Способ извлечения фторида из его водных растворов

Изобретение относится к технологии неорганических веществ и может быть использовано при проведении синтеза фторсодержащих хладагентов, в производстве гексафторида урана. Способ извлечения фторида водорода из его водных растворов включает восстановление входящей в состав водного раствора воды при повышенной температуре до оксида углерода, диоксида углерода и водорода. Затем проводят конденсацию полученных фторида водорода и паров не прореагировавшей воды и их ректификацию. Смесь фторида водорода и воды восстанавливают при температуре от 800 К и выше при мольном соотношении углерода в восстановителе к воде от 0,5 до 4. В качестве восстановителя используют восстановитель общей формулы CnHmOк, где к≥0, m>0, а n>0. Восстановитель представляет собой предельные, непредельные, ароматические углеводороды, кислородсодержащие органические соединения, их изомеры, их смеси. Изобретение позволяет извлекать фторид водорода из его смесей с водой, в том числе из азеотропных смесей, с использованием большего ассортимента веществ, применяемых в качестве восстановителей, при снижении образующихся отходов и стадий процесса, исключить использование сыпучих веществ. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Изобретение относится к технологии неорганических веществ, а именно к извлечению безводного фторида водорода (ВБФ) из его водного раствора (иначе - плавиковой кислоты).

БВФ находит широкое промышленное применение. Его используют при проведении различных химико-технологических процессов, например, при синтезе фторсодержащих хладагентов, при производстве гексафторида урана и т.п. Во многих технологических процессах, например при переработке обедненного по изотопу 235U гексафторида урана, образуется большое количество водных растворов фтористого водорода. Водный раствор фторида водорода с содержанием последнего примерно 35-40 масс. % является азеотропным, т.е. раствором, который невозможно разделить на индивидуальные вещества перегонкой или ректификацией.

Известен способ получения БФВ [Позин М.Е. Технология минеральных солей. Л.: Химия, 1974, т. 2, с. 1121], в котором для переработки 80%-ной плавиковой кислоты используют процесс ректификации с получением в дистилляте жидкого фторида водорода, содержащего примеси воды, и 60%-ной плавиковой кислоты в кубовом остатке колонны. Для получения безводного фторида водорода используют дополнительную операцию - обработку жидкого фторида водорода концентрированной серной кислотой, а 60%-ная плавиковая кислота возвращается в производственный цикл. Недостатками этого способа являются необходимость использования двухстадийного технологического цикла получения безводного фторида водорода и наличие отходов серной кислоты, содержащей фтор-ион.

Известен также [Патент РФ 2447013, МПК С01В 7/19, опубл. 10.04.2012] способ получения БФВ и плавиковой кислоты ректификацией плавиковой кислоты, содержащей свыше 65 масс. % фторида водорода с получением фторида водорода в дистилляте и плавиковой кислоты в кубовом остатке колонны, отличающийся тем, что процесс проводят при температуре паров в кубовой части колонны 115-130°С в интервале значений флегмового числа, равного 2-5, при этом содержание основного вещества во фториде водорода не менее 99,95 масс. % и в плавиковой кислоте 40-45 масс. %. Недостатком этого способа является получение значительного количества фторида водорода в виде его азеотропной смеси с водой, из которой получить БФВ ректификацией не представляется возможным.

Известен [Патент РФ 2601007, МПК С01В 7/19, С01В 3/06, C10J 3/00, опубл. 27.10.2016] способ, согласно которому раствор фторида водорода в воде, в том числе азеотропный, подают на углерод, разогретый до температуры выше 1000 К. В результате чего углерод взаимодействует с водой с образованием монооксида углерода, диоксида углерода и водорода. Продукты реакции охлаждают, конденсируют фторид водорода и остаточную не прореагировавшую воду, неконденсирующиеся газы направляют на нейтрализацию и рассеивание. Конденсат представляет собой раствор фторида водорода в воде, при этом концентрация фторида водорода в исходном растворе меньше, чем в конечном. Недостатком рассматриваемого способа является то, что в качестве сырья используется твердый углерод. Во-первых, его использование сопряжено с необходимостью эксплуатации оборудования, предназначенного для хранения, транспортировки и дозировки сыпучих материалов, что существенно усложняет технологическую схему, увеличивая количество аппаратов. Во-вторых, достижение высокой чистоты получаемого фторида водорода может быть обеспечено при использовании углерода высокой чистоты. Это может быть решено либо введением дополнительной стадии пиролитической очистки углерода, либо с помощью ректификационной очистки полученного фторида водорода. В-третьих, при дополнительной очистке углерода или фторида водорода образуются высокотоксичные отходы.

