Катализаторы окисления циклоалкана и способ получения спиртов и кетонов

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, посредством приведения в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I):

,

где

- Y представляет собой N или O;

- X=1, если Y=O, или 2, если Y=N;

- Z представляет собой валентность металла; и

- M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z. Предлагаемый способ позволяет получить целевые продукты с высокой селективностью при высокой степени превращения исходного соединения. 9 з.п. ф-лы, 1 табл., 1 пр.

 

Настоящая заявка заявляет преимущество международной заявки № PCT/CN2013/074348, поданной 18 апреля 2013 г., содержание которой включено в данный документ посредством ссылки во всех смыслах.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующий спирт и кетон, при этом указанный способ включает приведение в контакт циклоалкана с окисляющим средством в присутствии каталитически эффективного количества катализаторов, представляющих собой трифлаты металлов или трифлимидаты металлов.

ПРЕДШЕДСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Следующее обсуждение предшествующего уровня техники представлено для того, чтобы поместить настоящее изобретение в определенный технический контекст и обеспечить более глубокое понимание его преимуществ. Однако необходимо принять во внимание, что любое обсуждение предшествующего уровня техники по всему описанию не следует рассматривать в качестве явного или косвенного признания того, что такой предшествующий уровень техники широко известен или формирует часть общеизвестных знаний в этой области.

Ранее применялись несколько различных способов окисления циклогексана в смесь продуктов, содержащую циклогексанон и циклогексанол. Такая смесь продуктов обычно упоминается как смесь KA (кетон/спирт). KA-смесь можно легко окислить с получением адипиновой кислоты, являющейся важным реагентом в способах получения определенных конденсационных полимеров, особенно полиамидов. В этих и других способах потребляются произведенные большие количества адипиновой кислоты, и существует потребность в экономически эффективных способах получения адипиновой кислоты и ее предшественников.

Классический способ получения смеси, содержащей циклогексанон и циклогексанол, для получения KA-масла осуществляют в две стадии путем окисления циклогексана. Первая представляет собой термическое автоокисление циклогексана, которое приводит к образованию циклогексилгидропероксида (HPOCH), который выделяют. На второй стадии KA-масло получают путем разложения HPOCH, которое катализируется используемыми в качестве гомогенных катализаторов ионами хрома или ионами кобальта.

С установленными по всему миру ограничениями становится все более и более необходимым требование к замене катализаторов, таких как хромовые катализаторы, загрязняющие окружающую среду. Воздействие на окружающую среду и экономика данного способа могут быть значительно улучшены, если современные гомогенные катализаторы можно заменить нетоксичными катализаторами.

Различные типы гомогенных катализаторов использовали для катализа окисления циклогексана и разложения циклогексилгидропероксида для получения KA-масла.

Например, в US 3923895 описывают способ разложения циклогексилгидропероксида с помощью растворимых производных хрома в присутствии сложного эфира фосфорной кислоты при 80-150°C. Также в US 4465861 раскрывают способ разложения циклогексилгидропероксида с использованием на стадии разложения композиции катализатора, состоящей главным образом из (a) конкретной соли хрома, кобальта, железа, марганца, молибдена или ванадия и (b) в качестве стабилизирующего средства - алкилсульфоновой кислоты, алкиларенсульфоновой кислоты, сульфоната алкиламмония или сульфоната алкилфосфония. В EP 0230254 B1 описывают разложение циклогексилгидропероксида с помощью кобальтовой соли в присутствии производных фосфоновой кислоты. В EP 0768292 B1 описывают способ разложения циклогексилгидропероксида с помощью Co или Cr в присутствии гидроксида щелочного металла и одной или нескольких солей щелочных металлов в водной фазе. Солями щелочных металлов предпочтительно являются карбонаты щелочных металлов или соли щелочных металлов моно- или поликарбоновых кислот. В US 4918238 сообщается о применении в качестве катализатора разложения циклогексилгидропероксида тетраоксида осмия. Способ разложения циклогексилгидропероксида с помощью кобальтового катализатора в щелочном растворе раскрыт в US 20030229253 A1. В US 7632942 описывают окисление циклогексана кислородом в присутствии кобальтовой соли карбоновой кислоты и кобальтового комплекса с порфирином в качестве лиганда.

