Автоматизированное устройство для очистки промышленных стоков

Изобретение относится к устройствам очистки промышленных стоков и может быть использовано на предприятиях электронной, приборостроительной промышленности, а также на производствах, имеющих в гальванические цеха и участки. Устройство содержит последовательно соединенные приемную камеру 1 с установленным над ней дозатором реагента 2, статический смеситель 3, электрокоагулятор 8 с электродами и лопастной мешалкой 9, датчики pH-метра 5, камеру 11 с насосом высокого давления 12, фильтр-сгуститель непрерывного действия 13, приемную емкость для влажного осадка 15, пресс-фильтр 18, измерители концентраций примесей тяжелых металлов 16, насос для перекачки недоочищенной воды 23, резервуар-накопитель 24, насос 25 для подачи воды на повторный цикл очистки, регулирующие клапана, микропроцессорные контроллеры 17 и 20, ультразвуковой расходомер 26 на входном трубопроводе, корректор подачи реагента 38, сумматор 37, масштабирующие и корректирующие усилители, задатчик 33 величины входного потока, блок сравнения потоков 32, частотные регуляторы и корректор 41 скорости перемешивания лопастной мешалкой. Технический результат - повышение качества очистки воды и эффективности работы устройства посредством регулирования параметров работы установки и количества подаваемых реагентов в зависимости от объема и химического состава стоков, поступающих на очистку. 1 ил.

 

Изобретение относится к устройствам очистки промышленных стоков способом электрохимической обработки воды, а именно электрокоагуляцией специально приготовленной дисперсии, и может быть использовано для очистки технических промывных вод от органических соединений, неорганических твердых взвесей, солей тяжелых металлов на предприятиях электронной, приборостроительной промышленности, а также на производствах, имеющих в своем составе гальванические цеха и участки.

Известно устройство, предназначенное для решения узкой задачи очистки сточных вод от Cr6+, включающее приемную камеру, смеситель и камеру с электрокоагулятором (а.с. №1142452, МПК C02F 1/46, БИ №8, 1985 г.).

Недостаток данного устройства состоит в отсутствии регулирования параметров работы установки в зависимости от технических характеристик, поступающих на очистку стоков и ее большие габариты.

Известно устройство, включающее последовательно соединенные приемную камеру, снабженную дозатором реагента, камеру для измерения рН с установленным над ней датчиком рН-метра, при этом эти камеры соединены между собой статическим смесителем, электрокоагулятор, снабженный электродами и лопастной мешалкой, отделенный от камеры измерения рН стенкой, выполненной переливной, фильтр-сгуститель непрерывного действия, соединенный с насосом высокого давления, и приемную емкость для влажного осадка (Пат. РФ №2051116, МПК-8 C02F 1/46, 2000 г.).

Недостаток устройства состоит в низком качестве очистки воды и неэффективности работы из-за отсутствия автоматического регулирования процесса очистки и концентрации очищенных стоков.

Наиболее близким устройством является устройство для очистки промышленных стоков, содержащее приемную камеру, камеру для измерения рН, соединенные между собой статическим смесителем, электрокоагулятор с электродами и лопастной мешалкой, камеру с насосом высокого давления, фильтр-сгуститель непрерывного действия, приемную емкость для влажного осадка, пресс-фильтр, связанный с приемной емкостью для влажного осадка, измерители концентраций примесей тяжелых металлов, насос для перекачки недоочищенной воды, резервуар-накопитель, насос для подачи воды на повторный цикл очистки, выход измерителя концентраций примесей тяжелых металлов в воде после фильтра-сгустителя соединен с входом регулирующего клапана посредством первого микропроцессорного контроллера, выход измерителя концентраций примесей тяжелых металлов в воде после механического обезвоживания влажного осадка на пресс-фильтре соединен с входом другого регулирующего клапана посредством второго микропроцессорного контроллера, выходы регулирующих клапанов соединены с насосом для перекачки недоочищенной воды, который соединен с входом резервуара-накопителя и насосом для подачи воды на повторный цикл очистки (Пат. РФ №2278824, МПК-8 C02F 1/463, БИ №18, 2006 г.).