Задачей, стоящей перед авторами предлагаемого изобретения, является решение указанных выше проблем, а именно извлечение фторида водорода из его водных смесей, и извлечение БВФ и/или концентрированной плавиковой кислоты с использованием большего ассортимента веществ, используемых в качестве восстановителей, при этом решаются проблемы, указанные выше, а именно предотвращается использование сыпучих веществ, снижается количество образующихся отходов, снижается количество стадий процесса.

Эта задача решается за счет проведения взаимодействия воды, входящей в состав смеси фторида водорода и воды, в том числе азеотропной, с восстановителями. Оно проводится при высокой температуре с получением газообразных продуктов реакции: оксида углерода, диоксида углерода, водорода и фторида водорода, с последующим охлаждением продуктов реакции с целью конденсации фторида водорода и остатков не прореагировавшей воды. Фторид водорода в указанных условиях остается неизменным.

Сущность изобретения состоит в том, что разработан способ извлечения фторида водорода из его водных растворов, включающий восстановление входящей в состав водного раствора воды при повышенной температуре до оксида углерода, диоксида углерода и водорода, конденсацию полученных фторида водорода и паров не прореагировавшей воды, и их ректификацию, отличающийся тем, что смесь фторида водорода и воды восстанавливают при температуре от 800 К и выше и мольном соотношении углерода в восстановителе к воде от 0,5 до 4, с применением восстановителя общей формулы CnHmOк, где к≥0, m>0, а n>0, причем восстановитель может представлять собой предельные, непредельные, ароматические углеводороды, кислородсодержащие органические соединения, их изомеры, их смеси.

Под термином «восстановители» подразумеваются предельные, непредельные, ароматические углеводороды, кислородсодержащие органические соединения, такие, но не ограничиваясь этими примерами, как метан, этан, пропан, бутан, этен, пропен, этин, этанол, ацетон и т.п., их изомеры, их смеси в различном соотношении. Указанные вещества и их смеси можно охарактеризовать общей брутто-формулой CnHmOк, где к≥0, m>0, а n>0. Использование восстановителя общей брутто-формулы CnHmOк позволяет перейти к использованию жидких и/или газообразных соединений в технологическом процессе, исключить введение дополнительных стадий очистки сырья, либо конечного продукта, снизить количество образующихся отходов.

Способ извлечения фторида водорода из его водного раствора, в том числе азеотропного, включает взаимодействие воды, входящей в указанный раствор, с восстановителем с последующей конденсацией и рециклом не прореагировавшего водного раствора, при этом проходят реакции окисления углеродсодержащего материала водой:

yH2Oгаз+HFгаз+xCnHmOr→zCOгаз+wCO2газ+vH2газ+HFгаз.

Вода при этом практически полностью восстанавливается до водорода, а фторид водорода изменений не претерпевает.

Для достижения этого результата смесь фторида водорода и воды приводят в контакт с восстановителем при температуре выше 800 К. Нагрев осуществляют любым известным способом, например, но не ограничиваясь приведенными примерами: с помощью нагрева стенок реактора извне, с помощью подачи дополнительного восстановителя и окислителя в реактор и их последующего сжигания, с помощью генератора плазмы. При этом происходит конверсия воды на водород, оксид углерода и диоксид углерода, при этом степень конверсии воды составляет 45-100%. Извлеченный фторид водорода и не прореагировавшую воду конденсируют в конденсаторах, а несконденсированные газы (монооксид углерода, диоксид углерода, водород) подают на нейтрализацию и утилизируют. Сконденсированную смесь фторида водорода и воды с содержанием фторида водорода большем, чем в исходной смеси, ректификуют [Коррозия и защита химической аппаратуры. Справочное руководство. Т. 1, под. ред. А.М. Сухотина. Л.: Химия, 1969, с. 206], получая преимущественно БФВ в качестве дистиллята.

Способ позволяет извлекать фторид водорода из его смесей с водой в любых соотношениях и, в том числе, из азеотропных смесей, что обычно трудно осуществимо.

Выделение фторида водорода из его водных растворов проводили на установке, схема которой изображена на чертеже, где

А - реактор, в котором осуществляется восстановление воды,

Б - конденсатор,

В - ректификационная колонна.

Поток 1 - восстановитель в реактор А.

Поток 2 - смесь фторида водорода и воды в реактор А.

Поток 3 - дистиллят из ректификационной колонны В.

Поток 4 - кубовый остаток из ректификационной колонны В.