Кроме того, Hansen и другие (Journal of molecular catalysis A: Chemical, 1995, 102, 117-128) использовали тетраарилпорфирины рутения в качестве катализаторов при разложении циклогексилгидропероксида.

Все еще остается потребность в катализаторе с высокой окислительной способностью, чтобы достигнуть высокой степени превращения циклогексана и высокой селективности к KA-маслу при относительно низкой концентрации циклоалкилгидропероксида и при низкой стоимости получения катализатора.

НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ

В данный момент становится понятным, что вполне возможно получить смесь спирта и кетона из циклоалкана при условии высокой окислительной способности и высокой селективности к KA-маслу, а также с хорошим балансом между степенью превращения и выходом. Подобные результаты могут быть получены с использованием каталитически эффективного количества катализаторов, представляющих собой трифлаты металлов или трифлимидаты металлов, демонстрирующих высокую окислительную способность при относительно низком уровне окислителя.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, при этом указанный способ включает приведение в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I),

где

- Y представляет собой N или O;

- X=1, если Y=O, или 2, если Y=N;

- Z представляет собой валентность металла, предпочтительно варьирующую от 1 до 4; и

- M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z.

Валентность, также известная как валентное число, представляет собой число валентных связей, которые указанный атом образовал или может образовать с одним и несколькими другими атомами.

Другие характеристики, детали и преимущества настоящего изобретения будут выяснены более полно после прочтения нижеизложенного описания.

По всему описанию, включая формулу изобретения, термин “содержащий один” должен пониматься как синоним термина “содержащий по меньшей мере один”, если не указано иное, и выражение “от до” должно пониматься как включающее граничные значения.

Циклоалкан

Циклоалкан может относиться к насыщенным циклическим углеводородам, содержащим от 3 до 10 атомов углерода, чаще от 5 до 8 атомов углерода. Неограничивающие примеры циклоалканов включают циклопентан, циклогексан, циклогептан и циклооктан.

Окисляющее средство

Окисляющее средство согласно настоящему изобретению может представлять собой, например, воздух, O2 или гидропероксид.

Конкретные примеры гидропероксидных соединений, применяемых в настоящем, могут быть представлены следующей формулой (II):

R-O-O-H (II),

где R представляет собой углеводородную группу, содержащую от 3 до 15 атомов углерода, главным образом алкильную или арильную группы.

Термин “углеводородная группа”, используемый в данном документе, относится к группе, состоящей из атомов углерода и атомов водорода, и которая может быть насыщенной или ненасыщенной, линейной, разветвленной или циклической, алифатической или ароматической. Углеводородные группы по настоящему изобретению могут представлять собой алкильные группы, алкенильные группы или арильные группы.

Алкил, как используется в данном документе, означает насыщенный алифатический углеводород с неразветвленной или разветвленной цепью. Как используется в данном документе, если не указано иное, термин "алкил" означает линейную или разветвленную алкильную группу, необязательно замещенную одним или несколькими заместителями, выбранными из группы, состоящей из низшего алкила, низшего алкокси, низшего алкилсульфанила, низшего алкилсульфенила, низшего алкилсульфонила, оксо, гидрокси, меркапто, амино, необязательно замещенного алкилом, карбокси, карбомоила, необязательно замещенного алкилом, аминосульфонила, необязательно замещенного алкилом, нитро, циано, галогена или низшего перфтороалкила, при этом допускаются множественные степени замещения.

Арил, как используется в данном документе, означает 6-углеродную моноциклическую или 10-углеродную бициклическую систему ароматических колец, где 0, 1, 2, 3 или 4 атома каждого кольца замещены заместителем, таким как O или N. Примеры арильных групп включают фенил, нафтил и подобные.

Гидропероксиды предпочтительно выбраны из группы, состоящей из трет-бутилгидропероксида, трет-амилгидропероксида, гидропероксида кумола, этилбензолгидропероксида, циклогексилгидропероксида, метилциклогексилгидропероксида, тетралин (т.е. тетрагидронафталин) гидропероксида, изобутилбензолгидропероксида и этилнафталингидропероксида.

Гидропероксиды более предпочтительно представляют собой алкильные гидропероксиды, такие как трет-бутилгидропероксид или циклогексилгидропероксид.

Эти гидропероксиды также можно применять в комбинации двух или более их радикалов.

