Способ определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц. Способ определения распределения взвешенных частиц по массе основан на облучении исследуемого объекта лазерным и акустическим излучениями и регистрации рассеянного частицами светового потока. При этом при неизменных параметрах лазерного излучателя изменяется частота акустических колебаний, при этом отдельные частицы начинают входить в резонанс и происходит изменение частоты рассеянного светового потока за счет доплеровского эффекта, преломленное изображение которого в виде полос, образуемых треугольной призмой, поступает через объектив в ПЗС-матрицу и далее подается в микропроцессорное устройство управления и обработки для определения распределения частиц по массе. Технический результат – повышение точности данных при определении распределения взвешенных частиц по массе. 1 ил.

 

Изобретение относится к технике измерений, в частности, к оптическим методам контроля и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Известен способ анализа взвешенных частиц (А.С. SU507807, МПК G01N15/02, опубл. 08.01.1974 г.), основанный на облучении исследуемого объекта электромагнитным и акустическим излучениями и регистрации рассеянного частицами электромагнитного излучения, в котором с целью повышения точности анализа, облучение осуществляют одновременно обоими видами излучений, регистрируют изменение частоты: моночастотного электромагнитного излучения, а размер частиц находят по формуле: , где η- коэффициент вязкости среды; V0 - амплитуда скорости частиц под действием акустических колебаний; Δf - максимальное изменение частот отраженного моночастотного электромагнитного излучения; λ - длина волны моночастотного электромагнитного излучения; ρ - плотность частицы; F - частота акустических колебаний. Недостатком способа является сложность реализации, а так же отсутствие возможности определения распределения частиц по массе.

Известен фотоэлектрический способ измерения размеров и концентрации взвешенных частиц (А.С. SU № 1520399, МПК G01N 15/02, опубл. 07.11.1989 г.), заключающийся в том, что в потоке частиц, освещенном неподвижным пучком света, возбуждают акустическое колебание в направлении, перпендикулярном направлению потока и оси пучка, и регистрируют "пачки" импульсов рассеянного частицами света, возникающие при пересечении пучка света колеблющимися частицами, по амплитудам которых судят о размерах частиц, а по средней частоте повторений
"пачек" - о концентрации частиц. Недостатком данного способа является отсутствие возможности определения распределения в среде частиц по массе.

Известен способ определения параметров дисперсных частиц (А.С. SU № 1508742, МПК G01N 15/02, опубл. 07.07.1992 г.), заключающийся в том, что объем с дисперсными частицами зондируют пучком маломощного лазерного излучения. Излучение, отраженное частицами назад, оптически смешивают с зондирующим измерением, регистрируют частотный спектр биений, из которого находят распределение частиц по скоростям, затем одновременно с зондирующим лазерным излучением счетный объем подвергают воздействию мощного лазерного импульса на длине волны, отличной от длин волны зондирующего лазера. По изменению частотного спектра биений отраженного зондирующего лазерного излучения определяют распределение частиц по размерам. К недостаткам можно отнести: использование мощной, дорогостоящей лазерной установки, сложность реализации и сложность обработки результатов измерений при большом количестве частиц в среде.

Известен способ измерения скорости и перемещения исследуемой среды (Пат. RU № 2150707, МПК G01P5/26, опубл. 15.03.1999 г.), заключающийся в том, что в среде возбуждают акустическую волну, пропускают через среду световой пучок и регистрируют изменения характеристик светового пучка на выходе из среды, по которым и судят о скорости и перемещении среды. Недостатком отсутствия возможности определения распределения в среде частиц по массе.

В качестве прототипа выбран способ определения геометрических параметров дисперсных частиц (Пат. RU № 2346261, МПК G01N 15/02, опубл. 10.02.2009 г.), включающий зондирование исследуемой дисперсной среды пучком маломощного лазерного излучения и воздействия импульсов ультразвуковых колебаний и, по регистрируемым динамической составляющей рассеянного и отраженного от дисперсных частиц излучениям, определяют их собственные частоты механических колебаний, из которых находят размер частиц. К недостаткам способа можно отнести сложность реализации и сложность обработки результатов измерений при большом количестве частиц в среде, а так же отсутствие возможности определения распределения частиц по массе.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, состоит в повышении точности данных при измерении распределения взвешенных частиц по массе.