Недостаток устройства состоит в снижении эффективности его работы и качестве очистки промышленных стоков в результате отсутствия регулирования параметров работы установки и количества подаваемых реагентов в зависимости от объема и химического состава стоков, поступающих на очистку.

Задачей предлагаемого технического решения является повышение качества очистки промышленных стоков и эффективной работы устройства.

Поставленная задача достигается тем, что в автоматизированное устройство для очистки промышленных стоков, содержащее последовательно соединенные приемную камеру с установленным над ней дозатором реагента, камеру для измерения рН с установленным над ней датчиком рН-метра, приемная камера и камера для измерения рН в нижней части соединены между собой статическим смесителем, электрокоагулятор с электродами и лопастной мешалкой, отделенный от камеры измерения рН переливной смежной стенкой, камеру с насосом высокого давления, фильтр-сгуститель непрерывного действия, приемную емкость для влажного осадка, пресс-фильтр, связанный с приемной емкостью для влажного осадка, измерители концентраций примесей тяжелых металлов, насос для перекачки недоочищенной воды, резервуар-накопитель, насос для подачи воды на повторный цикл очистки, выход измерителя концентраций примесей тяжелых металлов в воде после фильтра-сгустителя соединен с входом регулирующего клапана посредством первого микропроцессорного контроллера, выход измерителя концентраций примесей тяжелых металлов в воде после механического обезвоживания влажного осадка на пресс-фильтре соединен с входом другого регулирующего клапана посредством второго микропроцессорного контроллера, выходы регулирующих клапанов соединены с насосом для перекачки недоочищенной воды, который соединен с входом резервуара-накопителя и насосом для подачи воды на повторный цикл очистки, дополнительно введены последовательно соединенные ультразвуковой расходомер и датчик рН-метра на входном трубопроводе подачи стоков на очистку, регулятор дозатора, корректор подачи реагента, сумматор, первый, второй и третий масштабирующие усилители, первый и второй частотные регуляторы, блок сравнения потоков, задатчик величины входного потока, первый, второй, третий и четвертый корректирующие усилители и корректор скорости перемешивания лопастной мешалкой, причем выход ультразвукового расходомера соединен с входами первого, второго и третьего корректирующих усилителей, выход датчика рН-метра на входном трубопроводе подачи стоков на очистку соединен с входом первого масштабирующего усилителя подачи реагента, первый вход блока сравнения потоков соединен с выходом задатчика величины входного потока, второй вход блока сравнения соединен с выходом первого корректирующего усилителя, выход блока сравнения потоков через первый частотный регулятор соединен с регулируемым приводом насоса для подачи воды на повторный цикл очистки, вход второго масштабирующего усилителя соединен с выходом измерителя концентраций примесей тяжелых металлов в воде после фильтра-сгустителя непрерывного действия, вход третьего масштабирующего усилителя соединен с выходом датчика рН-метра, установленного над камерой для измерения рН, выходы первого, второго и третьего масштабирующих усилителей соединены с входами сумматора, выход сумматора соединен с первым входом корректора подачи реагента, второй вход которого соединен с выходом второго корректирующего усилителя, выход корректора подачи реагента через регулятор дозатора соединен с дозатором реагента, вход четвертого корректирующего усилителя соединен с выходом сумматора, выходы третьего и четвертого корректирующих усилителей соединены с входами корректора скорости перемешивания лопастной мешалкой, выход которого через второй частотный регулятор соединен с регулируемым приводом лопастной мешалки.

На Фиг. представлена схема предложенного автоматизированного устройства для очистки промышленных стоков.