Гидропероксиды, относящиеся к настоящему изобретению, можно получать in situ, особенно посредством реакции циклоалкана с кислородом или источником кислорода или добавлять в реакционную среду, особенно в начале реакции или в течение реакции.

Реакционная среда может содержать циклоалкан от 2 до 40 вес.% окислительного средства в соответствии с общим весом реакционной смеси, более предпочтительно от 5 до 20 вес.% окислительных средств. В варианте осуществления настоящего изобретения реакционная среда содержит циклоалкан от 2 до 40 вес.% гидропероксидов в соответствии с общим весом реакционной смеси, более предпочтительно от 5 до 20 вес.% гидропероксидов.

Катализатор формулы (I)

Катализаторы, представляющие собой трифлаты металлов формулы (I), получают, если Y представляет собой атом кислорода.

Трифлимидаты металлов получают, если Y представляет собой атом азота.

Металл в соответствии с настоящим изобретением может быть выбран из группы, состоящей из

- переходных металлов, таких как, например, Fe, Y, Cu и Cr,

- постпереходных металлов, таких как, например, Bi и In,

- лантанидов, таких как, например, Nd и Ce.

M предпочтительно выбран из группы, состоящей из Fe, Y, Cu, Cr, Bi, In, Nd и Ce.

Катализаторы по настоящему изобретению предпочтительно выбраны из группы, состоящей из Fe(OTF)3, Cu(OTf)2, Y(OTf)3, Fe(TSIF)3, Cu(TFSI)2, Ce(TFSI)3, In(TFSI)3 и Bi(TFSI)3.

Катализаторы по настоящему изобретению можно использовать в диапазоне от 0,0001 вес.% до 10 вес.%, предпочтительно от 0,001 вес.% до 0,1 вес.%, относительно веса металла по отношению к общему весу реакционной среды.

В течение реакции по настоящему изобретению, особенно при смешивании, можно использовать комбинацию двух или более катализаторов.

Катализатор по настоящему изобретению можно использовать в виде гомогенного или гетерогенного катализатора.

Катализатор можно помещать на носитель, такой как, например, оксиды, углероды, органические или неорганические смолы. Особенно, носитель может быть выбран из группы, состоящей из оксида кремния, оксида алюминия, оксида циркония, оксида титана, оксида церия, оксида магния, оксида лантана, оксида ниобия, оксида иттрия, цеолита, перовскита, силикатной глины и оксида железа и их смесей. Катализатор может быть помещен на носитель любым удобным способом, в частности адсорбцией, ионным обменом, привитой сополимеризацией, улавливанием, пропиткой или сублимацией.

Параметры реакции

При применении настоящего изобретения катализаторы могут контактировать с циклоалканом, таким как циклогексан, посредством составления в слой катализатора, который скомпонован для обеспечения тщательного контакта между катализатором и реагентами. В качестве альтернативы, катализаторы можно суспендировать с реакционными смесями, применяя технологии, известные в этой области техники. Способ по настоящему изобретению пригоден как для периодического, так и для непрерывного окисления циклоалкана. Эти процессы можно осуществлять в широком диапазоне условий, а также будут понятны для специалистов в данной области.

Подходящие температуры реакции для способа по настоящему изобретению, как правило, варьируют в диапазоне от приблизительно 20 до приблизительно 200°C, предпочтительно от приблизительно 40 до приблизительно 140°C.

Значения давления реакции часто варьируют в диапазоне от приблизительно 0,1 МПа (1 бар) до приблизительно 20 MПа (200 бар), при этом эти значения не являются абсолютно нормируемыми. Время обработки циклоалкана в реакторе, как правило, варьирует в обратно пропорциональной зависимости от температуры реакции и обычно находится в пределах от 30 до 1440 минут. В реакционной среде можно использовать чистый кислород, воздух, обогащенный или обедненный кислородом воздух или, в качестве альтернативы, кислород, разбавленный инертным газом.

В реакционной среде также можно использовать растворитель. Предпочтительно растворители выбраны из группы полярных протонных или полярных апротонных растворителей, предпочтительно ацетонитрила или уксусной кислоты.

Подходящие полярные апротонные растворители можно выбрать, например, из группы, состоящей из тетрагидрофурана, ацетона, ацетонитрила или DMSO.

