Способ определения вязкости высоковязких жидкостей и устройство для его реализации

Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость. Изобретение может быть использовано для определения вязкости высоковязких жидкостей. Заявлен способ определения вязкости высоковязких жидкостей, включающий помещение исследуемой жидкости в емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, до полного заполнения ее объема, осуществление поворота наружного цилиндра относительно внутреннего цилиндра, причем поворот наружного цилиндра относительно внутреннего цилиндра осуществляют под действием груза, закрепленного на связанном с наружным цилиндром рычаге, между ограничителями на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров. При этом измеряют секундомером время поворота упомянутого наружного цилиндра Т(η), а вязкость исследуемой жидкости η определяют по формуле:

где KG - коэффициент, определяемый размерами наружного и внутреннего цилиндров и рассчитанный по формуле: ,

K(α) - коэффициент, определяемый углом поворота наружного цилиндра и рассчитанный по формуле: ,

Т(η) - время поворота наружного цилиндра;

α - половинный угол поворота наружного цилиндра;

η - вязкость исследуемой жидкости;

L - длина рычага;

М - вес груза;

g - ускорение свободного падения;

Н - высота цилиндров;

Rнар - радиус наружного цилиндра;

Rвн - радиус внутреннего цилиндра.

Также предложено устройство для определения вязкости высоковязких жидкостей, включающее коаксиальные цилиндры равной высоты, емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, в него введены рычаг с элементами фиксации, груз, закрепленный подвижно на одном конце рычага с возможностью изменения момента вращения, другой конец которого жестко закреплен на наружном цилиндре, боковые опоры с установленными на них ограничителями угла поворота рычага, причем оси вращения упомянутых коаксиальных цилиндров расположены горизонтально. Технический результат - упрощение конструкции устройства и возможность определения вязкости высоковязких жидкостей при криогенных температурах с минимальными погрешностями. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость. Изобретение может быть использовано для определения вязкости высоковязких жидкостей.

Известны способы определения вязкости жидкостей с использованием ротационного вискозиметра. Измерение можно проводить двумя способами:

1) прикладывая постоянный момент и измеряя скорость вращения цилиндров относительно друг друга (ГОСТ 33155-2014, ASTM D 4684-08);

2) придавая определенную скорость вращения цилиндрам относительно друг друга и измеряя момент вращения (ГОСТ 33137-2014, ГОСТ 19832-87, ISO 3219: 1993).

При первом способе момент обычно задается с помощью груза, закрепленного на нити, намотанной на шкив, закрепленный на оси внутреннего цилиндра, и замеряется скорость вращения внутреннего цилиндра вокруг оси (или скорость опускания груза). При этом оси цилиндров располагаются вертикально.

При втором способе ось внутреннего цилиндра закрепляется на валу электродвигателя и, при задании определенной скорости вращения, измеряют мощность на валу двигателя, которая связана с моментом вращения.

Оба конструктивных варианта имеют существенный недостаток. В случае определения вязкости высоковязких жидкостей при криогенных температурах необходимо обеспечить ввод вала в криогенный термостат или изготавливать криогенный термостат большого размера для возможности опускания груза на значительное расстояние. Кроме того, работа узлов трения, входящих в конструкцию подобных вискозиметров, затруднена при криогенных температурах, что вносит ошибки в определение вязкости.

Известен способ определения вязкости высоковязких жидкостей по патенту RU 2075056, опубл. 10.03.1997 (МПК: G01N 11/14 (2006.01)). Способ включает измерение параметра, характеризующего вращение в исследуемой жидкости внутреннего цилиндра ротационного вискозиметра, укрепленного на нити подвеса, и определение вязкости расчетным путем. В качестве измеряемого параметра используют величины времени запаздывания, а для их измерения используют два соосно размещенных на концах нити подвеса магнита, напротив которых размещают магнитоуправляемые герметические контакты, один из которых включен в цепь включения электросекундомера, а другой - в цепь его выключения.

