Способ измерения s-параметров четырехполюсников свч, предназначенных для включения в микрополосковую линию

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано измерения S-параметров четырехполюсников. Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключается в том, что четырехполюсник включают в анализатор, далее измеряют двухсигнальные комплексные коэффициенты отражения на входе и выходе при двух различных относительных сдвигах входного и выходного зондирующих сигналов. Также измеряют двухсигнальные комплексные коэффициенты отражения при непосредственном соединении входов входного и выходного измерительных каналов анализатора встык с последующим определением S-параметров четырехполюсника. Для достижения технического результата дополнительно измеряют односигнальные комплексные коэффициенты отражения на входе и выходе четырехполюсника при поочередной подаче на них соответственно входного и выходного зондирующих сигналов, а также односигнальные комплексные коэффициенты отражения входного и выходного измерительных каналов анализатора при непосредственном соединении их измерительных входов встык при поочередной подаче на них соответственно выходного и входного зондирующих сигналов. При этом к анализатору подключают сдвоенный согласованный микрополосковый калибратор и дополнительно измеряют его комплексные коэффициенты отражения при поочередной подаче на него входного и выходного зондирующих сигналов, с последующей нормировкой S-параметров четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора относительно волнового сопротивления этого калибратора. Технический результат: повышение точности измерения S-параметров четырехполюсников в рассогласованных измерительных каналах анализатора, а также сокращение трудозатрат при многократной технологической коррекции опытного образца этих устройств. 2 ил.

 

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано для измерения S-параметров четырехполюсников, предназначенных для включения в микрополосковую линию (МПЛ).

Известен двухсигнальный способ измерения S-параметров транзисторов (см. статью Mazumder S.R. Two-signal method of measuring the large-signal S-parameters of transistors / IEEE Trans. – 1978. – Vol. MTT-26, No 6. – P. 417–420), выбранный за аналог, который основан на одновременной подаче на вход и выход транзистора зондирующих сигналов и соответственно, формируемых делителем мощности, с последующим измерением двухсигнальных ККО

(1)

на входе и выходе транзистора, для различных относительных сдвигов фаз (где изменяется от до ) зондирующих сигналов и , а также измерением относительных возбуждений в виде отношения амплитуд зондирующих сигналов и при непосредственном соединении входов измерительных каналов анализатора и тех же относительных сдвигах фаз этих зондирующих сигналов; - мнимая единица. Решение системы уравнений (1) позволяет определить измеренные S-параметры транзистора.

Способ может быть реализован двумя двенадцатиполюсными рефлектометрами, подключенными к общему синтезатору зондирующих сигналов и , полученных посредством деления мощности сигнала одного генератора и сдвига фазы одного из зондирующих сигналов . В целом такая структура рефлектометров образует анализатор.

Недостатком известного способа является то, что он предполагает, что измерительные каналы анализатора, измеряющего S-параметры, согласованы, то есть нагрузочные ККО от этих входов при их непосредственном соединении равны нулю . В реальности из-за их неидеальности они не согласованы . Это приводит к существенной и неконтролируемой погрешности измерения S-параметров.

Наиболее близким к заявляемому способу по совокупности сходных признаков является двухсигнальный способ измерения S-параметров транзисторов (см. статью Li S.H., Bosisio R.G. Automatic analysis of two-port active microwave network / Electronics Letters. – 1982. – Vol. 18, No 24. – P. 1033–1034) транзисторов, выбранный за прототип. Он основан на одновременной подаче на вход и выход транзистора зондирующих сигналов и соответственно, формируемых делителем мощности, с последующим измерением двухсигнальных ККО (1) на входе и выходе транзистора, для двух различных относительных сдвигов фаз ( ) зондирующих сигналов и , а также измерением относительных возбуждений в виде отношения амплитуд зондирующих сигналов и при непосредственном соединении входов измерительных каналов анализатора и тех же относительных сдвигах фаз этих зондирующих сигналов; - мнимая единица.

Решение системы уравнений (1) позволяет определить измеренные S-параметры транзистора в виде:

, , (2)

, .

Способ может быть реализован анализатором.

Недостатком известного способа является то, что он предполагает, что измерительные каналы анализатора, измеряющего S-параметры, согласованы, то есть комплексные коэффициенты отражения от их входов (нагрузочные ККО) при их непосредственном соединении равны нулю . В реальности из-за их неидеальности они не согласованы . Это приводит к существенной и неконтролируемой погрешности измерения S-параметров.