Устройство содержит приемную камеру 1 с установленным над ней дозатором реагента 2, в приемной камере установлен статический смеситель 3 поступающей воды с реагентом, за которым расположена камера 4 для измерения рН с установленным над ней датчиком 5 рН-метра. За ней расположена камера 6, разделенная с камерой 4 для измерения рН переливной стенкой 7. В камере 6 расположен электрокоагулятор 8 с электродами и лопастной мешалкой 9. Камера 6 сообщена через переливную смежную стенку 10 с камерой 11, при этом верхняя кромка переливной стенки 7 находится выше верхней кромки переливной смежной стенки 10.

В камере 11 расположен насос высокого давления 12 для подачи воды в фильтр-сгуститель непрерывного действия 13, имеющий в нижней части устройство 14 удаления сгущенного осадка, а под ним приемную емкость для влажного осадка 15, связанную с пресс-фильтром 18.

Выход измерителя концентраций примесей тяжелых металлов 16 связан с входом первого микропроцессорного контроллера 17, выход которого связан с входом регулирующего клапана 22, который, в свою очередь, связан с резервуаром-накопителем 24 с насосом 25 через насос 23.

Выход измерителя концентраций примесей тяжелых металлов 19 связан с входом второго микропроцессорного контроллера 20, выход которого связан с входом регулирующего клапана 21, который, в свою очередь, связан с резервуаром-накопителем 24 с насосом для подачи воды на повторный цикл очистки 25 через насос для перекачки недоочищенной воды 23.

Ультразвуковой расходомер 26 и датчик 27 рН-метра на входном трубопроводе подачи стоков на очистку последовательно соединены на трубопроводе подачи промышленных стоков в устройство.

Выход ультразвукового расходомера 26 соединен с входами первого 28, второго 29 и третьего 30 корректирующих усилителей, выход датчика 27 рН-метра на входном трубопроводе подачи стоков на очистку соединен с входом первого 31 масштабирующего усилителя подачи реагента.

Первый вход блока сравнения 32 потоков соединен с выходом задатчика 33 величины входного потока, второй вход блока сравнения 32 соединен с выходом первого 28 корректирующего усилителя, выход блока сравнения 32 потоков через первый частотный регулятор 34 соединен с регулируемым приводом насоса для подачи воды на повторный цикл очистки 25.

Вход второго 35 масштабирующего усилителя соединен с выходом измерителя к онцентраций примесей тяжелых металлов 16, вход третьего 36 масштабирующего усилителя соединен с выходом датчиком 5 рН-метра, установленным над камерой для измерения рН.

Выходы первого 31, второго 35 и третьего 36 масштабирующих усилителей соединены с входами сумматора 37. Выход сумматора 37 соединен с первым входом корректора подачи реагента 38, второй вход которого соединен с выходом второго 29 корректирующего усилителя. Выход корректора подачи реагента 38 через регулятор 39 дозатора соединен с дозатором реагента 2.

Вход четвертого 40 корректирующего усилителя соединен с выходом сумматора 37. Выходы третьего 30 и четвертого 40 корректирующих усилителей соединены с входами корректора скорости перемешивания 41 лопастной мешалкой, выход которого через второй частотный регулятор 42 соединен с регулируемым приводом лопастной мешалки.

Устройство работает следующим образом.

Промышленные стоки по подающему трубопроводу, на котором установлены ультразвуковой расходомер 26 и датчик 27 рН-метра на входном трубопроводе подачи стоков на очистку, подают в приемную камеру 1 и туда же поступает с помощью дозатора реагента 2 соответствующий реагент, который смешивают с протекающей водой в статическом смесителе 3, на выходе из которого расположена камера 4 для измерения рН с установленным над ней датчиком 5 рН-метра, измеряющим рН раствора.

Приготовленный таким образом раствор попадает в камеру 6, переливаясь через верхнюю кромку переливной стенки 7.

Лопастная мешалка 9 многократно прокачивает раствор в межэлектродном пространстве электрокоагулятора 8, где происходит образование хлопьев, содержащих загрязняющие вещества.