Недостатком данного способа является необходимость проведения двух измерений времени запаздывания при двух длинах внутреннего цилиндра, большой объем емкости для исследуемой жидкости и необходимость определения модуля кручения нити при температуре испытания.

Известен ротационный вискозиметр (патент РФ №2424500, опубл. 20.07.2011, МПК: G01N 11/10 (2006.01)), содержащий привод, на валу которого закреплен вращающийся цилиндр, соосный с ним воспринимающий цилиндр, соединенный с упругим элементом, и датчик угла поворота воспринимающего цилиндра. Упругий элемент содержит поворотный и неподвижный диски, воспринимающий цилиндр выполнен в виде стакана и соосно закреплен на поворотном диске упругого элемента, причем поворотный диск посредством П-образных плоских пружин, размещенных равномерно вокруг вала, связан с неподвижным диском упругого элемента, при этом П-образные плоские пружины закреплены радиально по периферии дисков, снабженных осевыми отверстиями для прохода вала привода.

Недостатком известного ротационного вискозиметра является значительная зависимость трения в узлах вращения двигателя от температуры при криогенных температурах и влияние низких температур на характеристики тензометров, регистрирующих угол поворота наружного цилиндра.

Задачей изобретения является определение вязкости высоковязких жидкостей при криогенных температурах.

Техническим результатом изобретения является упрощение конструкции устройства и возможность определения вязкости высоковязких жидкостей при криогенных температурах с минимальными погрешностями.

Технический результат достигается тем, что способ определения вязкости высоковязких жидкостей включает помещение исследуемой жидкости в емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, до полного заполнения ее объема, осуществление поворота наружного цилиндра относительно внутреннего цилиндра, причем поворот наружного цилиндра относительно внутреннего цилиндра осуществляют под действием груза, закрепленного на связанном с наружным цилиндром рычаге, между ограничителями на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров, при этом измеряют секундомером время поворота упомянутого наружного цилиндра Т(η), а вязкость исследуемой жидкости η определяют по формуле:

где KG - коэффициент, определяемый размерами наружного и внутреннего цилиндров и рассчитанный по формуле: ,

K(α) - коэффициент, определяемый углом поворота наружного цилиндра и рассчитанный по формуле: ,

Т(η) - время поворота наружного цилиндра;

α - половинный угол поворота наружного цилиндра;

η - вязкость исследуемой жидкости;

L - длина рычага;

М - вес груза;

g - ускорение свободного падения;

Н - высота цилиндров;

Rнар - радиус наружного цилиндра;

Rвн - радиус внутреннего цилиндра.

Технический результат достигается тем, что в устройство для определения вязкости высоковязких жидкостей, включающее коаксиальные цилиндры равной высоты, емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, введены рычаг с элементами фиксации, груз, закрепленный подвижно на одном конце рычага с возможностью изменения момента вращения, другой конец которого жестко закреплен на наружном цилиндре, боковые опоры с установленными на них ограничителями угла поворота рычага, причем оси вращения упомянутых коаксиальных цилиндров расположены горизонтально.

Сущность изобретения заключается в определении времени поворота на определенный угол наружного цилиндра предлагаемого устройства относительно соосного внутреннего цилиндра с малым зазором между ними, в который помещена исследуемая высоковязкая жидкость. Оси вращения цилиндров расположены горизонтально. Поворот осуществляется под воздействием груза, установленного на рычаге, который закреплен подвижно на наружном цилиндре с возможностью изменения момента вращения. Время поворота наружного цилиндра на угол от +α до -α относительно горизонтальной плоскости, проходящей через оси цилиндров под действием груза, определяется вязкостью исследуемой жидкости, находящейся в зазоре между цилиндрами, которая за счет вязкого трения оказывает сопротивление повороту наружного цилиндра под воздействием груза. Для высоковязких жидкостей скорость поворота наружного цилиндра устанавливается так, чтобы момент вращения, прилагаемый к наружному цилиндру, был равен противодействующему моменту вязкого трения в жидкости, который растет с увеличением скорости сдвига.