Задачей заявляемого способа является повышение точности измерения S-параметров четырехполюсников в рассогласованных измерительных каналах анализатора.

Поставленная задача достигается тем, что в известном способе измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключающемся в том, что четырехполюсник включают в анализатор, далее измеряют двухсигнальные комплексные коэффициенты отражения на входе и выходе при двух различных относительных сдвигах входного и выходного зондирующих сигналов, а также измеряют двухсигнальные комплексные коэффициенты отражения при непосредственном соединении входов входного и выходного измерительных каналов анализатора встык с последующим определением S-параметров четырехполюсника, согласно изобретению дополнительно измеряют односигнальные комплексные коэффициенты отражения на входе и выходе четырехполюсника при поочередной подаче на них соответственно входного и выходного зондирующих сигналов, а также односигнальные комплексные коэффициенты отражения входного и выходного измерительных каналов анализатора при непосредственном соединении их измерительных входов встык при поочередной подаче на них соответственно выходного и входного зондирующих сигналов, кроме того, к анализатору подключают сдвоенный согласованный микрополосковый калибратор и дополнительно измеряют его комплексные коэффициенты отражения при поочередной подаче на него входного и выходного зондирующих сигналов, с последующей нормировкой S-параметров четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора, относительно волнового сопротивления этого калибратора.

Введение новых отличительных признаков в известный способ в сочетании с известными признаками обеспечивает достижение поставленной задачи - повышение точности измерения S-параметров четырехполюсников, предназначенных для включения в микрополосковую линию, и положительного технического результата - повышение экономической эффективности систем автоматизированного проектирования усилителей и автогенераторов СВЧ. Исключение какого-либо из новых введенных отличительных признаков нарушает целостность предлагаемого способа и приводит к невозможности достижения поставленной цели и положительного технического результата.

Предлагаемый способ поясняется 2 чертежами.

На фиг.1 показано: а - сигнальный граф нагруженного четырехполюсника;

б - сигнальный граф непосредственного соединения плоскостей i-i (i=1,2) измерительных входов анализатора встык.

На фиг.2 показана эквивалентная схема замещения КП при подключении к нему согласованного микрополоскового калибратора.

Математическое описание способа. Для определения двухсигнальных ККО (1) на входе и выходе четырехполюсника, включенного в рассогласованные с нагрузками измерительные каналы анализатора, представим четырехполюсник в виде сигнального графа, показанного на фиг. 1а, где индексация по m для простоты упущена.

Используя правило не касающихся контуров, определим сигналы возбуждения и плоскостей входа и выхода четырехполюсника:

; (3)

; ,

где и - ККО входного и выходного измерительных каналов анализатора в плоскостях подключения к ним четырехполюсника (нагрузочные ККО) и то же ККО в индексации по j. Измерение нагрузочных ККО и осуществляют при непосредственном соединении плоскостей входов входного и выходного измерительных каналов анализатора встык.

Взяв отношение (3), получим:

. (4)

Для определения относительных возбуждений (4) представим анализатор при непосредственном соединении плоскостей входов его входного и выходного измерительных каналов встык, как показано на фиг.1б.

В этом случае сигналы возбуждения и определим в виде:

; . (5)

Взяв отношение (5), получим

;

откуда

; , (6)

где - двухсигнальные ККО, измеряемые при непосредственном соединении плоскостей входов входного и выходного измерительных каналов анализатора встык при тех же двух различных относительных сдвигов фаз и зондирующих сигналов и .

Кроме того, определим односигнальные ККО на входе и выходе четырехполюсника. Полагая в (4) , найдем

. (7)

Применяя к сигнальному графу, показанному на фиг.1а, правило не касающихся контуров, определим комплексные коэффициенты прямой и обратной передачи четырехполюсника

, (8)

где - определитель

. (9)

Вынося поочередно первые два члена и определителя (9) и осуществляя свертку согласно (7), получим другой его вид

. (10)

Определитель (10) обладает фундаментальным свойством - устанавливает связь и -параметров четырехполюсника через его ККО , что позволяет из (10) и (7) определить значение этих параметров. Для определения - и -параметров можно использовать измеренные ККП (8) или, как в нашем случае, двухсигнальные ККО (4).

Из равенства последних двух членов определителя (10) найдем

, (11)

где и - коэффициенты:

, . (12)

Подстановка (11) в (7) при с исключением произведения дает

. (13)

Решение двух уравнений (4) при и относительно и при и относительно позволяет определить эти S-параметры:

, (14)

.