Поток 5 - продукты реакции из реактора А.

Поток 6 - неконденсируемые продукты реакции, отделенные в конденсаторе Б.

Поток 7 - сконденсированная смесь фторида водорода и воды.

Пример осуществления способа

В реактор А, где поддерживается заданная температура, подавали восстановитель (поток 1), состав которого и температура в реакторе отражены в Таблице. Также в реактор А подавали предварительно испаренную смесь фторида водорода и воды (поток 2). В реакторе осуществлялось восстановление воды восстановителем с образованием оксида углерода, диоксида углерода и водорода. При этом фторид водорода в реакцию не вступал. Продукты реакции (поток 5) направляли в конденсатор Б, где они охлаждались. Конденсатор поддерживали при температуре 190-195 К. В конденсаторе происходила конденсация остаточных паров воды и фторида водорода, а водород, оксид углерода и диоксид углерода покидали конденсатор и направлялись на санитарную обработку и рассеивание (поток 6). Сконденсированные фторид водорода и воду (поток 7) направляли в ректификационную колонну В, заполненную нерегулярной фторопластовой насадкой. В колонне происходило выделение фторида водорода в качестве дистиллята (поток 3) и плавиковой кислоты концентрацией 40 масс. % в качестве кубового остатка.

Условия и результаты опытов приведены в Таблице.

Как видно из приведенных данных, решена задача, стоявшая перед авторами изобретения, а именно - создан способ извлечения фторида водорода из его водных смесей, в том числе из трудно разделяемых азеотропных растворов, с получением безводного фторида водорода и/или концентрированной плавиковой кислоты с использованием большего ассортимента веществ, используемых в качестве восстановителей, при этом решаются проблемы, указанные выше, а именно: достигается снижение температуры стадии восстановления, предотвращается использование сыпучих соединений, сокращается количество образующихся отходов, уменьшается количество стадий процесса.

1. Способ извлечения фторида водорода из его водных растворов, включающий восстановление входящей в состав водного раствора воды при повышенной температуре до оксида углерода, диоксида углерода и водорода, конденсацию полученных фторида водорода и паров не прореагировавшей воды и их ректификацию, отличающийся тем, что смесь фторида водорода и воды восстанавливают при температуре от 800 К и выше и мольном соотношении углерода в восстановителе к воде от 0,5 до 4, с применением восстановителя общей формулы CnHmOк, где к≥0, m>0, а n>0.

2. Способ по п. 1, где восстановитель может представлять собой предельные, непредельные, ароматические углеводороды, кислородсодержащие органические соединения, их изомеры, их смеси.



 

Похожие патенты:
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.

Изобретение относится к технологии переработки обедненного гексафторида урана и может быть использовано для получения закиси-окиси урана и безводного фтористого водорода.
Изобретение относится к неорганической химии. Способ переработки отработанного бифторида калия включает его измельчение, обработку серной кислотой концентрации 95-100% в мольном соотношении серная кислота: бифторид калия 1:1,02.

Изобретение может быть использовано в химической промышленности. Способ извлечения фторида водорода из его водных растворов включает восстановление воды углеродом при повышенной температуре.
Изобретение может быть использовано в неорганической химии. Для получения чистого фторида водорода и/или фтороводородной кислоты из неочищенного фторида водорода используют полигидрофториды калия.

Изобретение относится к способам производства фтороводорода взаимодействием фторида кальция с серной кислотой. В соответствии с первым способом производства фтороводорода осуществляют следующие стадии: (a) стадию смешивания частиц источника фторида кальция со средним диаметром 1-40 мкм с серной кислотой, в молярном отношении серная кислота/фторид кальция 0,9-1,1 при температуре 0-40°С и затем нагревания полученной смеси до более высокой температуры, чем при смешивании исходных материалов, но не выше 70°С, с целью осуществления реакции и получения реакционной смеси в твердом состоянии; и (b) стадию нагревания реакционной смеси в твердом состоянии до температуры 100-200°С с целью получения фтороводорода в газовой фазе.

Изобретение может быть использовано в неорганической химии. Для получения фторида водорода проводят взаимодействие газообразных и летучих фторидов с кислородсодержащими и водородсодержащими веществами в режиме горения при температуре 1000-4000°C.
Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов.
Изобретение может быть использовано в неорганической химии. Способ очистки фтористого водорода от фторидов кремния и фосфора включает пропускание газовой смеси, содержащей фториды водорода, кремния, фосфора, через фторид натрия.

