.

Настоящее изобретение является результатом систематических ретроспективных и специальных поверочных вычислительных экспериментов по моделированию и сопоставлению с наблюдениями за реальным воздействием на морское побережье различных тайфунов и глубоких циклонов над акваториями Японского и Охотского морей, на тихоокеанском шельфе Курильских островов.

Ресурсы современной многопроцессорной вычислительной техники вполне обеспечивают возможности заблаговременного моделирования потенциальной опасности различных вариантов развития штормовых нагонов и экстремальных течений в особо контролируемых акваториях в режиме упреждающего прогноза, в том числе с возможностью визуального анализа гидродинамической обстановки по всем другим прилегающим приморским акваториям, которые ранее не подвергались специальным океанографическим изысканиям для картирования проявления опасных явлений на морском побережье. Практическое использование изобретения востребуется для динамического представления внешних силовых возмущений морских акваторий в процессе постановки и проведения комплексного моделирования, с обоснованием адекватных прогнозов и ориентировочных оценок потенциальной опасности морских наводнений и экстремальных течений вблизи побережья. Такие оценки могут уточняться по мере поступления информации о реальном проявлении опасных морских явлений непосредственно в процессе оперативного контроля и прогноза усиления или снижения опасности морских тайфунов или глубоких циклонов вблизи конкретных участков морского побережья, в бухтах и гаванях морских портов.

Осуществление изобретения

В действующих морских службах оперативного прогноза и предупреждения об опасных природных явлениях требуется использование предельно быстрых и эффективных алгоритмов для реализации прямых вычислительных экспериментов по упреждающему моделированию штормовых нагонов, в том числе с задействованием синоптических прогнозов или возможно опасных маршрутов морских тайфунов и глубоких атмосферных циклонов. Для практической реализации вычислительного эксперимента в регламенте оперативной работы может задействоваться крайне ограниченная гидрометеорологическая информация о реальном состоянии моря и атмосферы в зоне активизации штормовых явлений на море.

Настоящим изобретением определяется главная часть гидродинамического возмущения по поверхностным градиентам атмосферного давления и спирального распределения циклонических ветров, возникающих над морскими акваториями при прохождении тайфунов и глубоких циклонов. Активное действие таких циклонов проявляется в форме корабельных вол, аккумулирующих значительную кинетическую энергию при формировании длинноволновых фронтов морских наводнений над относительно мелководными акваториями, где скорость перемещения атмосферного возмущения становится соизмеримой или большей скорости движения свободных длинных волн по подстилающей водной акватории, либо когда размеры циклонических вихрей становятся соизмеримыми с пучностями собственных колебаний уровня моря вблизи побережья, подверженному активному влиянию прилегающих длинноволновых осцилляторов с высокодобротными частотными характеристиками.

Геометрические размеры атмосферного тайфуна или глубокого циклона могут быть выбраны с гидрометеорологических карт, в том числе прогнозных, по последней замкнутой изобаре. Обычно это соответствует величине 1000 мбар, от которой отсчитывается величина подъема уровня моря в центе циклона (1 мбар=1 см). Поверхностное напряжение штормового ветра [2] задается максимальной скоростью на высоте 10 м, и эмпирическим коэффициентом СА - с величиной 0,002 для теплых морей, или СA ≤ 0,001 для дальневосточных морей в холодные сезоны года.

Построенный таким образом гидродинамический очаг не привносит в результаты численного моделирования непредсказуемых неопределенностей, связанных со сложным рельефом дна или самовозбуждением сеточных аппроксимаций при нарушении интерполяционной гладкости волновых фронтов. На вновь образуемых фронтах корабельных волн циклонического происхождения присутствуют компоненты высокочастотных длинноволновых возбуждений, которые приведут к возбуждению прибрежные длинноволновые осцилляторы, которые, в зависимости от длительности штормового воздействия, приведут к проявлению метеоцунами с периодами волн порядка 3-5 минут вблизи прибрежных мелководий, и - порядка 12 минут при возбуждении длинных волн на шельфовыми акваториями.

Опыт инженерных построений подвижных очагов атмосферных возмущений от исторических циклонов над Японским и Охотским морями, над тихоокеанскими акваториями шельфа Курильских островов, подтверждает в целом корректность моделируемых процессов зарождения, трансформации при распространении и последующем проявлении морских наводнений и экстремальных течений вблизи контролируемых прибрежных акваторий, а также в закрытых бухтах и гаванях морских портов.

