Способ изготовления штамповок дисков из прессованных заготовок высоколегированных жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности, а также в энергетическом машиностроении в качестве способа получения заготовок дисков газотурбинных двигателей (ГТД). Способ изготовления штамповок дисков газотурбинных двигателей из прессованных заготовок высоколегированных жаропрочных никелевых сплавов включает отжиг прессованных заготовок, подпрессовку заготовок и окончательную штамповку. Перед подпрессовкой проводят отжиг заготовок при температуре на 5-30°С выше температуры полного растворения γ'-фазы в течение 2-6 часов с последующим охлаждением со скоростью 20-60°С/ч. Подпрессовку заготовок проводят при температуре на 10-45°С ниже температуры полного растворения γ'-фазы (Тпрγ'), после подпрессовки заготовок проводят их отжиг в интервале температур от Тпрγ' -40°С до Тпрγ' +20°С в течение 3-6 часов с последующим охлаждением со скоростью 20-60°С/ч. Окончательную штамповку проводят на 10-45°С ниже температуры полного растворения γ'-фазы за одну или более операций с разовой степенью деформации 25-40%, а перед каждой штамповкой проводят отжиг заготовки в интервале температур от Тпрγ' -40°С до Тпрγ' +20°С в течение 3-6 часов. Полученную штамповку охлаждают со скоростью 20-60°С/ч. Получают стабильный уровень пластических свойств и ударной вязкости после термической обработки. 2 з.п. ф-лы, 2 табл., 7 пр.

 

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности, а также в энергетическом машиностроении в качестве способа получения заготовок дисков газотурбинных двигателей (ГТД). Диски газотурбинных двигателей являются одними из самых высоконагруженных деталей двигателей и к ним предъявляются повышенные требования надежности и стабильности механических свойств. Наиболее распространенными полуфабрикатами для изготовления штамповок дисков являются прессованные прутки. Заготовки, изготовленные из прессованных прутков, имеют текстуру деформации, которая сохраняется в штамповках, полученных при отжигах и деформации ниже температуры полного растворения γ'-фазы. Получение однородной (регламентированной) структуры с размером микрозерна не более 15 мкм возможно при проведении рекристаллизационных отжигов на различных этапах изготовления штамповок дисков. Последующая упрочняющая термическая обработка позволяет получать стабильные механические свойства в штамповках дисков ГТД.

Известен способ штамповки жаропрочных сплавов, включающий операции гомогенизирующего отжига, осадки слитка при температуре выше температуры полного растворения γ'-фазы, штамповки заготовки при температуре ниже температуры полного растворения γ'-фазы с суммарной степенью деформации не менее 40%, отжига деформированной заготовки при температуре выше температуры полного растворения γ'-фазы с последующим охлаждением заготовки в интервале выделения γ'-фазы со скоростью менее 56°C/час для получения перестаренной структуры, горячей штамповки заготовки со степенью деформации более 60%. Затем заготовку деформируют в изотермических условиях и подвергают термообработке (US 5693159 А, С22С 19/05, опубл. 02.12.1997).

Недостатками этого способа являются значительная неоднородность структуры в штамповках при использовании в качестве исходной заготовки слитка и ограниченная область применения из-за невозможности осадки слитков при температуре выше температуры полного растворения γ'-фазы для большинства высоколегированных труднодеформируемых никелевых сплавов.

Наиболее близким аналогом, взятым за прототип, является способ изготовления штамповок дисков из высоколегированного жаропрочного никелевого сплава, включающий получение прессованной прутковой заготовки, промежуточного отжига прессованной заготовки при температуре на 30÷120°C ниже температуры полного растворения γ'-фазы с выдержкой не менее 3 часов и последующим охлаждением со скоростью 20÷60°C/час до температуры на 200÷250°C ниже Тпрγ', подпрессовку отожженной заготовки при температуре на 50÷120°C ниже температуры полного растворения γ'-фазы и последующего отжига при температуре на 30÷120°C ниже Тпрγ' с выдержкой не менее 3 часов и последующим охлаждением со скоростью 20÷60°C/час. Окончательную штамповку производят за одну или более операций при температуре на 50÷120°C ниже температуры Тпрγ' с разовой степенью деформации до 95%. Штамповку диска подвергают термообработке состоящей из отжига, закалки и двойного старения (RU 2256721 C1, C22F 1/10, опубл. 20.07.2005).

