Сплав на основе алюминия для получения композиционных материалов

Изобретение относится к области металлургии, в частности к получению композиционных материалов, и может быть использовано для получения композиционных материалов с повышенными антифрикционными свойствами, а также материалов электротехнического назначения, щеток, вставок пантографов, токосъемников. Способ получения сплава на основе алюминия для изготовления композиционных материалов с углеграфитовым каркасом включает расплавление алюминия и введение в расплав цинка, никеля и хрома, при этом цинк, никель и хром вводят в расплав в виде предварительно подготовленной комплексной легирующей добавки в массовом отношении алюминий:комплексная легирующая добавка равном 11,7-12,7:2-3 при следующем соотношении легирующих компонентов в комплексной добавке, мас.%: цинк 87,8-95,6, никель 3,7-7,3, хром 0,7-4,9. Техническим результатом изобретения является повышение проникающей способности сплава, прочности сцепления между сплавом и армирующим каркасом и, соответственно, повышение качества композиционного материала. 1 пр., 2 табл.

 

Изобретение относится к области металлургии и получения композиционных материалов и отливок. Может быть использовано для получения пропиткой безгазостатным способом композиционных материалов (КМ), имеющих пористый углеграфитовый каркас, в качестве композиционных материалов с повышенными антифрикционными свойствами, а также материалов электротехнического назначения, щеток, вставок пантографов, токосъемников.

Известны сплавы на основе алюминия [Патент RU №2570264, МПК С22С 21/00, опубл. 10.12.2015; Патент RU №2458171, МПК С22С 21/04, опубл. 10.08.2012; Патент RU №2385358, МПК С22С 21/04, опубл. 27.03.2010], в которых подбор легирующих компонентов для обеспечения химического состава данных сплавов предполагает значительное снижение коэффициента термического расширения (КТР) сплава.

Недостатком данных сплавов является недостаточная проникающая способность сплава и, как следствие, невысокая степень заполнения пор углеграфитового каркаса сплавом.

Известен матричный сплав на основе алюминия для получения композиционных материалов (КМ) методом пропитки и изготовления деталей, работающих в агрессивных средах. Сплав имеет следующий химический состав (масс. %): кремний 11,0-13,0; никель 0,5-3,0; хром 0,5-2,0; свинец 0,1-1,5; ванадий 0,01-0,30; алюминий - остальное [Патент RU №2555737, МПК С22С 21/02, С22С 49/06, С22С 101/10, опубл. 10.07.2015]. Данный термостойкий сплав на основе алюминия предназначен для получения композитов методом безгазостатной пропитки пористых материалов. Сплав отличается тем, что имеет большое содержание кремния и обладает высокими литейными свойствами.

Технический результат достигается в способе получения сплава на основе алюминия для изготовления композиционных материалов с углеграфитовым каркасом, включающем расплавление алюминия и введение в расплав цинка, никеля и хрома, при этом цинк, никель и хром вводят в расплав в виде предварительно подготовленной комплексной легирующей добавки в массовом отношении алюминий:комплексная легирующая добавка равном 11,7-12,7:2-3 при следующем соотношении легирующих компонентов в комплексной добавке, масс. %: цинк 87,8-95,6; никель 3,7-7,3; хром 0,7-4,9.

Сущность изобретения заключается в использовании легирующих металлов в виде комплексной добавки, которая готовится предварительно из цинка, никеля и хрома в заявленных процентных соотношениях.

Ввод легирующих добавок в виде комплексной добавки обеспечивает лучшее усвоение элементов основой сплава для обеспечения заданного химического состава, и, как следствие, увеличение проникающей способности сплава и повышения качества готового КМ.

Кроме этого, комплексная легирующая добавка отвечает вопросам безопасности производства сплава (пироэффект при вводе цинка на высоких температурах).

Введение в состав сплава комплексной легирующей добавки в заявленных отношениях к алюминиевой основе значительно улучшает его проникающую способность по отношению к углеграфитовому каркасу за счет снижения поверхностного натяжения сплава алюминия, снижения его краевого угла смачивания, а также за счет повышения работы адгезии на межфазной границе и увеличения коэффициента термического расширения сплава, также позволяет осуществлять влияние на физический контакт по всей поверхности раздела фаз, то есть улучшить прочность сцепления данного сплава с углеграфитовым каркасом.

Введение в состав сплава комплексной легирующей добавки в количестве, меньшем по отношению к алюминию, чем заявлено, не оказывает значительного эффекта на "пропитывающие" свойства сплава, и, в частности, на минимальное увеличение коэффициента термического расширения, поэтому является нецелесообразным.

Введение в состав сплава комплексной легирующей добавки в количестве, большем по отношению к алюминию, чем заявлено, приводит к увеличению степени образования интерметаллидных фаз в сплаве ввиду большого количества примесей, что пагубно воздействует на его свойства. А также вынуждает использовать в большем количестве дорогостоящие легирующие элементы (никель, хром) для увеличения прочности сцепления сплава с углеграфитовым каркасом.