Образовавшаяся пульпа через верхнюю кромку переливной смежной стенки 10 попадает в камеру 11, откуда она насосом высокого давления 12 попадает в фильтр-сгуститель непрерывного действия 13, где освобождается от взвеси.

Отделенный от воды осадок из фильтра-сгустителя через устройство 14 удаления сгущенного осадка выводят в приемную емкость для влажного осадка 15 и далее транспортной лентой подают на пресс-фильтр 18.

Обработанную воду из фильтра-сгустителя непрерывного действия 13 контролируют измерителем концентрации примесей тяжелых металлов 16, далее подают сигнал на первый микропроцессорный контроллер 17, который сравнивает текущее содержание с заданным и в соответствии с отклонением формируют команду исполнительному механизму регулирующего клапана 22.

Воду после механического обезвоживания влажного осадка на пресс-фильтре 18 контролируют измерителем концентрации примесей тяжелых металлов 19, далее подают сигнал на второй микропроцессорный контроллер 20, который сравнивает текущие значения концентраций примесей тяжелых металлов с заданными значениями и в соответствии с отклонением формирует команду исполнительному механизму регулирующего клапана 21.

Воду, не соответствующую заданному качеству после фильтра-сгустителя непрерывного действия 13 и пресс-фильтра 18, насосом для перекачки недоочищенной воды 23 подают в резервуар-накопитель 24 и далее насосом для подачи воды на повторный цикл очистки 25 поступает на повторный цикл очистки.

Вода, качественный и количественный состав которой соответствует заданным значениям, повторно используется в технологическом процессе.

Для повышения эффективности работы в предлагаемом устройстве обеспечивается регулирование величины входного потока, количество подаваемого реагента и скорость многократного покачивания раствора в межэлектродном пространстве электрокоагулятора лопастной мешалкой.

Величину потока воды, поступающей на очистку, измеряют ультразвуковым расходомером 26. Для равномерной загрузки устройства информацию о текущем расходе снимают с ультразвукового расходомера 26, сравнивают на блоке сравнения 32 потоков с заданным значением, устанавливаемым задатчиком 33 величины входного потока, и величина рассогласования через первый частотный регулятор 34 на регулируемый привод насоса для подачи воды на повторный цикл очистки 25. В результате режим работы насоса для подачи воды на повторный цикл очистки 25 меняется и поступающий на очистку поток стабилизируют и фиксируют ультразвуковым расходомером 26.

Для регулирования подачи реагента на сумматор 37 через первый 31, второй 35 и третий 36 масштабирующие усилители подачи реагента поступают сигналы от датчика рН-метра на входном трубопроводе подачи стоков на очистку 27, датчика 5 рН-метра, установленным над камерой 4 для измерения рН, и измерителя концентраций примесей тяжелых металлов 16 соответственно. В результате на выходе сумматора 37 формируют сигнал, отражающий процесс очистки воды на всех этапах работы устройства.

На основе сигналов с сумматора 37 и второго 29 корректирующего усилителя, связанного с ультразвуковым расходомером 26 на выходе корректора подачи реагента 38 формируется сигнал управления количеством подаваемого реагента посредством регулятора 39 дозатора реагента 2.

В результате количество подаваемого реагента в каждый момент времени зависит от прохождения процесса очистки воды на всех этапах работы устройства и величины потока воды, поступающей на очистку, измеряемой ультразвуковым расходомером 26.

На основе сигналов, поступающих от сумматора 37 и ультразвукового расходомера 26 через третий 30 и четвертый 40 корректирующие усилители, на выходе корректора скорости перемешивания 41 формируют сигнал, который через второй частотный регулятор 42 регулирует скорость перемешивания лопастной мешалкой.

Таким образом, автоматизированное устройство для очистки промышленных стоков обеспечивает повышение эффективной работы устройства и качества очистки промышленных стоков посредством регулирования параметров работы установки и количества подаваемых реагентов в зависимости от объема и химического состава стоков, поступающих на очистку.