Способ прототип имеет следующие недостатки:

- отжиг прессованных заготовок ниже температуры полного растворения γ'-фазы не устраняет неоднородность (текстурованность) структуры в продольном и поперечном направлении заготовок, а последующие подпрессовка, штамповка с промежуточными отжигами при температурах ниже температуры полного растворения γ'-фазы не устраняют структурную неоднородность в штамповках, что не позволяет получать стабильный уровень пластических свойств и ударной вязкости в штамповках дисков;

- подпрессовка и окончательная штамповка при температурах на 50÷120°C ниже температуры Тпрγ' приводит к локализации деформации по объему штамповки, разнозернистости структуры в заготовках под окончательную деформацию;

- промежуточные отжиги при температуре на 30÷120°C ниже Тпрγ' не обеспечивают однородности распределения γ'-фазы по объему штамповки, что сопровождается неравномерностью деформации при последующей штамповке;

- окончательная штамповка с разовой степенью деформации до 95% приводит к локализации деформации в зонах интенсивного течения металла, неоднородному распределению γ'-фазы и, как следствие, к неоднородности механических свойств после термической обработки.

Технической задачей предлагаемого изобретения является создание способа получения изделий типа штамповок дисков ГТД из высокожаропрочных никелевых сплавов с однородной регламентированной структурой в сложнопрофильных штамповках (с большой разницей степеней деформации по сечению штамповок), высоким и стабильным уровнем пластических свойств и ударной вязкости после термической обработки.

Технический результат заявленного изобретения заключается в разработке способа изготовления штамповок дисков ГТД с использованием прессованной заготовки из высокожаропрочных сплавов на никелевой основе с однородной (регламентированной) структурой, высоким и стабильным уровнем пластических свойств и ударной вязкости после термической обработки.

Для достижения поставленного технического результата предложен способ изготовления штамповок дисков из прессованных заготовок высоколегированных жаропрочных никелевых сплавов, включающий отжиг прессованных заготовок, подпрессовку заготовок, окончательную штамповку, при этом перед подпрессовкой проводят отжиг заготовок при температуре на 5-30°C выше температуры полного растворения γ'-фазы в течение 2-6 часов с последующим охлаждением со скоростью 20-60°C/час, подпрессовку заготовок проводят при температуре на 10-45°C ниже температуры полного растворения γ'-фазы (Тпрγ'), после подпрессовки заготовок проводят их отжиг в интервале температур от Тпрγ' -40°C до Тпрγ' +20°C в течение 3-6 часов с последующим охлаждением со скоростью 20-60°C/час, окончательную штамповку проводят на 10-45°C ниже температуры полного растворения γ'-фазы за одну или более операций с разовой степенью деформации 25-40%, а перед каждой штамповкой проводят отжиг заготовки в интервале температур от Тпрγ' -40°C до Тпрγ'+20°C в течение 3-6 часов, после чего штамповку охлаждают со скоростью 20-60°C/час.

Предпочтительно, перед подпрессовкой заготовки, отожженные при температуре на 5-30°C выше температуры полного растворения γ'-фазы, подвергают всесторонней ковке при температуре на 10-45°C ниже температуры полного растворения γ'-фазы с суммарной степенью деформации 50-85%, а после всесторонней ковки проводят отжиг в интервале температур от Тпрγ' -40°C до Тпрγ'+30°C в течение 3-6 часов с последующим охлаждением со скоростью 20-60°C/час.

Предпочтительно, подпрессовку заготовки проводят со степенью деформации 10-35% и одновременным профилированием заготовки.

Отжиг прессованной заготовки при температуре на 5-30°C выше температуры полного растворения γ'-фазы в течение 2-6 часов с последующим охлаждением со скоростью 20-60°C/час позволяет получать однородную рекристаллизованную структуру по объему заготовки и устраняет неоднородность (текстурованность) структуры в продольном и поперечном направлении.

Подпрессовка заготовок при температуре на 10-45°C ниже температуры полного растворения γ'-фазы (Тпрγ') позволяет получать профилированные заготовки (с частичным оформлением ступицы или вала) с однородной мелкозернистой структурой, что позволяет снизить число штамповых операций.