Введение в состав сплава алюминия комплексной легирующей добавки с массовым отношением 11,7-12,7:2-3 соответственно приводит к существенному повышению прочности матричного сплава вследствие увеличения его коррозионной стойкости и высокой стойкости к окислению.

Предлагаемый сплав обеспечивает более высокую прочность и заполняемость открытых пор углеграфита, чем известные сплавы.

Примеры конкретных составов сплава приведены в таблице 1.

ПРИМЕР приготовления сплава на основе алюминия для получения композиционных материалов (по примеру 2).

Одновременно с расплавлением 260 г алюминия А97 (ГОСТ 11069-2001) до температуры 950°С в печи в первом герметичном устройстве во втором герметичном устройстве (меньшего объема) готовят комплексную легирующую добавку.

Для этого в герметичное устройство меньшего объема, нагретое до 400°С (внутренний объем устройства рассчитан на 45 г по цинку), заливают 40 г расплавленного цинка, затем туда же добавляют 3,35 г нихромовой лигатуры Х20Н80 (ГОСТ 8803-89), с содержанием хрома 20 масс. %, никеля 80 масс. %), фракции 1×1×1 мм.

Герметичное устройство меньшего объема представляет собой емкость, выполненную из Стали 45, состоящую из стакана, крышки, пробки типа усеченный конус и клина, внутренняя поверхность которой позволяет заливать металл таким образом, чтобы он сам вытеснял воздух из устройства. Внешняя сторона крышки позволяет ее герметично закрывать (после заливки металла) без доступа воздуха. Внутренний объем устройства через литейную воронку связан с атмосферой. Воронка после заливки металла герметизируется конусной металлической пробкой из Стали 45 и расклинивается через отверстия в крышке и пробке.

После герметизации устройство устанавливается в печь при температуре 950°С на 60 мин. Через час готовая комплексная легирующая добавка, состоящая из цинка, никеля и хрома, после снижения температуры до 480°С и снятия клина и пробки переливается в первую герметичную емкость с алюминием А97 (ГОСТ 11069-2001). Далее, после герметизации, эта емкость ставится в печь при температуре 950°С на 60 мин.

ПРИМЕР приготовления композиционных материалов (КМ).

Для приготовления КМ изготавливались углеграфитовые образцы сечением 15×15 мм и длиной 30 мм, которые пропитывались безгазостатным способом полученным сплавом при температуре 800°С и давлении 15 МПа.

После пропитки из образцов изготавливали шлифы и исследовали их на цифровом микроскопе OlympusBX61 при различных увеличениях.

В качестве технологических характеристик сплава исследовались его плотность, твердость, прочность на сжатие, поверхностное натяжение, коэффициент термического расширения, удельная электрическая проводимость.

В качестве технологических характеристик КМ исследовалась прочность на сжатие и плотность.

Прочность сплава и КМ на сжатие определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм при настройке разрывной машины на нагрузку 10000 Н.

Для определения поверхностного натяжения сплавов изготавливались углеграфитовые подложки, на которые помещались навески сплава. Подложки с навесками помещались в алундовую лодочку и затем в кварцевую трубку для нагрева в печи. После по контуру капли рассчитывали поверхностное натяжение методом Дарси.

Плотность КМ определялась как процент заполнения открытых пор. Объем открытых пор определялся на образцах, предварительно пропитанных водой, с последующим определением веса и объема заполнившей образец воды.

Твердость матричного сплава определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм на прессе Бринелля.

Удельная электрическая проводимость матричных сплавов определялась на цилиндрических образцах диаметром 22 мм и высотой 5 мм вихретоковым методом на приборе «Вихрь-АМ» по ГОСТ 27333-87 после предварительной подготовки образцов по ГОСТ 193-79.

Коэффициент термического расширения сплава определяли по ГОСТ 16817-71. Металлический расплав заливался в полость формы, где фиксировалось его расширение с помощью высокочувствительного индикатора ИЧ с делением шкалы 0,01 мм.

Результаты исследований свойств сплавов и полученных КМ приведены в таблице 2.

Таким образом, сплав на основе алюминия для получения композиционных материалов, содержащий комплексную легирующую добавку из цинка, никеля и хрома в массовом отношении алюминий : комплексная легирующая добавка равном 11,7-12,7:2-3, при заявленном соотношении легирующих компонентов в комплексной добавке обладает повышенной проникающей способностью, прочностью сцепления (связи) между сплавом и армирующим каркасом и, соответственно, способствует повышению качества композиционного материала.