Автоматизированное устройство для очистки промышленных стоков, содержащее последовательно соединенные приемную камеру с установленным над ней дозатором реагента, камеру для измерения рН с установленным над ней датчиком рН-метра, приемная камера и камера для измерения рН в нижней части соединены между собой статическим смесителем, электрокоагулятор с электродами и лопастной мешалкой, отделенный от камеры измерения рН переливной смежной стенкой, камеру с насосом высокого давления, фильтр-сгуститель непрерывного действия, приемную емкость для влажного осадка, пресс-фильтр, связанный с приемной емкостью для влажного осадка, измерители концентраций примесей тяжелых металлов, насос для перекачки недоочищенной воды, резервуар-накопитель, насос для подачи воды на повторный цикл очистки, выход измерителя концентраций примесей тяжелых металлов в воде после фильтра-сгустителя соединен с входом регулирующего клапана посредством первого микропроцессорного контроллера, выход измерителя концентраций примесей тяжелых металлов в воде после механического обезвоживания влажного осадка на пресс-фильтре соединен с входом другого регулирующего клапана посредством второго микропроцессорного контроллера, выходы регулирующих клапанов соединены с насосом для перекачки недоочищенной воды, который соединен с входом резервуара-накопителя и насосом для подачи воды на повторный цикл очистки, отличающееся тем, что в устройство дополнительно введены последовательно соединенные ультразвуковой расходомер и датчик рН-метра на входном трубопроводе подачи стоков на очистку, регулятор дозатора, корректор подачи реагента, сумматор, первый, второй и третий масштабирующие усилители, первый и второй частотные регуляторы, блок сравнения потоков, задатчик величины входного потока, первый, второй, третий и четвертый корректирующие усилители и корректор скорости перемешивания лопастной мешалкой, причем выход ультразвукового расходомера соединен с входами первого, второго и третьего корректирующих усилителей, выход датчика рН-метра на входном трубопроводе подачи стоков на очистку соединен с входом первого масштабирующего усилителя подачи реагента, первый вход блока сравнения потоков соединен с выходом задатчика величины входного потока, второй вход блока сравнения соединен с выходом первого корректирующего усилителя, выход блока сравнения потоков через первый частотный регулятор соединен с регулируемым приводом насоса для подачи воды на повторный цикл очистки, вход второго масштабирующего усилителя соединен с выходом измерителя концентраций примесей тяжелых металлов в воде после фильтра-сгустителя непрерывного действия, вход третьего масштабирующего усилителя соединен с выходом датчика рН-метра, установленного над камерой для измерения рН, выходы первого, второго и третьего масштабирующих усилителей соединены с входами сумматора, выход сумматора соединен с первым входом корректора подачи реагента, второй вход которого соединен с выходом второго корректирующего усилителя, выход корректора подачи реагента через регулятор дозатора соединен с дозатором реагента, вход четвертого корректирующего усилителя соединен с выходом сумматора, выходы третьего и четвертого корректирующих усилителей соединены с входами корректора скорости перемешивания лопастной мешалкой, выход которого через второй частотный регулятор соединен с регулируемым приводом лопастной мешалки.



 

Похожие патенты:

Изобретение может быть использовано при утилизации сероводорода в нефтяной, газовой, нефтеперерабатывающей промышленности и цветной металлургии. Управление процессом получения элементарной серы по методу Клауса, включающим термическую стадию и, по меньшей мере, одну стадию каталитической конверсии, осуществляют путем регулирования в режиме реального времени стехиометрического соотношения объема воздуха горения к объему кислого газа, поступающих на термическую стадию.