Представленное настоящим изобретением гидродинамическое построение источника длинноволновых процессов под воздействием тайфунов и глубоких циклонов над водными акваториями может быть задействовано в качестве внешнего возмущения при постановке и проведении прямого численного моделирования [3] морских наводнений и экстремальных течений вблизи побережья в оперативном режиме и в регламентной работе морских служб прогноза и предупреждения о потенциально опасных морских явлениях.

Способ динамического построения гидродинамической модели очага штормовых нагонов предусматривает возможность выбора наиболее вероятных или потенциально опасных маршрутов атмосферных тайфунов и глубоких циклонов над открытым морем, при этом:

- возмущение уровня моря задается в дифференциальных приращениях атмосферного давления в форме гауссова источника - колокола внутри окружности на равноугольной меркаторской карте;

- подвижный очаг атмосферного давления дополняется ветровыми напряжениями со спиральным затягиванием поверхностных вод к центру циклонического вихря;

- для исключения ударных нагрузок на водную поверхность, все геометрические элементы формы и траектории атмосферного вихря, так же как и все его аэрогидродинамические характеристики, плавно распределяются с помощью гладких сплайновых аппроксимаций между контрольными географическими пунктами на произвольно выбираемом маршруте атмосферного тайфуна или глубокого циклона.

- применяемые методы сплайн-интерполяции геометрических и гидрометеорологических параметров построены на индексах контрольных точек во времени, что формально допускает возможность временной остановки движения циклона, в том числе с последующим возвратом его на пройденную траекторию, при этом ударные нагрузки на поверхности моря также не проявляются.

Практический прогноз штормовых нагонов и экстремальных течений вблизи морского побережья обладает высокой степенью достоверности по

времени фактического проявления и интенсивности опасного гидродинамического воздействия тайфунов и глубоких циклонов в открытом море и вблизи побережья.

Реализация изобретения ожидается в составе программного комплекса «Ani» [3], с последующим оформлением графических процедур для интерактивного формирования маршрутов и параметров атмосферных тайфунов и циклонов в рамках настоящего изобретения.

Краткое описание чертежей

Фиг. 1. На батиметрической карте Татарского пролива, Охотского моря в Северо-Западной части Тихого океана приведен маршрут с контрольными местоположениями циклона через каждые 6 часов физического времени от начала вычислительного эксперимента. Горизонтальной дужкой внутри круга активного действия циклона показан характер изменения уровня моря; вертикальная кривая отмечает циклоническое направление ветра по спирали против часов стрелки в северном полушарии Земли. Большая кривизна траектории или практически обратное направление движение циклона связано с его шестичасовым стоянием в одном месте над Татарским проливом.

Фиг. 2. Прохождение циклона над глубоководными акваториями не приводит к большим длинноволновым откликам. Опасное действие атмосферного циклона форме корабельных вол, аккумулирующих значительную кинетическую энергию при формировании длинноволновых фронтов морских наводнений над относительно мелководными акваториями, где скорость перемещения атмосферного возмущения становится соизмеримой или большей скорости движения свободных длинных волн по подстилающей водной акватории. На рисунке видны собственные длинноволновые колебания уровня моря вблизи побережья, действующие после прохождения циклона в сейшевых явлений.

Источники информации

1. Оперативный прогноз наводнений на морских берегах Дальнего Востока России. Поплавский А.А., Храмушин В.Н., Непоп К.И., Королев Ю.П. Южно-Сахалинск: ДВО РАН, 1997. 272 с. (shipdesign.ru/Pub/Poplavsky/Book/).

2. Судольский А.С. Динамические явления в водоемах. Л.: Гидрометеоиздат, 1991. - 263 с.

3. Храмушин В.Н. «Ani» - Прямые вычислительные эксперименты для моделирования цунами, штормовых нагонов, экстремальных течений и приливного режима в открытом океане и вблизи побережья. СахГУ. Роспатент №2010615848 от 2010.09.08 (shipdesign.ru/SoftWare/2010615848.html).