Этот результат достигается тем, что способ определения распределения взвешенных частиц по массе, основанный на облучении исследуемого объекта лазерным и акустическим излучениями и регистрации рассеянного частицами светового потока, в котором для повышения точности определения распределения частиц по массе при неизменных параметрах лазерного излучателя изменяется частота акустических колебаний, при этом отдельные частицы начинают входить в резонанс и происходит изменение частоты рассеянного светового потока за счет доплеровского эффекта, преломленное изображение которого в виде полос, образуемых треугольной призмой, поступает в через объектив ПЗС-матрицу и далее подается в микропроцессорное устройство управления и обработки для определения распределения частиц по массе.

На фиг.1 представлена схема устройства по предлагаемому способу.

Устройство включает следующее: 1- генератор, 2- пьезоизлучатель, 3- поглотитель оптического излучения, 4- акустическое колебание (волна), 5- оптический рассеиватель, 6- смотровое окно, 7 – щель, 8- объектив коллиматора, 9 – двояковогнутая линза, 10- лазерный излучатель, 11 – треугольная призма, 12- объектив, 13- ПЗС- матрица, 14- микропроцессорное устройство управления и обработки.

Способ реализуется следующим образом.

Воздушный поток, содержащий частицы, пропускают через измерительный объем устройства (на фиг. не обозначен). Этот объем подвергают акустическим колебаниям с помощью пьезоизлучателя 2. Частицы, находящиеся в измерительном объёме совершают колебательные движения, которые описываются следующим уравнением:

x=x0·cos ωt;

где: x0 – амплитуда колебаний частицы;

ω – круговая частота колебаний частицы:

t – время.

При этом амплитуда колебаний частицы равна:

;

где: F0 – амплитуда колебаний силы, действующей на частицу;

m – масса частицы:

ω0 – резонансная частота колебаний частицы;

ω – фактическая частота колебаний частицы;

γ – коэффициент, учитывающий свойства среды, в которой движется частица.

Скорость движения частицы равна:

.

Из данного выражения следует, что скорость частицы зависит от силы, действующей на частицу, массы частицы, частоты колебаний частицы, а также свойств среды, в которой движется частица. Частица достигает максимальной скорости, когда частота колебаний среды совпадает с резонансной частотой колебаний частицы.

Акустические колебания 4 в измерительном объеме создает пьезоизлучатель 2 и генератор 1, частоту которого задает микропроцессорное устройство управления и обработки 14. При монотонном увеличении частоты колебаний среды отдельные частицы входят в резонанс, когда частота свободных колебаний частиц совпадает с частотой колебаний среды. Частота свободных колебаний частицы зависит от массы этой частицы:

.

Следовательно, если увеличивать частоту колебаний среды, то частицы с различной массой начнут последовательно входить в резонанс. Скорость движения этих частиц будет значительно выше скорости движения других частиц, находящихся в измерительном объёме.

Измерение скорости движения частиц осуществляется доплеровским методом. Для этого измерительный объем равномерно освещается монохроматическим светом с помощью лазерного излучателя 10, двояковогнутой линзы 9, оптического рассеивателя 5. Чтобы свет отражался только от частиц, находящихся в измерительном объёме, стенки этого объема обклеены поглотителем оптического излучения 3. Рассеиваемый частицами свет через смотровое стекло 6, щель 7, объектив коллиматора 8, треугольную призму 11 и объектив 12 поступает в виде спектра на ПЗС-матрицу 13.

Если частицы в измерительном объеме находятся неподвижно, то спектр отраженного от них света представляет собой одну линию, соответствующую частоте излучения лазерного излучателя 10. Эту линию размещают у края ПЗС- матрицы 13. После включения генератора 1 в измерительном объеме наблюдаются колебания среды и частиц, меняется частота отраженного от частиц света, т.е. происходит частотная модуляция лазерного излучения.

Так как движение частиц осуществляется по синусоидальному закону, то происходит увеличение ширины линии спектра. Если группа частиц одной массы входит в резонанс, то происходит увеличение ширины и уменьшение амплитуды линии спектра. Следовательно, к частотной модуляции монохроматического света добавляется амплитудная модуляция. Ширина полученного спектра несет информацию о массе частицы, находящейся в резонансе, а амплитуда спектра – о процентном соотношении этих частиц относительно их общего числа. Информация о спектре поступает микропроцессорное устройство управления и обработки 14, где происходит определение распределения взвешенных частиц по массе.