Отжиг заготовок после подпрессовки в интервале температур от Тпрγ' -40°C до Тпрγ'+20°C в течение 3-6 часов с последующим охлаждением со скоростью 20-60°C/час обеспечивает снятие напряжений деформации и равномерное распределение γ'-фазы перед окончательной штамповкой.

Отжиги заготовок в интервале температур от Тпрγ' -40°C до Тпрγ' +20°C в течение 3-6 часов с охлаждением со скоростью 20-60°C/час обеспечивают равномерное распределение γ'-фазы за счет большего растворения γ'-фазы и максимальной коагуляции при последующем замедленном охлаждении. Окончательная штамповка за одну или более операций при температуре на 10-45°C ниже температуры полного растворения γ'-фазы с разовой степенью деформации 25-40% обеспечивает равномерность деформации по всему объему штамповки, что позволяет получать высокие и стабильные уровни пластических свойств и ударной вязкости после термической обработки штамповок.

Пример использования: штамповки дисков ГТД из высокожаропрочных никелевых сплавов с развитой ступицей, изготовленные из прессованных прутков диаметром 150 мм серийного производства.

Технологические характеристики процесса изготовления штамповки представлены в таблице 1. Механические свойства штамповки после термической обработки представлены в таблице 2.

Пример 1.

Для осуществления предложенного способа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ЭП742-ИД с температурой полного растворения γ'-фазы 1090°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 30°C выше температуры полного растворения γ'-фазы в течение 2 часов и охлаждение со скоростью 20°C/час. Всестороннюю ковку с изменением оси деформации на 90° проводили при температуре на 40°C ниже температуры полного растворения γ'-фазы с суммарной степенью деформации 70%. После всесторонней ковки проводили отжиг заготовки при температуре на 40°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 50°C/час. Подпрессовку проводили при температуре на 10°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. После подпрессовки проводили отжиг заготовки при температуре на 40°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 60°C/час. Первую операцию штамповки проводили при температуре на 40°C ниже температуры полного растворения γ'-фазы со степенью деформации 25%. Штамповку, полученную после первой операции, отжигали при температуре на 40°C ниже температуры полного растворения γ'-фазы в течение 3 часов и охлаждали со скоростью 60°C/час. Вторую операцию штамповки проводили при температуре на 10°C ниже температуры полного растворения γ'-фазы со степенью деформации 25%.

Пример 2.

Для осуществления предложенного способа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ВЖ175-ИД с температурой полного растворения γ'-фазы 1140°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 30°C выше температуры полного растворения γ'-фазы в течение 4 часов и охлаждение со скоростью 50°C/час. Подпрессовку проводили при температуре на 45°C ниже температуры полного растворения γ'-фазы со степенью деформации 30%. После подпрессовки проводили отжиг заготовки при температуре на 20°C выше температуры полного растворения γ'-фазы в течение 3 часов и охлаждение со скоростью 40°C/час. Первую операцию штамповки проводили при температуре на 45°C ниже температуры полного растворения γ'-фазы со степенью деформации 40%. Штамповку, полученную после первой операции, отжигали при температуре на 20°C выше температуры полного растворения γ'-фазы в течение 6 часов и охлаждали со скоростью 40°C/час. Вторую операцию штамповки проводили при температуре на 45°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%.

Пример 3.

Для осуществления предложенного способа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ЭК151-ИД с температурой полного растворения γ'-фазы 1135°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 5°C выше температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 60°C/час. Всестороннюю ковку с изменением оси деформации на 90° проводили при температуре на 35°C ниже температуры полного растворения γ'-фазы с суммарной степенью деформации 80%. После всесторонней ковки проводили отжиг заготовки при температуре на 35°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 30°C/час. Подпрессовку проводили при температуре на 35°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. После подпрессовки проводили отжиг заготовки при температуре на 35°C ниже температуры полного растворения γ'-фазы в течение 5 часов и охлаждение со скоростью 20°C/час. Первую операцию штамповки проводили при температуре на 10°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. Штамповку, полученную после первой операции, отжигали при температуре на 25°C ниже температуры полного растворения γ'-фазы в течение 4 часов и охлаждали со скоростью 20°C/час. Вторую операцию штамповки проводили при температуре на 35°C ниже температуры полного растворения γ'-фазы со степенью деформации 40%.

Пример 4.

