Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности



Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности
Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности
A61L2/00 - Способы и устройства для дезинфекции или стерилизации материалов и предметов, кроме пищевых продуктов и контактных линз; принадлежности для них (для контактных линз A61L 12/00; распылители для дезинфицирующих составов A61M; стерилизация тары или упаковок и их содержимого при упаковке B65B 55/00; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод C02F; дезинфицирующая бумага D21H 21/36; устройства для дезинфекции в промывных уборных E03D; изделия, имеющие средства для дезинфекции, см. подклассы, соответствующие этим изделиям, например H04R 1/12)

Владельцы патента RU 2653508:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (RU)

Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и рентгеноструктурном анализе объектов микроэлектроники, биологии, медицины. Изобретение представляет собой микрофокусный рентгеновский источник, содержащий катодно-модуляторный узел, фокусирующую систему и анод прострельного типа, который изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу. Технический результат – получение возможности рассеивать большие тепловые мощности, выделяемые в результате бомбардировки поверхности мишени сфокусированными высокоэнергетическими электронами. 1 ил.

 

Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и рентгеноструктурном анализе объектов микроэлектроники, биологии, медицины и т.д.

Генерация рентгеновского излучения является результатом взаимодействия ускоренных электронов с веществом. Для возбуждения рентгена используют потоки электронов с энергией от нескольких кэВ до сотен кэВ, направляемые на анод (антикатод). Часть энергии потока при торможении электронов в веществе анода идет на нагревание материала, а другая часть (в лучших образцах до 15%) преобразуется в рентгеновское излучение.

По диаметру сфокусированного на аноде электронного луча рентгеновские трубки разделяют на макрофокусные (диаметр более 1 мм), острофокусные (диаметр 0.01-1 мм) и микрофокусные (диаметр меньше 10 мкм).

Преимущества применения микрофокусных трубок по сравнению с макрофокусными состоят в следующем:

- принципиальная возможность локальных исследований и воздействий,

- малая доза облучения областей, смежных с предметной,

- возможность получения увеличенных изображений,

- более высокое качество изображений объекта при равенстве доз облучения.

Конструктивно аноды микрофокусных трубок выполняются массивными или прострельными.

Известны микрофокусные трубки с массивным анодом (отражательного типа) [1]. Такой анод состоит из тела анода и мишени и поэтому называется составным анодом. Материал тела анода должен обладать высокой теплопроводностью для эффективного отвода тепла к охлаждающему устройству. К мишени предъявляют требования высокой температуры плавления.

Недостатком таких микрофокусных трубок, в соответствии с известными оценками, в том числе представленных в [1], является малая предельная мощность, подводимая электронным пучком к массивной вольфрамовой мишени в длительном режиме работы трубки, составляющая не более 1 Вт на 1 мкм2 поперечного сечения электронного луча.

Другим недостатком микрофокусных трубок отражательного типа является невозможность размещения исследуемого образца на малом расстоянии от поверхности мишени, с которой происходит эмиссия рентгеновского излучения.

Преимущества острофокусных/микрофокусных рентгеновских трубок могут быть максимально реализованы при использовании анодов прострельного типа, в отличие от анодов отражательного типа, размещением объекта исследований на малом расстоянии (доли мм - единицы мм) от излучающей поверхности.

Известны микрофокусные рентгеновские трубки (прототип), анодный узел которых содержит тонкопленочную мишень прострельного типа, представляющую собой металл с высоким атомным номером, нанесенный на выходное окно, расположенное в торце длинной анодной пролетной трубы [2]. Подводимая электронным пучком к мишени мощность отводится за счет теплопроводности материалов выходного окна и пролетной трубы.

Недостатками микрофокусных рентгеновских источников прострельного типа с плоскими составными анодами является еще меньшая мощность излучения по сравнению с трубками, имеющими массивный анод. Для традиционно используемой комбинации материалов: тонкопленочная мишень - вольфрам, выходное окно – бериллий, значение допустимой температуры ограничено нагревом выходного окна и находится в районе 2000°С. Рассеиваемая на составном аноде мощность в этом случае ограничена уровнем 0,5 Вт на 1 мкм2 в длительном режиме работы [3, 4]. Превышение указанного предела мощности приводит к разогреву и расплавлению материла анода и его разрушению.