Таким образом, рассмотренный способ, в отличие от известных, позволяет существенно повысить точность данных при определении распределения взвешенных частиц по массе.

Способ определения распределения взвешенных частиц по массе, основанный на облучении исследуемого объекта лазерным и акустическим излучениями и регистрации рассеянного частицами светового потока, отличающийся тем, что при неизменных параметрах лазерного излучателя изменяется частота акустических колебаний, при этом отдельные частицы начинают входить в резонанс и происходит изменение частоты рассеянного светового потока за счет доплеровского эффекта, преломленное изображение которого в виде полос, образуемых треугольной призмой, поступает через объектив в ПЗС-матрицу и далее подается в микропроцессорное устройство управления и обработки для определения распределения частиц по массе.



 

Похожие патенты:

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости, «вырезаемой» световым ножом, в котором частицы в измерительной плоскости потока освещаются минимум дважды и регистрируются на цифровую камеру, а последующая обработка изображений позволяет рассчитать амплитуду смещения частиц за время между вспышками источника света и построить поле скорости, а для повышения информативности способа и возможности определения размера, плотности и массы вещества частиц в поток дополнительно направляется акустическое излучение заданной частоты и амплитуды, и дополнительно регистрируются облученные акустическим излучением изображения перемещения частиц примеси в плоскости светового ножа минимум два периода звуковых колебаний с учетом релаксации частиц, а для определения вязкости среды измеряется температура потока.

Изобретение относится к системе судового энергетического оборудования, в частности к способам анализа отработавших газов. Технический результат заключается в возможности определения оптимального режима нагрузки дизеля и контроля процесса горения топлива на основе полученных параметров, а именно размеров твердых частиц отработавших газов дизеля.

Изобретение относится к системам и способам обнаружения частиц в жидком агенте. Способ обнаружения частиц в жидком агенте, содержащемся в контейнере, включает в себя избирательное освещение, по меньшей мере, части жидкого агента, получение изображения из освещенной части жидкого агента, анализ данных изображения, представляющих изображение, с использованием процессора данных, для получения концентрации частиц, измерение значения интенсивности изображения данных изображения с использованием процессора данных и определение уровня качества жидкого агента на основании концентрации частиц и измеренного значения интенсивности изображения.

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку.

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося уголкового отражателя и двухлинзовой оптической системы.

Устройство для измерения размеров капель воды водовоздушных потоков содержит корпус, державку с кассетой со стеклами, блок управления, подвижной цилиндрический кожух, закрывающий кассету и приводимый в движение микроэлектродвигателем, установленным в корпусе.

Изобретение относится к области исследования и анализа материалов. Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включает облучение раствора с добавленными наночастицами лазерным излучением.

Использование относится к области измерений, связанной с анализом взвешенных частиц. Устройство анализа взвешенных частиц включает источник лазерного излучения, системы объективов и зеркал, где световой пучок разворачивают равномерно под углом к исходному пучку и вновь пропускают через поток частиц и регистрация изображений частицы происходит с трех углов светового потока.

Изобретение относится к области измерительной техники и может быть использовано для определения гранулометрического состава жидких дисперсных сред в химической, лакокрасочной промышленностях, в биологии, экологии и других областях науки, связанных с определением размера взвешенных частиц.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для исследования физических характеристик нативной биологической жидкости (НБЖ).

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц. Устройство определения распределения взвешенных частиц по массе содержит лазерный излучатель, генератор, пьезоизлучатель. Дополнительно содержит двояковогнутую линзу, оптический рассеиватель, поглотитель оптического излучения, смотровое окно, щель, объектив коллиматора, треугольную призму, объектив, ПЗС-матрицу и микропроцессорное устройство управления и обработки. Технический результат – повышение точности данных при определении распределения взвешенных частиц по массе. 1 ил.