Для осуществления предложенного способа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ЭП742-ИД с температурой полного растворения γ'-фазы 1090°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 20°C выше температуры полного растворения γ'-фазы в течение 4 часов и охлаждение со скоростью 60°C/час. Подпрессовку проводили при температуре на 40°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. После подпрессовки проводили отжиг заготовки при температуре на 40°C ниже температуры полного растворения γ'-фазы в течение 4 часов и охлаждение со скоростью 30°C/час. Операцию штамповки проводили при температуре на 45°C ниже температуры полного растворения γ'-фазы со степенью деформации 40%.

Пример 5.

Для осуществления способа-прототипа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ЭП742-ИД с температурой полного растворения γ'-фазы 1090°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 40°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 30°C/час. Подпрессовку проводили при температуре на 70°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. После подпрессовки проводили отжиг заготовки при температуре на 60°C ниже температуры полного растворения γ'-фазы в течение 5 часов и охлаждение со скоростью 20°C/час. Штамповку проводили за одну операцию при температуре на 80°C ниже температуры полного растворения γ'-фазы со степенью деформации 80%.

Пример 6.

Для осуществления способа-прототипа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ВЖ175-ИД с температурой полного растворения γ'-фазы 1140°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 30°C ниже температуры полного растворения γ'-фазы в течение 4 часов и охлаждение со скоростью 60°C/час. Подпрессовку проводили при температуре на 50°C ниже температуры полного растворения γ'-фазы со степенью деформации 35%. После подпрессовки проводили отжиг заготовки при температуре на 30°C ниже температуры полного растворения γ'-фазы в течение 4 часов и охлаждение со скоростью 60°C/час. Штамповку проводили за одну операцию при температуре на 50°C ниже температуры полного растворения γ'-фазы со степенью деформации 75%.

Пример 7.

Для осуществления способа-прототипа использовали заготовки из прессованных прутков высокожаропрочного никелевого сплава ЭК151-ИД с температурой полного растворения γ'-фазы 1135°C. Перед подпрессовкой проводили отжиг заготовки при температуре на 80°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 30°C/час. Подпрессовку проводили при температуре на 85°C ниже температуры полного растворения γ'-фазы со степенью деформации 30%. После подпрессовки проводили отжиг заготовки при температуре на 80°C ниже температуры полного растворения γ'-фазы в течение 6 часов и охлаждение со скоростью 30°C/час. Штамповку проводили за одну операцию при температуре на 85°C ниже температуры полного растворения γ'-фазы со степенью деформации 85%.

1. Способ изготовления штамповок дисков газотурбинных двигателей из прессованных заготовок высоколегированных жаропрочных никелевых сплавов, включающий отжиг прессованных заготовок, подпрессовку заготовок, окончательную штамповку, отличающийся тем, что перед подпрессовкой проводят отжиг заготовок при температуре на 5-30°С выше температуры полного растворения γ'-фазы в течение 2-6 часов с последующим охлаждением со скоростью 20-60°С/ч, подпрессовку заготовок проводят при температуре на 10-45°С ниже температуры полного растворения γ'-фазы (Тпрγ'), после подпрессовки заготовок проводят их отжиг в интервале температур от Тпрγ' -40°С до Тпрγ' +20°С в течение 3-6 часов с последующим охлаждением со скоростью 20-60°С/ч, окончательную штамповку проводят на 10-45°С ниже температуры полного растворения γ'-фазы за одну или более операций с разовой степенью деформации 25-40%, а перед каждой штамповкой проводят отжиг заготовки в интервале температур от Тпрγ' -40°С до Тпрγ' +20°С в течение 3-6 часов, после чего полученную штамповку охлаждают со скоростью 20-60°С/ч.

2. Способ по п. 1, отличающийся тем, что перед подпрессовкой заготовки, отожженные при температуре на 5-30°С выше температуры полного растворения γ'-фазы, подвергают всесторонней ковке при температуре на 10-45°С ниже температуры полного растворения γ'-фазы с суммарной степенью деформации 50-85%, а после всесторонней ковки проводят отжиг в интервале температур от Тпрγ' -40°С до Тпрγ' +30°С в течение 3-6 часов с последующим охлаждением со скоростью 20-60°С/ч.

3. Способ по п. 1, отличающийся тем, что подпрессовку заготовки проводят со степенью деформации 10-35% и одновременным профилированием заготовки.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к сплавам на основе никель-бериллий. Никель-бериллиевый сплав содержит, мас.%: бериллий 1,5-5,0, ниобий 0,4-6,0, никель – остальное.