Техническая задача предлагаемого изобретения состоит в создании микрофокусной рентгеновской трубки с анодом прострельного типа, конструкция которого позволяет рассеивать большие тепловые мощности, выделяемые в результате бомбардировки поверхности мишени сфокусированными высокоэнергетическими электронами. Конструктивно анод предлагаемого рентгеновского источника представляет собой тепловую трубу [5], часть корпуса которой, обращенная к катоду, является мишенью и нагревается за счет бомбардировки ускоренными и сфокусированными электронами. Испаренный теплоноситель, находящийся в контакте с мишенью, уносит энергию из малой области нагрева мишени и передает ее другой, холодной или принудительно охлаждаемой части корпуса тепловой трубы, где теплоноситель конденсируется и возвращается в зону испарения. Данная часть корпуса тепловой трубы является окном для вывода рентгеновского излучения наружу. Тепловая труба является эффективном средством отвода тепла, так как вместо достаточно медленного электронного механизма переноса тепла в сплошном металлическом теплопроводе здесь действует молекулярный механизм переноса кинетической и колебательной энергии хаотического движения отдельных частиц вещества испарителя. При скорости испарения жидкости порядка нескольких грамм за секунду с паром уносится тепловой поток, оцениваемый киловаттами. Образовавшийся конденсат возвращается в зону испарения или под действием капиллярных сил, которые обеспечиваются размещением специализированной капиллярной структуры внутри тепловой трубы, или за счет действия силы тяжести (последняя конструкция обычно именуется термосифоном).

На фиг. 1 без сохранения пропорций показана схема анодного узла аксиально-симметричной микрофокусной рентгеновской трубки прострельного типа, анод которой выполнен в виде тепловой трубы 1, например в виде термосифона дискообразной формы, т.е. является герметичным теплопередающим устройством, работающим по замкнутому испарительно-конденсационному циклу. Корпус (оболочка) тепловой трубы 1 состоит из двух герметически соединенных частей - дна 2 и крышки 3, и находится в тепловом контакте с источником 4 и стоком 5 тепла. Источником 4 тепла являются бомбардирующие поверхность дна 2 корпуса трубы 1, например, вблизи оси симметрии устройства высокоэнергетические сфокусированные электроны 6. Дно 2 корпуса тепловой трубы 1, подвергающееся электронной бомбардировке, играет роль мишени анода, назначение которой - эмиссия рентгеновского излучения 7. Для эффективной генерации рентгеновских квантов мишень 2 должна изготавливаться из металла с высоким атомным номером, например из вольфрама. Тепловая энергия, выделяемая в мишени 2, затрачивается на испарение теплоносителя 8, заключенного внутри корпуса тепловой трубы 1. Толщина мишени 2 должны быть достаточно малой для эффективной передачи тепла теплоносителю 8. Молекулы пара 9 вещества теплоносителя с большой скоростью перемещаются к холодной крышке 3 тепловой трубы 1, отдают ей энергию, здесь пар охлаждается и конденсируется. Образовавшийся конденсат 10 возвращается в зону нагрева 4 теплоносителя 8. Сток тепла 5 обеспечивается крышкой 3 и частью дна 2 корпуса тепловой трубы 1, контактирующими с внешней средой и массивным корпусом анода 11. Для эффективного стока тепла крышка 3 корпуса 1 должна изготавливаться из фольги металла с хорошей теплопроводностью. Направленное стекание конденсата 10 из зоны стока 5 тепла в область нагрева 4 обеспечивается выпуклыми формами дна 2 и крышки 3 корпуса тепловой трубы 1. Рентгеновское излучение 7, испущенное мишенью 2, выпускаются наружу через крышку 3 корпуса 1, играющую роль выходного окна, и поэтому предпочтительным материалом для ее изготовления является фольга из металла с низким атомным номером, например из бериллия.

Таким образом, решение технической задачи достигается тем, что микрофокусный рентгеновский источник содержит катодно-модуляторный узел, фокусирующую систему и анод, служащие для эмиссии электронного потока с катода, ускорения потока и его фокусировки на аноде, при этом анод прострельного типа изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу, часть корпуса которой, обращенная к катоду, является мишенью анода, т.е. источником рентгеновского излучения, и нагревается за счет бомбардировки ускоренными и сфокусированными электронами, что приводит к испарению теплоносителя, находящегося в контакте с мишенью, переносу тепловой энергии молекулами пара вещества теплоносителя из области нагрева мишени к другой, естественно или принудительно охлаждаемой части корпуса тепловой трубы, обращенной наружу во внешнее пространство и играющей дополнительную роль выходного окна для рентгеновского излучения, где теплоноситель конденсируется и возвращается в зону испарения под действием силы тяжести или за счет капиллярных сил, возникающих в капиллярной структуре, специально размещаемой внутри тепловой трубы, а полученное охлаждаемой частью корпуса тепловой трубы тепло рассеивается в окружающее пространство, и таким образом за счет переноса скрытой тепловой энергии молекулами пара вещества теплоносителя обеспечивается многократное повышение уровня рассеиваемой мощности на мишени анода по сравнению с составными металлическими анодами, в которых отвод тепла от мишени происходит в соответствии с механизмом электронной теплопроводности.