Подходящие полярные протонные растворители можно выбрать, например, из группы, состоящей из уксусной кислоты, муравьиной кислоты, изопропанола, этанола и метанола.

В реакционной смеси можно использовать в комбинации один растворитель или несколько растворителей.

Катализаторы по настоящему изобретению можно восстанавливать, регенерировать или воспроизводить. Более конкретно, катализатор можно регенерировать так, что он будет характеризоваться исходной активностью, например, путем восстановления и высушивания катализатора.

По окончании реакции соединение, представляющее интерес, можно очистить хорошо известными в этой области техники способами, такими как дистилляция.

В случае, если раскрытие любого из патентов, патентных заявок, публикаций, включенных в данный документ посредством ссылки, вступает в конфликт с описанием настоящей заявки в той степени, что она может привести к неопределенностям в терминологии, настоящее описание будет иметь приоритет.

Следующие примеры приведены только для иллюстративных целей и не должны рассматриваться как ограничивающие изобретение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пример 1

Несколько катализаторов использовали для катализа окисления циклогексана с применением трет-бутилгидропероксида (TBHP) при 80°C в течение 1,0 часа с 0,02 г катализатора и 7,7 вес.% TBHP в циклогексане. Молярное соотношение TBHP/катализатор составляет 79,3. Результаты представлены в таблице 1.

Таблица 1
Испытания Катализатор Степень превращения
TBHP
(%)
Селективность KA (%) Выход КА
(%)
C1 нет 0,7 98,0 0,7
C2 Co(NO3)2 49 44 -
C3 Трифторметан-сульфокислота 99,7 4,2 4,2
1 Fe(OTF)3 100 30,2 30,2
2 Cu(OTf)2 75 30,0 22,5
3 Y(OTf)3 55,8 27,2 15,2
4 Fe(TSIF)3 100 23,1 23,1
5 Cu(TFSI)2 84,7 29,8 25,2
6 Ce(TFSI)3 72,4 14,1 10,2
7 In(TFSI)3 81,6 12,6 10,3
8 Bi(TFSI)3 91,3 11,8 10,8

Испытание C2 проведено с использованием катализатора Co (NO3)2, как упомянуто в EP 0768292 A1.

Становится очевидным, что без применения каких-либо катализаторов степень превращения TBHP и выход KA составляют менее 1%, в то время как можно обеспечить высокую степень превращения TBHP с высокими выходом KA и селективностью КА с помощью катализаторов по настоящему изобретению.

1. Способ окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, при этом указанный способ включает приведение в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы (I):

,

где Y представляет собой N или O;

X=1, если Y=O, или 2, если Y=N;

Z представляет собой валентность металла; и

M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z.

2. Способ по п. 1, где циклоалкан выбирают из группы, состоящей из циклопентана, циклогексана, циклогептана и циклооктана.

3. Способ по п. 1 или 2, где окисляющим средством является гидропероксидное соединение, соответствующее следующей формуле (II):

R-O-O-H (II),

где R представляет собой углеводородную группу, содержащую от 3 до 15 атомов углерода.

4. Способ по п. 3, где гидропероксидные соединения выбирают из группы, состоящей из трет-бутилгидропероксида, трет-амилгидропероксида, гидропероксида кумола, этилбензолгидропероксида, циклогексилгидропероксида, метилциклогексилгидропероксида, тетралингидропероксида, изобутилбензолгидропероксида и этилнафталингидропероксида.

5. Способ по любому из пп. 1 или 4, где Y в формуле (I) представляет собой атом кислорода.

6. Способ по п. 1, где Y в формуле (I) представляет собой атом азота.

7. Способ по п. 1, где M выбирают из группы, состоящей из Fe, Y, Cu, Cr, Bi, In, Nd и Ce.

8. Способ по любому из пп. 1-7, где катализаторы формулы (I) выбирают из группы, состоящей из Fe(OTF)3, Cu(OTf)2, Y(OTf)3, Fe(TSIF)3, Cu(TFSI)2, Ce(TFSI)3, In(TFSI)3 и Bi(TFSI)3.

9. Способ по п. 1, где катализаторы используют в пределах диапазона от 0,0001 до 10 вес.% веса металла относительно общего веса реакционной среды.