Таким образом, выражения (11), (13) и (14) устанавливают связь измеренных ККО , и с S-параметрами четырехполюсника, нормированными относительно волнового сопротивления коаксиальных мер, используемых при калибровке анализатора.

Для нормировки S-параметров (11), (13) и (14) четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора к волновому сопротивлению МПЛ, в которую будет включен этот четырехполюсник при его эксплуатации, необходима дополнительная калибровка анализатора расчетным микрополосковым согласованным калибратором или же двумя отрезками МПЛ (см. статью Савелькаев С.В. Коаксиальное контактное устройство / Измерительная техника. – 2005. – № 5. – С. 65–68), волновое сопротивление которых должно соответствовать волновому сопротивлению МПЛ в которую будет включен четырехполюсник. Так, например, согласованный калибратор содержит МПЛ, которая, с одной стороны, нагружена на согласованную резистивную нагрузку, а с другой, снабжена ленточным выводом. Подключение такого калибратора в плоскости i – i входа коаксиального контактного устройства (ККУ) (см. статью Савелькаев С.В. Коаксиальное контактное устройство / Измерительная техника. – 2005. – № 5. – С. 65–68) показано на фиг. 2, где - волновое сопротивление отрезка МПЛ, нагруженного на согласованную нагрузку с сопротивлением .

В процессе дополнительной калибровки анализатора измеряют ККО микрополоскового, например, согласованного калибратора в плоскостях i – i его подключения к ККУ. Плоскости i – i физически совпадают с вспомогательными плоскостями , где ККО . Введение плоскостей обусловлено существованием между плоскостями i – i и четырехполюсников с -параметрами рассеяния (см. статью Савелькаев С.В. Коаксиальное контактное устройство / Измерительная техника. – 2005. – № 5. – С. 65–68). Эти четырехполюсники характеризуют неоднородность, которая существует в плоскостях i – i подключения МПЛ к ККУ. Сами неоднородности обусловлены конструктивным различием МПЛ и ККУ.

По измеренным ККО определяют -параметры рассеяния:

(15)

i = 1, 2,

где - волновое сопротивление ККУ, равное волновому сопротивлению коаксиальных мер, используемых при калибровке анализатора.

Нормировка -параметров (15) и, следовательно, последующая нормировка измеренных S-параметров (11), (13) и (14) первоначально нормированных относительно волнового сопротивления коаксиальных мер, используемых при калибровке анализатора, может быть осуществлена относительно произвольного волнового сопротивления расчетного согласованного микрополоскового калибратора, выбранного для калибровки анализатора.

С учетом -параметров (15) S-параметры (11), (13) и (14) четырехполюсника можно представить в виде каскадного соединения . Тогда -параметры четырехполюсника, нормированные относительно волнового сопротивления расчетного согласованного микрополоскового калибратора, используемого при дополнительной калибровке анализатора, можно определить из выражений (см. статью Савелькаев С.В. Коаксиальное контактное устройство / Измерительная техника. – 2005. – № 5. – С. 65–68):

(16)

где

Для S-параметров коаксиальных узлов .

Реализация предлагаемого способа. Предлагаемый способ реализуют следующим образом. Исследуемый четырехполюсник включают в анализатор и измеряют двухсигнальные ККО (4) на его на входе и выходе , а также измеряют односигнальные ККО (7) на входе () и выходе () четырехполюсника при поочередной подаче на них соответственно входного и выходного зондирующих сигналов, а также односигнальные нагрузочные ККО (7) входного () и выходного () измерительных каналов анализатора при непосредственном соединении входов этих измерительных входов встык при поочередной подаче на них соответственно выходного и входного зондирующих сигналов, кроме того, измеряют двухсигнальные ККО (6) при непосредственном соединении плоскостей входов входного и выходного измерительных каналов анализатора встык при тех же двух различных относительных сдвигов фаз и зондирующих сигналов и , после чего к анализатору подключают сдвоенный согласованный микрополосковый калибратор и измеряют его односигнальные ККО (7) при поочередной подаче на него входного и выходного зондирующих сигналов, с последующим определением относительных возбуждений (6) и S-параметров четырехполюсника (11), (13) и (14) и нормировкой (16) S-параметров четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора, относительно волнового сопротивления этого калибратора.

Технический результат: точное измерение S-параметров устройств СВЧ обеспечивает повышение экономической эффективности проектирования этих устройств за счет сокращения цикла опытно-конструкторских работ в 1,5-2 раза, что достигается за счет необходимости многократной технологической коррекции опытного образца этих устройств.

Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключающийся в том, что четырехполюсник включают в анализатор, далее измеряют двухсигнальные комплексные коэффициенты отражения на входе и выходе при двух различных относительных сдвигах входного и выходного зондирующих сигналов, а также измеряют двухсигнальные комплексные коэффициенты отражения при непосредственном соединении входов входного и выходного измерительных каналов анализатора встык с последующим определением S-параметров четырехполюсника, отличающийся тем, что дополнительно измеряют односигнальные комплексные коэффициенты отражения на входе и выходе четырехполюсника при поочередной подаче на них соответственно входного и выходного зондирующих сигналов, а также односигнальные комплексные коэффициенты отражения входного и выходного измерительных каналов анализатора при непосредственном соединении их измерительных входов встык при поочередной подаче на них соответственно выходного и входного зондирующих сигналов, кроме того, к анализатору подключают сдвоенный согласованный микрополосковый калибратор и дополнительно измеряют его комплексные коэффициенты отражения при поочередной подаче на него входного и выходного зондирующих сигналов с последующей нормировкой S-параметров четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора, относительно волнового сопротивления этого калибратора.



 

Похожие патенты:

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано для адекватного измерения S-параметров транзисторов, предназначенных для включения в микрополосковую линию.

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты.

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении абсолютных комплексных коэффициентов передачи СВЧ-смесителей и СВЧ-устройств с преобразованием частоты.

Изобретение относится к области радиоизмерений и может быть использовано при измерениях комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты вверх (СВЧ-смесителей), когда промежуточная частота лежит выше частоты входного преобразуемого сигнала.
Изобретение относится к способам определения передаточных функций (ПФ) линейных радиоэлектронных и радиотехнических систем, включая естественные и искусственные радиоканалы различных диапазонов.

Изобретение относится к калибровке инструментов, используемых для измерения поведения сигналов. Технический результат – получение характеристики сети и выполнение калибровки сети с неподдерживаемыми типами разъема, которые не отслеживают в соответствии с известными стандартами.

Изобретение относится к области радиоизмерений и может быть использовано при контроле амплитудно-частотных характеристик различных радиотехнических блоков. Измеритель содержит генератор качающейся частоты (ГКЧ) 1, измеряемый объект (ИО) 2, амплитудный детектор (АД) 3, делитель (Дл) 4, формирователь опорного сигнала (ФОС) 5, индикатор (ИД) 6, преобразователь частоты в напряжение (ПЧН) 7, первый дифференциатор (ДФ) 8, компаратор (КП) 9, согласующий блок (СБ) 10, масштабный усилитель (МУ) 14, амплитудный селектор (АС) 15, первый временной селектор (ВС) 16, первый декадный счетчик (ДС) 17, второй дешифратор (ДШ) 18.

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении группового времени запаздывания и для определения действительного значения сдвига фаз устройств с преобразованием частоты (смесителей).

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к области радиоизмерений и может быть использовано при измерении абсолютных комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей).

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано измерения S-параметров четырехполюсников. Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключается в том, что четырехполюсник включают в анализатор, далее измеряют двухсигнальные комплексные коэффициенты отражения на входе и выходе при двух различных относительных сдвигах входного и выходного зондирующих сигналов. Также измеряют двухсигнальные комплексные коэффициенты отражения при непосредственном соединении входов входного и выходного измерительных каналов анализатора встык с последующим определением S-параметров четырехполюсника. Для достижения технического результата дополнительно измеряют односигнальные комплексные коэффициенты отражения на входе и выходе четырехполюсника при поочередной подаче на них соответственно входного и выходного зондирующих сигналов, а также односигнальные комплексные коэффициенты отражения входного и выходного измерительных каналов анализатора при непосредственном соединении их измерительных входов встык при поочередной подаче на них соответственно выходного и входного зондирующих сигналов. При этом к анализатору подключают сдвоенный согласованный микрополосковый калибратор и дополнительно измеряют его комплексные коэффициенты отражения при поочередной подаче на него входного и выходного зондирующих сигналов, с последующей нормировкой S-параметров четырехполюсника, измеренных в коаксиальных измерительных каналах анализатора относительно волнового сопротивления этого калибратора. Технический результат: повышение точности измерения S-параметров четырехполюсников в рассогласованных измерительных каналах анализатора, а также сокращение трудозатрат при многократной технологической коррекции опытного образца этих устройств. 2 ил.

Наверх