Рентгеновская трубка работает следующим образом.

Предварительно сформированный в катодно-модуляторном узле (не показанном на фиг. 1) и сфокусированный полем системы фокусировки (не изображенной на фиг. 1) электронный поток 6 ускоряется напряжением, приложенным между катодом и анодом 1 (фиг. 1). Ускоренные электроны 6 поглощаются мишенью 2, являющейся фольгой металла предпочтительно с высоким атомным номером, например вольфрама, и вызывают эмиссию рентгеновского излучения 7 из области 4 с малыми поперечными размерами. Рентгеновское излучение 7 выводится наружу через окно 3, изготавливаемое из фольги металла с высокой степенью прозрачности для рентгеновских лучей, например бериллия. Мишень 2 и выходное окно 3, имеющие выпуклую форму и герметически соединенные по внешнему контуру, является тепловой трубой 1, во внутреннее пространство которой помещается теплоноситель 8. Поскольку основная часть энергии бомбардируемых электронов выделяется в мишени 2 в виде тепла, то теплоноситель 8, контактирующий с областью нагрева 4, нагревается и затем испаряется. Пар 9 вещества теплоносителя устремляется к выходному окну 3, охлаждаемому естественным образом или принудительно, отдает тепло материалу окна 3, конденсируется и возвращается в виде конденсата 10 в зону испарения под действием капиллярных сил, которые обеспечиваются размещением специализированной капиллярной структуры внутри тепловой трубы (не показанной на фиг.1), или за счет действия силы тяжести. Сток 5 тепла из нагреваемых паром 9 областей тепловой трубы 1 в окружающее пространство и в массивный анодный корпус 11 является последним звеном механизма эффективного рассеяния тепловой энергии из зоны 4 бомбардировки мишени 2 электронным лучом 6 во внешнюю среду.

ЛИТЕРАТУРА

1. Иванов С.А., Щукин Г.А. Рентгеновские трубки технического назначения. - Л.: Энергоиздат, 1989. - 200 с.

2. Иванов С.А., Иоффе Ю.К., Кириенко С.В., Щукин Г.А. Малогабаритные источники рентгеновского излучения. Обзоры по электронике. Сер. электровакуумные и газоразрядные приборы. - М.: ЦНИИ «Электроника», 1987. - вып. 4 (1298). - 55 с.

3. Хараджа Ф.Н. Общий курс рентгенотехники. - М. - Л.: Энергия, 1966 - 568 с.

4. Иванов С.А., Кириенко С.В., Щукин Г.А. Расчет тепловых процессов в анодах рентгеновских трубок // Обзоры по электронной технике, 1986. - Сер. 4, вып. 2(1175).

5. Москвин Ю.В., Филиппов Ю.А. Тепловые трубы // Теплофизика высоких температур, 1969. - N.7, №4. - С. 766-775.

Микрофокусный рентгеновский источник, содержащий катодно-модуляторный узел, фокусирующую систему и анод, служащие для эмиссии электронного потока с катода, ускорения потока и его фокусировки на аноде, отличающийся тем, что анод прострельного типа изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу, часть корпуса которой, обращенная к катоду, является мишенью анода, т.е. источником рентгеновского излучения, и нагревается за счет бомбардировки ускоренными и сфокусированными электронами, что приводит к испарению теплоносителя, находящегося в контакте с мишенью, переносу тепловой энергии молекулами пара вещества теплоносителя из области нагрева мишени к другой, естественно или принудительно охлаждаемой части корпуса тепловой трубы, обращенной наружу во внешнее пространство и играющей дополнительную роль выходного окна для рентгеновского излучения, где теплоноситель конденсируется и возвращается в зону испарения под действием силы тяжести или за счет капиллярных сил, возникающих в капиллярной структуре, специально размещаемой внутри тепловой трубы, а полученное охлаждаемой частью корпуса тепловой трубы тепло рассеивается в окружающее пространство, и таким образом за счет переноса скрытой тепловой энергии молекулами пара вещества теплоносителя обеспечивается многократное повышение уровня рассеиваемой мощности на мишени анода по сравнению с составными металлическими анодами, в которых отвод тепла от мишени происходит в соответствии с механизмом электронной теплопроводности.