Изобретение относится к устройствам для получения пресной воды из водяных паров, содержащихся в окружающем атмосферном воздухе, и может быть использовано для получения пресной воды преимущественно в прибрежной с морями местности.

Изобретение относится к устройствам для получения пресной воды из водяных паров, содержащихся в окружающем атмосферном воздухе, и может быть использовано для получения пресной воды преимущественно в прибрежной с морями местности с высокой интенсивностью приливов и отливов.

Изобретение относится к устройствам для получения пресной воды из водяных паров, содержащихся в окружающем атмосферном воздухе, и может быть использовано для получения пресной воды преимущественно в прибрежной с морями местности с высокой интенсивностью приливов и отливов.

Изобретение относится к устройствам для получения пресной воды из водяных паров, содержащихся в окружающем атмосферном воздухе, и может быть использовано для получения пресной воды преимущественно в прибрежной с морями местности.

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса к подвесам 6 и проходящие наружу дна 2 корпуса до уровня воды через герметично закрепленные на дне трубки 7.

Изобретение относится к массообменным аппаратам и предназначено для проведения процессов массообмена - дистилляции, ректификации, абсорбции, разделения жидких и газовых смесей и др.

Изобретение относится к кондиционированию изолирующих газов. Устройство для кондиционирования газов включает сепарирующее устройство (3), предназначенное, в частности, для отделения жидкостей и/или частиц от газа, проходящего через устройство, со сборным резервуаром (1) для отделенных веществ, причем сепарирующее устройство (3) содержит циклонный сепаратор (3), при этом на сборном резервуаре (1) предусмотрены два штуцера (25, 27) датчиков, соединенные с сенсорным устройством (29), представляющим собой трубки, соединяющиеся с внутренней частью сборного резервуара (1).

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности и может быть использовано для очистки технологических сточных вод с получением сероводорода (H2S) и аммиака (NH3) высокой чистоты.

Описана прядильная фильера для получения нановолоконных и микроволоконных материалов, содержащая: первую пластинку (1), снабженную по меньшей мере одной сквозной канавкой (2) для направления первого материала к выпускной части (3) сквозной канавки (2) на передней стороне (4) первой пластинки (1); вторую пластинку (5), снабженную по меньшей мере одной сквозной канавкой (6) для направления второго материала к выпускной части (7) сквозной канавки (6) второй пластинки (5), причем выпускная часть (7) расположена возле выпускной части (3) первой пластинки (1); и разделительную пластинку (8), расположенную между первой пластинкой (1) и второй пластинкой (5) для отделения сквозных канавок (2) первой пластинки (1) от сквозных канавок (6) второй пластинки (5), причем передняя сторона разделительной пластинки (8) формирует с передней стороной (4) первой пластинки (1) и/или с передней стороной (10) второй пластинки (5) сплошную поверхность в зоне выпускных частей (3, 7) сквозных канавок (2, 6).

Изобретение относится к устройствам подготовки путем отбензинивания попутного нефтяного газа и газа дегазации конденсата. Блок отбензинивания низконапорного тяжелого углеводородного газа включает компрессор, установленный на линии сырьевого газа, и дефлегматор с линией вывода конденсата и тепломассообменным блоком, охлаждаемым хладагентом.

Изобретение может быть использовано в пищевой, химической, фармацевтической и других отраслях промышленности. Способ предусматривает разделение смеси на низкокипящую и высококипящую фракции при противоточном контакте потока пара, поступающего на ректификацию с жидкостной пленкой бражки, стекающей по тепломассообменной поверхности.

Изобретение относится к технологии неорганических веществ и может быть использовано при проведении синтеза фторсодержащих хладагентов, в производстве гексафторида урана. Способ извлечения фторида водорода из его водных растворов включает восстановление входящей в состав водного раствора воды при повышенной температуре до оксида углерода, диоксида углерода и водорода. Затем проводят конденсацию полученных фторида водорода и паров не прореагировавшей воды и их ректификацию. Смесь фторида водорода и воды восстанавливают при температуре от 800 К и выше при мольном соотношении углерода в восстановителе к воде от 0,5 до 4. В качестве восстановителя используют восстановитель общей формулы CnHmOк, где к≥0, m>0, а n>0. Восстановитель представляет собой предельные, непредельные, ароматические углеводороды, кислородсодержащие органические соединения, их изомеры, их смеси. Изобретение позволяет извлекать фторид водорода из его смесей с водой, в том числе из азеотропных смесей, с использованием большего ассортимента веществ, применяемых в качестве восстановителей, при снижении образующихся отходов и стадий процесса, исключить использование сыпучих веществ. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Наверх