Способ построения гидродинамической модели источника штормовых нагонов и экстремальных течений под воздействием подвижного атмосферного тайфуна, определяющий внешнее возмущение для прямого вычислительного эксперимента при моделировании штормовых нагонов и экстремальных течений вблизи побережья, с возможностью выбора наиболее вероятных или потенциально опасных маршрутов атмосферных тайфунов и глубоких циклонов над открытым морем, при этом:

- возмущение уровня моря задается в дифференциальных приращениях атмосферного давления в форме гауссова источника - колокола внутри окружности на равноугольной меркаторской карте;

- подвижный очаг атмосферного давления дополняется ветровыми напряжениями со спиральным затягиванием поверхностных вод к центру циклонического вихря;

- для исключения ударных нагрузок на водную поверхность все геометрические элементы формы и траектории атмосферного вихря, так же как и все его аэрогидродинамические характеристики, плавно распределяются с помощью гладких сплайновых аппроксимаций между контрольными географическими пунктами на произвольно выбираемом маршруте атмосферного тайфуна или глубокого циклона;

- применяемые методы сплайн-интерполяции геометрических и гидрометеорологических параметров построены на индексах контрольных точек во времени, что формально допускает возможность временной остановки движения циклона, в том числе с последующим возвратом его на пройденную траекторию, при этом ударные нагрузки на поверхности моря также не проявляются.



 

Похожие патенты:

Изобретение относится к средствам подтверждения оплаты. Техническим результатом является снижение нагрузки на сервер проверки устройства и повышение безопасности системы.

Изобретение относится к способам обработки данных инклинометрии. Сущность: получают по меньшей мере данные одной инклинометрии от скважины.

Группа изобретений относится к медицине. Группа изобретений представлена системами измерения глюкозы и способом отображения информации о статусе глюкозы в крови пациента.

Представлен способ амплификации и секвенирования целевых локусов в образце нуклеиновой кислоты. Способ включает (a) приведение образца нуклеиновой кислоты, содержащего целевые локусы, в контакт с библиотекой тестовых праймеров, содержащей по меньшей мере 1000 разных тестовых праймеров, при этом концентрация каждого тестового праймера составляет менее 20 нМ; (b) амплификация реакционной смеси с помощью полимеразной цепной реакции (ПЦР), при этом ПЦР включает этап отжига с продолжительностью более 10 минут; при этом одновременно амплифицируют по меньшей мере 1000 разных целевых локусов и при этом (i) менее 20% амплифицированных продуктов представлено димерами тестовых праймеров, (ii) по меньшей мере 80% амплифицированных продуктов представлено целевыми ампликонами и (iii) амплифицируется по меньшей мере 80% целевых локусов; и (c) секвенирование амплифицированных продуктов.

Группа изобретений относится к медицине и может быть использована для определения риска рецидива хронического обструктивного заболевания легких. Группа изобретений состоит из системы, машиночитаемого носителя информации и способа мониторинга здоровья.

Изобретение относится к средствам дистанционного обучения, используемым при проведении удаленного обучения пользователя решению модельных и теоретических задач по естественнонаучным и инженерным дисциплинам и подготовке к сдаче вступительных аттестационных экзаменов.

Изобретение относится к средствам обучения. Технический результат заключается в расширении арсенала технических средств коррекции содержания и количества информации учебного материала.

Изобретение относит к управлению геофизическими исследованиями скважины и планированию бурения. В соответствии с одним из примеров предложен комплексный прибор для управления геофизическими исследованиями скважины и планирования бурения, который реализуют с применением вычислительной системы.

Группа изобретений относится к медицинской технике, а именно к средствам принятия клинических решений по раку шейки матки. Медицинское устройство для скрининга рака шейки матки, содержит процессор для управления медицинским устройством, базу данных медицинских руководств, содержащую набор клинических руководств по раку шейки матки, память для хранения машинно-выполняемых команд, при этом выполнение команд побуждает процессор для получения демографических данных объекта обследования, получения данных симптомов, характеризующих объект обследования, получения данных скринингового теста, характеризующих объект обследования, и выбора поднабора руководств по скринингу из набора клинических руководств, при этом выполнение команд дополнительно побуждает процессор для формирования запроса на кольпоскопический осмотр с использованием поднабора руководств по скринингу, получения кольпоскопических данных, собранных посредством кольпоскопа, и выбора поднабора руководств по кольпоскопии из набора клинических руководств в соответствии с демографическими данными и кольпоскопическими данными.

Изобретение относится к медицинским диагностическим ультразвуковым системам. Техническим результатом является оптимизация ультразвукового изображения для отображения на удаленных рабочих станциях, терминалах и экранах отображения.

Изобретение относится к метеорологическому приборостроению и предназначено для прогноза возникновения ограниченной посадочной видимости, обусловленной слепящим воздействием солнца, низко расположенного над горизонтом, на экипаж воздушного судна (ВС) при посадке (взлете).

Изобретение относится к области экологии и может быть использовано для биомониторинга аэрозольного загрязнения атмосферы металлами. Сущность: собирают талломы лишайников со стволов деревьев, произрастающих в антропогенно-трансформированной и фоновой (не загрязненной антропогенными выбросами) зонах.