 

Похожие патенты:

Изобретение относится к области рентгенотехники, в частности к рентгеновским трубкам, используемым для обследования древесины. Рентгеновская трубка содержит защитный элемент (2), в котором устанавливаются катод (4) и анод (5).

Изобретение относится к рентгенотехнике и может применяться при создании рентгеновских микрофокусных трубок. .

Изобретение относится к рентгенотехнике, а более конкретно - к охлаждаемым проточным хладагентом анодам рентгеновских трубок. .

Изобретение относится к рентгенотехнике и может использоваться в стационарных анодах рентгеновских трубок с принудительным охлаждением. .

Изобретение относится к малогабаритным рентгеновским трубкам с керамическим баллоном. .

Изобретение относится к фармацевтике и представляет собой способ получения лечебного гидрогеля, включающий введение в полимерную композицию лекарственного препарата в концентрации 0,25-20 мас.

Изобретение относится к области дезинфектологии и может быть использовано в медицинских и санитарно-профилактических учреждениях, на предприятиях пищевой и перерабатывающей промышленности в качестве устройства для обеззараживания рук.

Установка содержит первую карусель для поддержания множества стерилизационных устройств, выполненных с возможностью стерилизации внутренней части упаковочных контейнеров посредством электронно-лучевого облучения, и транспортировочную систему для транспортировки контейнеров, содержащую вторую карусель.

Настоящее изобретение относится к области биотехнологии, конкретно к рекомбинантному получению белков и может быть использовано для получения растворимого белка, экспрессированного в Е.

Изобретение относится к области медицины и может быть использовано для подсушивания вялозаживающих ран. Способ сушки раны и окружающей ее поверхности тела осуществляется не обдувом холодным или горячим воздухом, а вытяжкой влажных фракций потоком воздуха вентилятора прибора для сушки ран на предварительно устанавливаемую на обрабатываемую поверхность стерильную салфетку.

Изобретение относится к области медицины, а именно к ветеринарной протозоологии, и предназначено для профилактики кокцидиозов птиц. Для дезинвазии объектов внешней среды против ооцистов кокцидий птиц используют комплексное средство, содержащее тиазон, глутаровый альдегид, молочную кислоту и вспомогательные компоненты.
Изобретение относится к медицине, лабораторным исследованиям и может быть использовано для обработки предметных стекол с зеркальным покрытием для культивирования и изучения культур клеток in vitro с помощью микроскопа МИМ-340.

Изобретение относится к способам получения текстильных материалов, которые могут быть использованы для пошива одежды специального назначения для энергетического, строительного, нефтехимического и оборонно-промышленного комплекса.

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее высушивание, при этом нетканый материал подвергают предварительной обработке ультразвуком для активации поверхности и дальнейшей обработке путем его погружения в раствор или набрызгивания раствора, содержащего заранее приготовленные наноразмерные коллоидные частицы с металлов или оксидов с концентрацией 0.1-5% от веса материала, с последующим высушиванием материала при температуре от 60 до 100°С до постоянного веса.

Изобретение относится к области медицины, а именно к микробиологии, и предназначено для контроля стерилизации материалов и изделий. Биологический индикатор для контроля стерилизации состоит из контейнера для культуры с резиновой цилиндрической пробкой и контейнера с питательной средой, выполненного в виде стрипа с дозатором.

Изобретение относится к области бытовой химии, а именно к дезинфектологии, и предназначено для обеспечения высокого антибактериального действия. Дезинфицирующее моющее средство содержит пероксид водорода в качестве дезинфицирующего агента; поверхностно-активное вещество (ПАВ), выбираемое из анионных ПАВ, катионных ПАВ, неионогенных ПАВ или их смесей; ацетофенон в качестве стабилизатора; и воду. При необходимости, указанное средство может включать функциональные добавки, выбираемые из антикоррозионных агентов, отдушек, загущающих компонентов или их смесей. Компоненты используются в заявленном количестве. Изобретение обеспечивает высокую стабильность и повышенную бактерицидную активность дезинфицирующего моющего средства. 1 з.п. ф-лы, 3 табл., 5 пр.

Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и рентгеноструктурном анализе объектов микроэлектроники, биологии, медицины. Изобретение представляет собой микрофокусный рентгеновский источник, содержащий катодно-модуляторный узел, фокусирующую систему и анод прострельного типа, который изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу. Технический результат – получение возможности рассеивать большие тепловые мощности, выделяемые в результате бомбардировки поверхности мишени сфокусированными высокоэнергетическими электронами. 1 ил.

Наверх