Изобретение относится к области автоматического измерения физико-химических параметров жидкостей. Устройство содержит блок регистрации и управления, состоящий из вычислителя с программным обеспечением, включающего в себя алгоритм вычисления численных значений степени засоленности ДЭГ, который соединен передающими кабелями с терминалом ввода и отображения информации, дискретного модуля для управления установкой абсорбционной осушки газа и аналогового модуля для преобразования сигнала, полученного от кондуктометрического датчика, соединенных с вычислителем и блоком питания, измерительный модуль, состоящий из преобразователя сигналов и кондуктометрического датчика, соединенный с преобразователем сигналов специальным кабелем.

Изобретение относится к технике влаготепловой обработки материалов, а именно к способам автоматического управления влаготепловой обработкой дисперсных материалов в аппаратах, использующих переменный комбинированный конвективно-СВЧ энергоподвод, и может быть использовано в пищевой, химической и смежных с ними отраслях промышленности.

Группа изобретений относится к химической промышленности, в частности к вариантам производства серной кислоты. Для получения серной кислоты осуществляют сжигание серы в сухом газе, содержащем избыток кислорода, с получением потока газа, содержащего оксид и диоксид серы, кислород и возможно водяной пар.

Изобретение относится к области безопасности человека в неблагоприятных условиях труда. В способе на объектах-источниках неблагоприятных физических факторов и на рабочей одежде персонала закрепляют транспондеры, связанные с устройством идентификации, обеспечивающим привязку транспондеров к местности с точностью не менее 0,5 м, а на объектах-источниках неблагоприятных факторов устанавливают параметрические регистраторы, связанные с устройством идентификации по радиоканалу.

Изобретение относится к технике управления процессом растворения применительно к растворению карналлитовых руд с получением обогащенного карналлита. Способ включает стабилизацию температуры растворения солей и концентрации полезного компонента в растворе изменением расхода сырья на растворение, определение полезного компонента с входящими в процесс солями и корректировку расхода полезного компонента, поступающего в составе сырья.

Изобретение может быть использовано при получении хлористого калия галургическим методом. Способ управления указанным процессом включает регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от концентрации в нем хлористого калия и его температуры.

Изобретение относится к химической промышленности, а именно к способу производства N,N-диметилацетамида и автоматизированной системе управления процессом производства.

Изобретение может быть использовано в производстве хлористого калия методом растворения и кристаллизации. Способ управления процессом растворения сильвинитовых руд включает регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры во входных потоках, измерение температуры готового раствора, измерение плотности и расхода растворяющего раствора.

Изобретение относится к технологии получения синтетических каучуков и может быть использовано в процессе управления процессом получения бутилкаучука. Способ повышения эффективности управления процессом получения бутилкаучука, полученного сополимеризацией изопрена и изобутилена, растворенных в инертном растворителе в присутствии катализатора, осуществляют в установке, включающей смеситель, реактор, которые соединены между собой трубопроводами с использованием контуров регулирования, состоящих из датчиков-контроллеров: - расходов изопрена, изобутилена, условно инертного и активированного растворителя, шихты, катализатора; - уровня и расхода хладагента в реакторе, датчиков температуры и концентрации шихты, температуры в полимеризаторе, подключенных к контроллерам с коррекцией расходов изопрена, изобутилена, условно инертного растворителя, хладагента, отличающийся тем, что - производят постоянный поточный отбор проб катализатора и шихты для тестовой реакции полимеризации в малом проточном полимеризаторе, - проводят определение температуры реакции полимеризации в малом проточном полимеризаторе и подают результаты измерения в блок управления процессами приготовления катализатора и шихты, - проводят определение физико-механических характеристик готового полимера и вводят результаты всех измерений в блок управления процессами приготовления катализатора и шихты, - проводят анализ данных в блоке управления и, в соответствии с программой, блок управления выдает команды на изменение соотношения компонентов в катализаторе и шихте, - осуществляют активацию в кавитаторе перед подачей в главный полимеризатор части растворителя - CH3Cl, используемого в процессах приготовления катализатора и шихты, - постоянно подают в главный полимеризатор активированную часть растворителя после кавитатора, - с помощью магнитно-импульсной установки циклически осуществляют механоимпульсное воздействие на трубки системы охлаждения и корпус полимеризатора, очищающее от налипшего полимера наружную поверхность трубок и внутреннее зеркало полимеризационного аппарата, для сохранения постоянным коэффициента теплопередачи поверхности трубок системы охлаждения и поддержания необходимой температуры суспензии полимера в главном полимеризаторе.