Изобретение относится к области метеорологии и может быть использовано для определения неблагоприятных и опасных метеорологических явлений конвективного происхождения.

Изобретение относится к области технологий борьбы с ураганом в интересах защиты населения от него путем прерывания развития его мощности. Способ воздействия на ураган, циклон, тайфун включает осуществление взрывного воздействия при угрозе достижения скорости ветра 20-30 м/с в расчетных точках на окружности, охватывающей сплошную облачность урагана на расстоянии 20-30 км от нее в верхней части тропосферы.

Изобретение относится к способам экологического мониторинга химически опасных объектов. Сущность: определяют концентрацию опасных веществ в зоне закрытого в помещении объекта.

Изобретение относится к области экологического картографирования и может быть использовано для решения различных природоохранных задач. Сущность: определяют перечень учитываемых объектов: важных компонентов биоты (ВКБ) - экологических групп/подгрупп/видов биоты, особо значимых объектов (ОЗО) и природоохранных территорий (ПОТ).

Изобретение относится к области охраны окружающей среды и может быть использовано для мониторинга атмосферного воздуха санитарно-защитных зон промышленных объектов.

Изобретение относится к области палеоклиматологии и может быть использовано для восстановления рядов метеорологических характеристик. Сущность: выполняют предварительное датирование путем подсчета годовых сигналов в изотопном составе.

Изобретение относится к способам дистанционного зондирования атмосферы и может быть использовано для определения траектории распространения облаков токсичных газообразных веществ в атмосфере, например, в целях прогнозирования последствий аварий на химически опасных объектах.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом является возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства.

Изобретение относится к области гидродинамического моделирования и может быть использовано для гидродинамического моделирования очага цунами. Сущность изобретения: строят гидродинамическую модель очага цунами с использованием прямого вычислительного эксперимента на основании макросейсмических аппроксимаций параметров подводного землетрясения. При этом реализуют гидродинамический отклик на кратковременные и интенсивные сейсмические сотрясения морского дна, приводящие к оползневым явлениям и дисперсионным эффектам трансформации длинных волн в акваториях с высокодобротными осцилляторами собственных колебаний уровня моря. С этой целью главные оси эллиптической деформации поверхности моря ориентируют по направлениям преобладающих изобат и берегового уреза. В зависимости от крутизны наклона морского дна в мористой зоне сейсмического очага устраивают фронт волны цунами с подъемом уровня моря по макросейсмическим оценкам, переходящим в отрицательную полуфазу волны с опусканием уровня ближе к побережью до 25-30% от величины фронта на глубокой воде. На наклонном дне положительной и отрицательной полуфазам волн цунами придают начальный импульс движения в направлении меньших глубин, для чего очаг инициируют векторным полем до 30-40% от полного потока прогрессивной волны. На ровном дне подъем уровня стационарный, начальную скорость движения фронта не доопределяют. Технический результат: точное определение начальной геометрической формы и гидродинамических параметров очага цунами. 6 ил.

Изобретение касается гидродинамического моделирования источника штормовых нагонов и экстремальных течений под воздействием подвижного атмосферного тайфуна. Сущность: определяют внешнее возмущение для прямого вычислительного эксперимента при моделировании штормовых нагонов и экстремальных течений вблизи побережья с возможностью выбора наиболее вероятных или потенциально опасных маршрутов атмосферных тайфунов и глубоких циклонов над открытым морем. При этом возмущение уровня моря задают в дифференциальных приращениях атмосферного давления в форме гауссова источника - колокола внутри окружности на равноугольной меркаторской карте. Подвижный очаг атмосферного давления дополняют ветровыми напряжениями со спиральным затягиванием поверхностных вод к центру циклонического вихря. Для исключения ударных нагрузок на водную поверхность все геометрические элементы формы и траектории атмосферного вихря, так же как и все его аэрогидродинамические характеристики, плавно распределяют с помощью гладких сплайновых аппроксимаций между контрольными географическими пунктами на произвольно выбираемом маршруте атмосферного тайфуна или глубокого циклона. Применяемые методы сплайн-интерполяции геометрических и гидрометеорологических параметров построены на индексах контрольных точек во времени, что формально допускает возможность временной остановки движения циклона, в том числе с последующим возвратом его на пройденную траекторию, при этом ударные нагрузки на поверхности моря не проявляются. Технический результат: точное определение маршрута движения, исходной геометрической формы и гидродинамических параметров очага возмущения водной поверхности при прохождении тайфунов и глубоких циклонов. 2 ил.

Наверх