Само устройство выполнено симметрично, что позволяет после цикла измерения его перевернуть на 180° и провести следующий цикл измерения без необходимости поворота рычага в исходное положение.

Сущность изобретения поясняется чертежами (фиг. 1, 2).

На фиг. 1 и 2 представлена принципиальная схема предложенного устройства для осуществления способа определения вязкости высоковязких жидкостей (разрезы спереди и сбоку).

На фиг. 1, 2 приняты следующие обозначения:

1 - внутренний цилиндр;

2 - наружный цилиндр;

3 - зазор между стенками коаксиальных цилиндров;

4 - рычаг;

5 - груз;

6 - боковые опоры;

7, 8 - ограничители угла поворота рычага 4;

9, 10 - отверстия для скобы-фиксатора.

Устройство для определения вязкости высоковязких жидкостей включает коаксиальные цилиндры равной высоты - внутреннего 1 и наружного 2, емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров, рычаг 4, груз 5, закрепленный подвижно на одном конце рычага 4 с возможностью изменения момента вращения, другой конец рычага 4 жестко закреплен на наружном цилиндре 2, боковые опоры 6 с установленными на них ограничителями угла поворота 7 и 8 рычага 4, причем оси вращения коаксиальных цилиндров 1, 2 расположены горизонтально. Вблизи ограничителей 7 и 8 в опорах 6 имеются отверстия 9 и 10 для скобы-фиксатора (на схеме не показана), которая перед началом измерения удерживает рычаг 4 в верхнем положении.

Конструкция устройства симметрична, что позволяет переходить к следующему циклу измерения без перемещения рычага 4 в исходное положение поворотом устройства на 180°.

Способ определения вязкости высоковязких жидкостей реализуется с помощью предложенного устройства (фиг. 1, 2) следующим образом.

Исследуемую высоковязкую жидкость помещают в емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров равной высоты - внутреннего 1 и наружного 2, до полного заполнения ее объема, рычаг 4 поднимают в верхнее положение до ограничителя 7 и фиксируют скобой-фиксатором (не показана) через отверстие 9. Собранное устройство помещают в криогенную камеру (не показана) с установленной температурой испытания. Для проведения измерения вязкости исследуемой жидкости вынимают скобу-фиксатор, освобождая рычаг 4, и осуществляют поворот наружного цилиндра 2 относительно внутреннего цилиндра 1 под действием груза 5, закрепленного на рычаге 4, связанном с наружным цилиндром 2, от верхнего ограничителя 7 до нижнего ограничителя 8 на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров (угол отсчитывается по ограничителям угла поворота 7, 8 рычага 4 на опорах 6), при этом через окно в криогенной камере наблюдают поворот рычага 6 и секундомером измеряют время поворота. После поворота в отверстие 10 вставляют скобу-фиксатор, закрепляя рычаг 4, и переворачивают устройство на 180° для следующего измерения.

Затем по формуле (1) определяют вязкость исследуемой высоковязкой жидкости.

Время поворота наружного цилиндра на угол от +α до -α относительно горизонтальной плоскости, проходящей через оси цилиндров под действием груза, определяется вязкостью исследуемой жидкости, находящейся в зазоре между цилиндрами, которая за счет вязкого трения оказывает сопротивление повороту наружного цилиндра под воздействием груза. Для высоковязких жидкостей скорость поворота наружного цилиндра устанавливается так, чтобы момент вращения, прилагаемый к наружному цилиндру, был равен противодействующему моменту вязкого трения в жидкости, который растет с увеличением скорости сдвига.