10. Способ по п. 1, где реакционная среда содержит полярный апротонный или полярный апротонный растворитель.



 

Похожие патенты:

Изобретение может быть использовано в технологии основного органического синтеза для выделения циклогексанона высокой степени чистоты, применяемого в качестве сырья для получения капролактама.

Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама. Заявленный катализатор дегидрирования циклогексанола в циклогексанон включает карбонат кальция, оксид цинка, дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-2,5; смесь терморасширенного графита и шунгита - 0,5-1,5.
Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Изобретение относится к способу кислотного разложения технического гидропероксида кумола в последовательно установленных реакторах при повышенном давлении и повышенной температуре с подачей в реакторы дополнительного количества ацетона в расчете на подаваемый гидропероксид с управлением процессом разложения гидропероксида.

Изобретение относится к способу получения цис-конденсированного бициклического производного формулы (II) из соответствующего транс-конденсированного бициклического производного формулы (I), который включает стадию взаимодействия указанного транс-конденсированного бициклического производного с гидридным основанием формулы М-Н, где М представляет собой атом IA группы.

Изобретение относится к способу гидрирования фенола на палладиевом катализаторе (0,5% мас. Pd на сверхсшитом полистироле (СПС)) в избытке водорода при соотношении водород:фенол=4-5:1 (мольное) при атмосферном давлении.
Изобретение относится к способу дегидрирования циклогексанола в циклогексанон. Предложенный способ дегидрирования циклогексанола в циклогексанон осуществляют в газовой фазе при повышенной температуре в присутствии катализатора, содержащего активные компоненты, на 56÷88 мас.% состоящие из оксида цинка и на 8,0÷39,0 мас.% из карбоната кальция.

Изобретение относится к способам очистки циклогексанона. Описан способ очистки циклогексанона, полученного окислением циклогексана кислородом воздуха или дегидрированием циклогексанола, в котором процесс ректификации ведут в разрезной вакуумной ректификационной колоне (2 колонны), где дистиллят первой колонны является питанием для второй колонны; из куба первой колонны выводят смесь циклогексанола и высококипящих примесей на дальнейшее разделение, а куб второй колонны является флегмой для первой - в нее при этом вводится раствор щелочи (КОН) в циклогексаноле, эквивалентный содержанию эфиров.

Изобретение относится к способу получения метилового эфира (3aR, 4S, 7aR)-4-гидрокси-4-м-толилэтинилоктагидроиндол-1-карбоновой кислоты формулы (I), с использованием новых промежуточных соединений формул (II) и (III) 7 н.

Изобретение относится к барботажному реактору окисления циклогексана, включающему устройства подачи и распределения воздуха или инертной среды - азота с каналами подачи и поперечные перегородки с отверстиями.

Изобретение относится к способу получения 3-метилмеркаптопропионового альдегида из акролеина и метилмеркаптана. Способ заключается в последовательном выполнении следующих стадий: A) пропилен подвергают газофазному окислению с использованием воздуха на гетерогенном катализаторе в присутствии разбавляющего газа, B) акролеинсодержащий газовый поток со стадии А) направляют в ступень резкого охлаждения для отделения побочных продуктов, C) из жидкости, присутствующей в нижней части ступени резкого охлаждения на стадии В), путем десорбционной обработки газом извлекают остаточные количества акролеина, D) первую часть акролеинсодержащего газового потока со ступени резкого охлаждения на стадии В) направляют в ступень абсорбции в присутствии воды для получения водного раствора акролеина, D1) неконденсирующийся газ со стадии D) по меньшей мере частично возвращают в качестве разбавляющего газа в ступень реакции на стадии А), E) акролеин путем перегонки в ступени дистилляции отделяют от его водного раствора со стадии D), Е1) акролеинсодержащий дистиллят со стадии Е) конденсируют и подают в ступень реакции на стадии F).

Настоящее изобретение относится к вариантам способа получения высокооктанового компонента моторных топлив из олефинсодержащих смесей. Один из вариантов способа заключается в том, что олефинсодержащую смесь подвергают окислению закисью азота с последующим выделением смеси продуктов в качестве высокооктанового компонента.