Изобретение относится к энергетике в пищевой и фармацевтической промышленности и может быть использовано для опреснения морской или загрязненной воды, для отделения спиртов из спиртосодержащих растворов, а также для получения концентрированных фруктовых соков.

Изобретение относится к средствам водоподготовки и водоочистки и может быть использовано в трубопроводах и бассейнах. Распределительное устройство коагулянта для водоподготовки содержит лучераспределитель 1, образованный из радиально расположенных перфорированных отверстиями трубок.

Установка для очистки природных вод относится к области водоподготовки и может быть использована для предварительной очистки природных вод, в частности поверхностных для хозяйственно-питьевого, промышленного и сельскохозяйственного водоснабжения.

Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром.
Изобретение относится к области разделения эмульсий фильтрацией, в частности к области очистки жидкостей от маслонефтепродуктов и органических веществ, и может быть использовано в нефтедобывающей, химической, нефтехимической, пищевой, фармацевтической, машиностроительной и других отраслях промышленности, а также в системах очистки сточных вод.

Изобретение относится к способу и устройству управления подачей воды в водоочистительной установке и может быть использовано в водоочистке для получения воды с различными свойствами.

Изобретение относится к двум вариантам способа получения метана. Один из вариантов включает в себя приведение в контакт водной текучей среды, содержащей по меньшей мере одно нежелательное составляющее, с гетерогенным катализатором при давлении от приблизительно 20 атм до приблизительно 240 атм и температуре от 150°C до приблизительно 373°C для гидролиза по меньшей мере одного нежелательного составляющего в текучей среде и генерирования количества метана, причем гетерогенный катализатор содержит элемент, выбранный из группы, состоящей из рутения, никеля, кобальта, железа и их сочетаний, и твердую подложку, выбранную из группы, состоящей из оксида алюминия, диоксида кремния и карбида.

Способ относится к области водоподготовки и может использоваться для кондиционирования воды и водных растворов с применением широкополосных гидроакустических источников колебаний.

Изобретение относится к области санитарно-технических устройств. Насадка содержит входные и выходные каналы, кран, на обоих концах которого имеются внутренние резьбы для прикручивания к водопроводному гусаку, имеющему на конце наружную резьбу, и вкручивания рассеивателя воды, или втулку-насадку для водопроводного гусака без наружной резьбы на его конце.

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса к подвесам 6 и проходящие наружу дна 2 корпуса до уровня воды через герметично закрепленные на дне трубки 7.

Изобретение относится к способам извлечения сульфата аммония при переработке биомассы. Способ извлечения сульфата аммония при переработке биомассы на углеводородное топливо включает: переработку биомассы в реакторе гидропиролиза в углеводородное топливо, уголь и поток технологического пара; охлаждение потока технологического пара до температуры конденсации, дающее водный поток, содержащий аммиак и сульфид аммония, поток жидких углеводородов, и поток охлажденного парообразного продукта, включающего неконденсирующиеся технологические пары, содержащие Н2, СН4, CO и CO2, аммиак и сероводород; направление водного потока в каталитический реактор; впрыск воздуха в каталитический реактор с получением водного потока продукта, содержащего аммиак и сульфат аммония, при этом осуществляют удаление сероводорода из потока охлажденного парообразного продукта и подачу сероводорода в каталитический реактор вместе с водным потоком для взаимодействия с аммиаком, присутствующим в водном потоке, с получением сульфида аммония и затем сульфата аммония. Заявлен вариант способа. Технический результат – повышение экономичности способа. 2 н. и 14 з.п. ф-лы, 4 табл., 6 ил.
Наверх