Пример реализации

Исследуемую высоковязкую жидкость - термостойкую смазку ЦИАТИМ-221 (ГОСТ 9433-80) с рабочим диапазоном температур от -60°С до +150°С помещают в емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров равной высоты Н=9,9 мм - внутреннего цилиндра 1 с радиусом Rвн=15,95 мм и наружного цилиндра 2 с радиусом Rнар=16 мм, до полного заполнения ее объема, рычаг 4 длиной L=87 мм поднимают в верхнее положение до ограничителя 7 и фиксируют скобой-фиксатором (не показана) через отверстие 9. Собранное устройство помещают в криогенную камеру ЕС2071 (не показана) с установленной температурой испытания -60°С. Для проведения измерения вязкости исследуемой жидкости вынимают скобу-фиксатор, освобождая рычаг 4, и осуществляют поворот наружного цилиндра 2 относительно внутреннего цилиндра 1 под действием груза 5 массой М=120 г, закрепленного на рычаге 4, связанном с наружным цилиндром 2, от верхнего ограничителя 7 до нижнего ограничителя 8 на угол от +α=30° до -α=30°; при этом через окно в криогенной камере наблюдают поворот рычага 6 и секундомером измеряют время поворота Т=80 с. После поворота в отверстие 10 вставляют скобу-фиксатор, закрепляя рычаг 4, и переворачивают устройство на 180° для следующего измерения. Затем по формуле (1) определяют вязкость исследуемой высоковязкой жидкости, которая в данном случае составит 1470 Па⋅с.

1. Способ определения вязкости высоковязких жидкостей, включающий помещение исследуемой жидкости в емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, до полного заполнения ее объема, осуществление поворота наружного цилиндра относительно внутреннего цилиндра, отличающийся тем, что поворот наружного цилиндра относительно внутреннего цилиндра осуществляют под действием груза, закрепленного на связанном с наружным цилиндром рычаге, между ограничителями на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров, при этом измеряют секундомером время поворота упомянутого наружного цилиндра Т(η), а вязкость исследуемой жидкости η определяют по формуле:

где KG - коэффициент, определяемый размерами наружного и внутреннего цилиндров и рассчитанный по формуле: ,

K(α) - коэффициент, определяемый углом поворота наружного цилиндра и рассчитанный по формуле: ,

Т(η) - время поворота наружного цилиндра;

α - половинный угол поворота наружного цилиндра;

η - вязкость исследуемой жидкости;

L - длина рычага;

М - вес груза;

g - ускорение свободного падения;

Н - высота цилиндров;

Rнар - радиус наружного цилиндра;

Rвн - радиус внутреннего цилиндра.

2. Устройство для определения вязкости высоковязких жидкостей, включающее коаксиальные цилиндры равной высоты, емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, отличающееся тем, что в него введены рычаг с элементами фиксации, груз, закрепленный подвижно на одном конце рычага с возможностью изменения момента вращения, другой конец которого жестко закреплен на наружном цилиндре, боковые опоры с установленными на них ограничителями угла поворота рычага, причем оси вращения упомянутых коаксиальных цилиндров расположены горизонтально.



 

Похожие патенты:

Изобретение относится к области гидродинамики жидкостей, а именно к устройствам (стендам) для исследования процессов прокачки смеси нефтей, парафиноотложения, остывания трубопровода при транспортировке тяжелой и битуминозной нефти.

Изобретение относится к аналитической химии и представляет собой способ иммунохроматографического анализа. Иммунохроматографический тест основан на взаимодействии конъюгата специфические антитела-коллоидный маркер с определяемым соединением (антигеном) в ходе движения реагентов вдоль тест-полоски.

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений.

Изобретение относится к области гидродинамики и может быть использовано при разработке теплообменных аппаратов, использующих эффект начального участка. Установка для идентификации турбулентного начального участка в каналах малого поперечного сечения содержит емкость для исследуемой ньютоновской жидкости и теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой.

Изобретение относится к области измерительной техники, а именно в химической и нефтехимической отраслях промышленности на любых предприятиях и заводах, где вязкость изготовляемых ими продуктов является основным показателем качества.