Изобретение относится к способу окисления алкилароматического соединения, включающему контактирование алкилароматического соединения, растворителя, включающего предшественник по меньшей мере одной ионной жидкости, источника брома, катализатора и окислителя для получения продукта окисления, включающего по меньшей мере одно соединение, выбранное из ароматического спирта, ароматического альдегида, ароматического кетона и ароматической карбоновой кислоты, причем растворитель дополнительно включает карбоновую кислоту при массовом соотношении карбоновой кислоты к ионной жидкости от 1:16 до 16:1 и массовое соотношение растворителя и алкилароматического соединения в смеси составляет от 1:1 до 10:1, и в котором продукт окисления содержит менее 2500 ч./млн 4-карбоксибензальдегида.
Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Настоящее изобретение относится к способу окисления алкилароматического соединения, включающему контактирование алкилароматического соединения, растворителя, источника брома, катализатора и окислителя для получения продукта, содержащего по меньшей мере одно из соединений: ароматический спирт, ароматический альдегид, ароматический кетон и ароматическая карбоновая кислота.

Настоящее изобретение относится к способу окисления алкилароматического соединения, который приводит к получению продуктов, используемых, например, в производстве полимеров.

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С2-С4, которые находят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей.
Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении.
Изобретение относится к способу прямой конверсии низших парафинов С1-С4 в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения синтетического бензина и других моторных топлив.

Изобретение относится к способу осуществления непрерывного производственного процесса получения акролеина, акриловой кислоты или их смеси из пропана в стабильном рабочем режиме, в соответствии с которым: А) в первой реакционной зоне А пропан подвергают гетерогенно-катализируемому дегидрированию в присутствии молекулярного кислорода, получая содержащую пропан и пропилен газовую смесь продуктов А, В) газовую смесь продуктов А, при необходимости, направляют в первую зону разделения А, в которой из нее отделяют часть или более отличающихся от пропана и пропилена компонентов и получают остающуюся после отделения газовую смесь продуктов А', содержащую пропан и пропилен, С) газовую смесь продуктов А или газовую смесь продуктов А' направляют, по меньшей мере, в один реактор окисления второй реакционной зоны В, в котором содержащийся в них пропилен подвергают частичному селективному гетерогенно-катализируемому газофазному окислению молекулярным кислородом, получая газовую смесь продуктов В, которая содержит акролеин, акриловую кислоту или их смесь в качестве целевого продукта, непревращенный пропан, избыточный молекулярный кислород и, при необходимости, непревращенный пропилен, D) во второй зоне разделения В из газовой смеси продуктов В отделяют содержащийся в ней целевой продукт и по меньшей мере часть остающегося после этого газа, содержащего пропан, молекулярный кислород и, при необходимости, непревращенный пропилен, возвращают в реакционную зону А в качестве содержащего молекулярный кислород циркуляционного газа 1, Е) по меньшей мере, в одну зону непрерывного производственного процесса, выбранную из группы, включающей реакционную зону А, зону разделения А, реакционную зону В и зону разделения В, вводят свежий пропан, скорость подачи которого при осуществлении производственного процесса в стабильном рабочем режиме характеризуется заданным стационарным значением, и F) непрерывно определяют содержание молекулярного кислорода в газовой смеси продуктов В и сравнивают его с заданным стационарным целевым значением, необходимым для осуществления производственного процесса в стабильном рабочем режиме, отличающийся тем, что в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В превышает заданное стационарное целевое значение, в производственный процесс сразу же вводят свежий пропан со скоростью подачи выше ее стационарного значения, и в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В ниже соответствующего заданного стационарного целевого значения, в производственный процесс сразу же вводят свежий пропан со скоростью подачи ниже ее стационарного значения.
Настоящее изобретение относится к способу получения терпинеола, который находит применение при изготовлении парфюмерных композиций, в качестве компонента ароматизаторов при изготовлении моющих и чистящих средств.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, посредством приведения в контакт циклоалкана с окисляющим средством в присутствии по меньшей мере катализатора следующей формулы : , где- Y представляет собой N или O;- X1, если YO, или 2, если YN;- Z представляет собой валентность металла; и- M представляет собой металл, выбранный из группы, состоящей из переходного металла, постпереходного металла и лантанида; при этом валентность M зависит от Z. Предлагаемый способ позволяет получить целевые продукты с высокой селективностью при высокой степени превращения исходного соединения. 9 з.п. ф-лы, 1 табл., 1 пр.

Наверх