Способ получения сплава на основе алюминия для изготовления композиционных материалов с углеграфитовым каркасом, включающий расплавление алюминия и введение в расплав цинка, никеля и хрома, отличающийся тем, что цинк, никель и хром вводят в расплав в виде предварительно подготовленной комплексной легирующей добавки в массовом отношении алюминий:комплексная легирующая добавка равном 11,7-12,7:2-3 при следующем соотношении легирующих компонентов в комплексной добавке, мас.%:

цинк 87,8-95,6
никель 3,7-7,3
хром 0,7-4,9



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными и дискретными волокнами оксида алюминия, предназначенным для использования в качестве конструкционного материала для изготовления изделий, таких как корпуса вентилятора газотурбинных двигателей, и может быть использовано в авиационной технике.

Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования.
Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок пантографов, токосъемников, а также в различных узлах и изделиях ракетно-космического назначения.

Изобретение относится к металлургии, а именно к получению литейного композиционного материала (ЛКМ) на основе алюминиевого сплава, упрочненного короткими волокнами, и может использоваться в качестве конструкционных материалов при создании конструкций и оборудования авиационных средств.

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых изделий электротехнического назначения.
Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике.

Изобретение относится к металлургии, в частности к получению композиционных материалов с матрицей из алюминиевого сплава, армированной стальными волокнами, для изготовления элементов планера самолета, стрингерного набора, обшивки и т.д.

Изобретение относится к области металлургии литейных сплавов, в частности антифрикционных сплавов на основе алюминия, и может быть использовано для деталей, работающих в условиях трения скольжения.

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и других транспортных средств (велосипедов, самокатов, тележек), детали спортинвентаря и др.

Изобретение относится к деформируемым свариваемым сплавам на основе алюминия, предназначенным для использования в качестве противометеоритной защиты критических элементов космических аппаратов.

Изобретение относится к области металлургии, в частности к высокопрочным деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала.

Изобретение относится к области металлургии, в частности к производству высокопрочных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, в частности для изготовления деталей, используемых для автомобилестроения, летательных аппаратов, спортивного инвентаря, корпусов электронных устройств и др.

Изобретение относится к области цветной металлургии, в частности к высокопрочным сплавам на основе алюминия. Сплав на основе алюминия содержит, мас.%: медь 0,5-3,5; магний 1,5-4,5; цинк 7,0-10,0; марганец 0,005-0,9; цирконий 0,005-0,5; кобальт 0,005-0,5; церий 0,005-0,5; бериллий 0,0001-0,01; по крайней мере один элемент из группы, содержащей железо, никель 0,005-0,35 каждого, и по крайней мере один элемент из группы, содержащей скандий, титан 0,001-0,35 каждого, бор, углерод 0,0001-0,02 каждого, алюминий остальное.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 5-13, медь 1-13,5, цинк 2-10, никель 0,5-4,5, олово 0,1-0,3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, натрий 0,001-0,2, титан 0,001-0,1, ванадий 0,001-0,2, по меньшей мере один элемент, выбранный из группы кобальт 0,001-0,8, молибден 0,001-0,8, бериллий 0,001-0,1, алюминий остальное.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.

Изобретение относится к получению изделий из алюминиевых сплавов 7ххх. Способ получения продуктов из деформируемого алюминиевого сплава 7ххх, содержащего 2,0-22 мас.% цинка и по меньшей мере 1,0 мас.% меди, включает приготовление изделия из алюминиевого сплава для послезакалочной холодной обработки давлением, холодную обработку давлением изделия на более чем 50% и термическую обработку с приданием формы во время этапа термической обработки, при этом упомянутое приготовление содержит этап закалки, а холодную обработку давлением и термическую обработку осуществляют для получения нерекристаллизованной микроструктуры, имеющей менее чем 50%-ю объемную долю зерен, имеющих разброс ориентации зерен не более 3°.

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении.
Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об.

Изобретение относится к области металлургии, в частности к лигатурам, предназначенным для легирования сплавов на основе титана. Лигатура для выплавки титановых сплавов, содержит, масс.

Изобретение относится к области металлургии, в частности к получению композиционных материалов, и может быть использовано для получения композиционных материалов с повышенными антифрикционными свойствами, а также материалов электротехнического назначения, щеток, вставок пантографов, токосъемников. Способ получения сплава на основе алюминия для изготовления композиционных материалов с углеграфитовым каркасом включает расплавление алюминия и введение в расплав цинка, никеля и хрома, при этом цинк, никель и хром вводят в расплав в виде предварительно подготовленной комплексной легирующей добавки в массовом отношении алюминий:комплексная легирующая добавка равном 11,7-12,7:2-3 при следующем соотношении легирующих компонентов в комплексной добавке, мас.: цинк 87,8-95,6, никель 3,7-7,3, хром 0,7-4,9. Техническим результатом изобретения является повышение проникающей способности сплава, прочности сцепления между сплавом и армирующим каркасом и, соответственно, повышение качества композиционного материала. 1 пр., 2 табл.

Наверх