Изобретение относится к измерительному устройству и к способу отбора образцов. Способ содержит следующие этапы: а) добавление образца в камеру, в которой обеспечены магнитные частицы, при этом образец содержит целевой компонент, и камера имеет поверхность обнаружения; b) приложение силы магнитного поля к магнитным частицам, чтобы притянуть магнитные частицы к поверхности обнаружения. Cвязанные магнитные частицы, которые захватывают целевой компонент в магнитных частицах, удерживаются на поверхности обнаружения, и несвязанные магнитные частицы, которые не захватывают целевой компонент в магнитных частицах, также удерживаются на поверхности обнаружения; c) сбрасывание части образца из камеры и добавление нового образца в камеру; d) изменение силы магнитного поля, прилагаемого к магнитным частицам, чтобы высвободить несвязанные магнитные частицы с поверхности обнаружения; e) повторение этапов b-d в течение определенного числа циклов, при этом перед этапом приложения этап b дополнительно содержит этап, на котором смешивают магнитные частицы и целевой компонент посредством формирования переменного магнитного поля в течение заданного периода времени. Изобретение позволяет увеличить чувствительность измерительного устройства. 4 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к измерительному устройству и к способу отбора образцов. Способ содержит следующие этапы: а) добавление образца в камеру, в которой обеспечены магнитные частицы, при этом образец содержит целевой компонент, и камера имеет поверхность обнаружения; b) приложение силы магнитного поля к магнитным частицам, чтобы притянуть магнитные частицы к поверхности обнаружения. Cвязанные магнитные частицы, которые захватывают целевой компонент в магнитных частицах, удерживаются на поверхности обнаружения, и несвязанные магнитные частицы, которые не захватывают целевой компонент в магнитных частицах, также удерживаются на поверхности обнаружения; c) сбрасывание части образца из камеры и добавление нового образца в камеру; d) изменение силы магнитного поля, прилагаемого к магнитным частицам, чтобы высвободить несвязанные магнитные частицы с поверхности обнаружения; e) повторение этапов b-d в течение определенного числа циклов, при этом перед этапом приложения этап b дополнительно содержит этап, на котором смешивают магнитные частицы и целевой компонент посредством формирования переменного магнитного поля в течение заданного периода времени. Изобретение позволяет увеличить чувствительность измерительного устройства. 4 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Устройство автоматического контроля крупности частиц в потоке пульпы содержит чувствительный элемент 4, выполненный в виде микрометрического щупа 7, подпятник 13 микрометрического щупа 7, датчик величины перемещения и привод микрометрического щупа 7. Устройство дополнительно содержит управляющий контроллер, пневмораспределитель, накопительную емкость 1, переключающие клапаны, измерительную кювету 6, перекачивающий насос 17, причем привод микрометрического щупа 7 выполнен в виде бесштокового ленточного цилиндра, датчик величины перемещения микрометрического щупа 7 выполнен в виде микропроцессорного контактного измерительного датчика 14, выход которого соединен со входом усилителя 16 сигнала, накопительная емкость 1 содержит датчики 2 и 3 уровня и плотности пульпы. Измерительная кювета 1 выполнена в виде проточной емкости, внутри которой расположен подпятник 13 микрометрического щупа 7, а на внешней поверхности закреплен подпятник 15 микропроцессорного контактного измерительного датчика 14, при этом всасывающий патрубок перекачивающего насоса 17 соединен с впускным коллектором 18, 1-й вход которого соединен с клапаном на выходе накопительной емкости, 2-й вход коллектора соединен с выходом клапана магистрали забора пробы из технологической емкости, а нагнетающий патрубок перекачивающего насоса 17 соединен с выпускным коллектором 18, 1-й выход которого соединен с клапаном 25 сброса пульпы в дренаж из накопительной емкости 1, 2-й выход соединен с клапаном 26 подачи пробы на 1-й вход накопительной емкости, 3-й выход соединен с клапаном 27 подачи пробы в измерительную кювету 6, 2-й вход накопительной емкости 1 соединен с выходом измерительной кюветы 6, а 3-й вход накопительной емкости 1 соединен с выходом клапана 29 подачи воды. Управляющие выходы пневмораспределителя 30 соединены с соответствующими входами бесштокового ленточного цилиндра 31, измерительные входы контроллера 37 соединены с выходами датчиков уровня, плотности пульпы в накопительной емкости и усилителя сигнала микропроцессорного контактного измерительного датчика, а выходы контроллера 37 соединены с управляющими входами переключающих клапанов, пневмораспределителя и перекачивающего насоса 17. Технический результат - повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений загрязнения пульпы посторонними материалами и применения принципиально нового механизма - пневматического привода. 5 з.п. ф-лы, 2 ил.
Наверх