Изобретение относится к области металлургии, а именно к получению изделий из гранулируемого жаропрочного никелевого сплава, и может быть использовано для изготовления дисков газотурбинных двигателей, работающих при температурах до 800°С и выше.

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора.

Изобретение относится к металлургии, а именно к материалам электрода свечи зажигания. Материал электрода свечи зажигания представляет собой сплав на основе никеля, содержащий кремний в количестве от 0,7 до 1,3 мас.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес.

Изобретение относится к области металлургии, а именно к способам обработки деталей из интерметаллидных сплавов, полученных аддитивными технологиями, и может быть использовано для повышения плотности сложнопрофильных деталей газотурбинных двигателей.

Изобретение относится к области металлургии, а именно к способам создания острой кубической текстуры в железоникелевых сплавах, и может быть использовано для создания магнитопроводов в электротехнических устройствах, а также в качестве лент-подложек при получении многослойных ленточных сверхпроводников второго поколения.

Изобретение относится к области металлургии, а именно к способу изготовления никель-титановых прокатных изделий, и может быть использовано для изготовления исполнительно-приводных механизмов, имплантируемых стентов и других медицинских устройств.

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на 35°F (19,4°C) ниже температуры растворения фазы γ' и до температуры начала плавления сплава и выдержку при этой температуре, охлаждение со скоростью 1°F (0,56°C) в минуту до температуры 1900°F(±25°F) (1038±15°C) и выдержку при этой температуре, охлаждение со скоростью 1°F в минуту до температуры 1800°F(±25°F) (982±15°C) и выдержку при этой температуре.

Изобретение относится к области металлургии, а именно к способу термообработки дисперсионно-твердеющих сплавов на основе никеля, и может быть использовано при производстве сотового заполнителя системы теплозащиты для гиперзвукового летательного аппарата или космического аппарата.

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

Изобретение относится к области металлургии, в частности к технологии интенсивной деформационной обработки алюминиевого сплава АМг6, и может быть использовано при изготовлении деформированных полуфабрикатов и легковесных изделий из него, предназначенных для использования в авиакосмической, судостроительной и автомобильной отраслях промышленности.

Изобретение относится к области металлургии, в частности к технологии термомеханической обработки алюминиевого сплава с содержанием магния не более 6 вес.% для изготовления деформированных полуфабрикатов и легковесных изделий из него, предназначенных для использования в авиакосмической, судостроительной и автомобильной отраслях промышленности.

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике.

Изобретение относится к области металлургии, нефтяного машиностроения и ремонта подземного оборудования нефтяных скважин и может быть использовано для изготовления и ремонта (восстановления) насосно-компрессорных труб (НКТ).

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении прутка из труднодеформируемого сплава на основе хрома. Для повышения качества прутка, снижения шероховатости поверхности и измельчения структуры получают слиток из сплава, содержащего, мас.%: Ni 31-35, Ti 0,05-0,3, V 0,1-0,4; W 1-3, примеси - не более: О 0,08, N 0,04, Si 0,1, Al 0,06, Fe 0,5, Σ(Al+Si) - 0,2, Cr - остальное, слиток подвергают гомогенизирующему отжигу путем нагрева до температуры 1100-1200°С в вакуумной печи при давлении 0,1-1,0 Па, выдержке и охлаждению до температуры цеха.

Изобретение относится к области металлургии, а именно к получению заготовок из технически чистого титана с размером зерна менее 0,4 мкм, и может быть использовано для изготовления полуфабрикатов и изделий, используемых в медицине и технике.

Изобретение относится к металлургии, а именно к изготовлению деталей из сплава TA6Zr4DE, и может быть использовано при изготовлении вращающихся деталей турбомашины. Способ изготовления детали турбомашины, выполненной из титанового сплава TA6Zr4DE, включает ковку заготовки в альфа-бета-области с образованием предварительно отформованной заготовки, горячую штамповку предварительно отформованной заготовки в бета-области титанового сплава с получением необработанной детали и термическую обработку.

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике.

Изобретение относится к области металлургии, в частности к термомеханической обработке полуфабрикатов из двухфазных (α+β)-титановых сплавов, и может быть использовано в машиностроении и авиационной технике.
Наверх