Капиллярное устройство для индикаторов отображения текучей среды, содержащих ограничитель текучей среды и капиллярную трубку. Ограничитель текучей среды содержит сквозное отверстие малого диаметра.

Изобретение может быть использовано в нефтяной, автомобильной, авиационной, машиностроительной отраслях промышленности. С помощью устройства определяются плотность, динамическая и кинематическая вязкость жидкости.

Изобретение относится к области технической физики, в частности к способам измерения вязкости газов, и может найти применение в различных отраслях промышленности и в лабораторной практике.

Изобретение относится к области измерительной техники и может быть использовано для определения вязкости текучей среды. Предложены измерительное электронное устройство (20) и способ получения вязкости текучей среды потока при заданной эталонной температуре.

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью.

Изобретение относится к автоматизации технологического контроля производственных процессов в химической и нефтехимической промышленности. Заявленный способ измерения вязкости полиэтилентерефталата ротационным вискозиметром в динамическом режиме включает измерение скорости вращения ротора, измерение крутящего момента на приводном валу насоса, температуры на выходе насоса.

Изобретение относится к устройствам для непрерывного контроля процесса образования геля при свертывании молока в производстве сыров и кисломолочных продуктов. Колебательный структурометр состоит из закрепленного при помощи кронштейна вертикально на основании электромагнита с цилиндрическим ферромагнитным сердечником, на нижнем конце которого имеется хвостовик и подпружиненный упорный диск с отверстием, в которое входит направляющая ступенчатого пальца, на большем диаметре которого предусмотрена резьба с регулировочной и стопорной гайками.

Изобретение относится к измерительной и аналитической технике и предназначено для измерения вязкости и исследования реологических свойств различных жидкостей. Ротационный вискозиметр включает измерительный блок с цилиндрической камерой, заполняемой анализируемой жидкостью, и расположенным в ней подвижным воспринимающим элементом, приводимым во вращение электродвигателем, и систему измерения периода вращения, подвижный воспринимающий элемент приводится во вращение ротором вентильного электродвигателя с системой контроля потребляемой мощности и угла поворота.

Изобретение относится к устройствам для непрерывного контроля процесса образования геля при свертывании молока в производстве сыров и кисломолочных продуктов, а также в биологической, химической и других отраслях промышленности.

Изобретение относится к автоматизации технологического контроля производственных процессов в химической и нефтехимической промышленности. Способ измерения вязкости жидкости ротационным вискозиметром включает создание и измерение разности давлений в нагнетательной и всасывающей камерах ротационного насоса, измерение скорости вращения ротора, с последующим нахождением искомого параметра расчетным путем.

Изобретение относится к устройствам для непрерывного контроля процессов гелеобразования в молочных сгустках при производстве сыров и кисломолочных продуктов, а также для контроля процессов гелеобразования в других отраслях промышленности, производящих или применяющих структурированные жидкости.

Изобретение относится к диагностической медицинской технике и может быть использовано при оценке вязкости крови. Устройство включает ротор, средство приведения ротора во вращение, средство регистрирующее параметры вращения ротора, измерительную ячейку, причем ротор размещен внутри измерительной ячейки с зазором, при этом ротор и измерительная ячейка выполнены таким образом чтобы соблюдалось условие: 1,0<δ<1,03 или 1,03<δ≤1,1, где δ отношение радиуса измерительной ячейки к радиусу ротора.

Настоящее изобретение относится к устройствам для исследования реологических характеристик материалов и способам использования данных устройств. Более конкретно, объектом настоящего изобретения являются импеллерные чувствительные элементы для исследования реологических характеристик жидкостей, содержащих твердые частицы, в различных условиях обработки.

Изобретение относится к технике измерения вязкости веществ, а именно к устройствам для измерения эффективной вязкости материала с помощью ротационного вискозиметра.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры.

Изобретение относится к области испытаний и исследований, а именно к способам измерения числа падения для контроля качества зерновых культур по альфа-амилазной активности.
Наверх