Способ получения нанокапсул витаминов в пектине



Владельцы патента RU 2654229:

Кролевец Александр Александрович (RU)

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Описан способ получения нанокапсул витаминов А, С, Е, D или Q10 в оболочке из низкоэтерифицированного или высокоэтерифицированного яблочного или цитрусового пектина. Для получения нанокапсул согласно способу по изобретению к суспензии указанного пектина в гексане с 0,01 г Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г указанного витамина при перемешивании 1000 об/мин. Затем добавляют хлороформ. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре, при этом массовое соотношение в нанокапсулах ядро:оболочка составляет 1:3. Процесс получения нанокапсул осуществляется при 25оС в течение 15 минут. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 20 пр.

 

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК А61К 047/02, А61К 009/16, опубл. 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК А61К 9/52, А61К 9/16, А61К 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2091071, МПК А61К 35/10, Российская Федерация, опубл. 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатками способа являются применение шаровой мельницы и длительность процесса.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубл. 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, Российская Федерация, опубл. 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046, МПК А61К 9/50, А61К 49/00, А61К 51/00, Российская Федерация, опубл. 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубл. 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубл. 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

В пат. WO/2010/076360 ES, МПК B01J 13/00; А61К 9/14; А61К 9/10; А61К 9/12, опубл. 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.

В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубл. 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут.

Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. 20110223314, МПК B05D 7/00 20060101, B05D 007/00, В05С 3/02 20060101, В05С 003/02; В05С 11/00, 20060101, В05С 011/00; B05D 1/18, 20060101, B05D 001/18; B05D 3/02 20060101, B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011, US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубл. 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030 US, МПК А61К 8/11; B01J 2/00; B01J 3/06; C11D 3/37; C11D 3/39; C11D 17/00, опубл. 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул витаминов в пектине, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул витаминов, отличающемся тем, что в качестве оболочки нанокапсул используются пектины, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул витаминов пектинов, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Результатом предлагаемого метода являются получение нанокапсул витаминов (витаминов А, С, D, Е и Q10) в пектинах при 25°C в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1. Получение нанокапсул витамина А в яблочном низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина А в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул витамина А в яблочном высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина А в масле при перемешивании 1000 об/мин. После этого добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул витамина А в цитрусовом низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина А в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул витамина А в цитрусовом высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина А в масле при перемешивании 1000 об/мин. После этого добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул витамина С в яблочном низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г витамина С при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 98%.

ПРИМЕР 6. Получение нанокапсул витамина С в яблочном высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г витамина С при перемешивании 1000 об/мин. После этого добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул витамина С в цитрусовом низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г витамина С при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул витамина С в цитрусовом высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г витамина С при перемешивании 1000 об/мин. После этого добавляют 3 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул витамина Е в яблочном низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Е в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 10. Получение нанокапсул витамина Е в яблочном высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Е в масле при перемешивании 12000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 11. Получение нанокапсул витамина Е в цитрусовом низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Е в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 12. Получение нанокапсул витамина Е в цитрусовом высокоэтерифицрованном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Е в масле при перемешивании 1000 об/мин. После этого добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 13. Получение нанокапсул витамина Q10 в яблочном низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Q10 в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 14. Получение нанокапсул витамина Q10 в яблочном высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Q10 в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 15. Получение нанокапсул витамина Q10 в цитрусовом низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Q10 в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 16. Получение нанокапсул витамина Q10 в цитрусовом высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина Q10 в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 17. Получение нанокапсул витамина D в яблочном низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина D в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 18. Получение нанокапсул витамина D в яблочном высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного яблочного пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина D в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

ПРИМЕР 19. Получение нанокапсул витамина D в цитрусовом низкоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии низкоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина D в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого порошка. Выход составил 100%.

ПРИМЕР 20. Получение нанокапсул витамина D в цитрусовом высокоэтерифицированном пектине, соотношение 1:3.

К 3 г суспензии высокоэтерифицированного цитрусового пектина в гексане, 0,01 г препарата Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г раствора витамина D в масле при перемешивании 1000 об/мин. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.

Получено 4,0 г белого с кремовым оттенком порошка. Выход составил 100%.

Пектины (Е440) широко используются в производстве кондитерских желейных и пастильных изделий, для стабилизации кисломолочных продуктов, при производстве варенья, а также в хлебобулочных и мучных кондитерских изделиях. Имеются данные по использованию пектинов в качестве стабилизаторов конститенции кремов, лосьонов, шампуней.

Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.

Способ получения нанокапсул витаминов А, С, Е, D или Q10, характеризующийся тем, что в качестве оболочки нанокапсул используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом к суспензии указанного пектина в гексане с 0,01 г Е472с в качестве поверхностно-активного вещества медленно прибавляют 1 г указанного витамина при перемешивании 1000 об/мин, потом добавляют хлороформ, полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре, при этом массовое соотношение в нанокапсулах ядро : оболочка составляет 1:3, процесс получения нанокапсул осуществляется при 25°С в течение 15 минут.



 

Похожие патенты:

Изобретение относится к области производства изделий из композитных материалов и может быть использовано при изготовлении проводящих электрический ток композитных изделий.

Изобретение относится к устройству для напыления просветляющего покрытия фотопреобразователя и может найти применение в электронной технике. Маска в устройстве расположена с лицевой стороны подложки.

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию.

Изобретение относится к технологии получения полупроводниковых материалов для создания автоэмиссионных электронных приборов (с «холодной эмиссией электронов) для изготовления зондов и кантилеверов сканирующих зондовых микроскопов и оперативных запоминающих устройств с высокой плотностью записи информации, поверхностно-развитых электродов электрохимических ячеек источников тока, а также для использования в технологиях изготовления кремниевых солнечных элементов нового поколения для повышения эффективности антиотражающей поверхности фотопреобразователей.

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод V2O3/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг.

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Изобретение относится к полупроводниковой и сверхпроводниковой электронике и может быть использовано при изготовлении фотонных устройств, сверхъёмких аккумуляторов и суперконденсаторов, высокочувствительных химических сенсоров и разделительных мембран.

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения.

Изобретение относится к получению поликристаллических пленок сульфида и оксида кадмия на монокристаллическом кремнии с помощью техники пиролиза аэрозоля раствора на нагретой подложке при постоянной температуре в интервале 450-500°С.

Изобретение относится к нанотехнологии. Для получения углеродных нанотрубок используют аппарат, включающий блок 3 формирования рабочей смеси 2, содержащий средство получения наночастиц вещества, содержащего катализатор, реакционную камеру 1, снабженную входом для рабочей смеси 2 и выходом 4 для отходящих газов, средство охлаждения отходящих газов, а также фильтр 5 для отделения углеродных нанотрубок 6 от отходящих газов.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул спирулина в оболочке из альгината натрия.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул АЕКола в оболочке из конжаковой камеди.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сульфата глюкозамина в оболочке из альгината натрия.

Изобретение относится к медицине, в частности к способу получения нанокапсул витаминов группы В в каррагинане. Способ получения нанокапсул характеризуется тем, что в качестве оболочки используется каррагинан, а в качестве ядра - витамины группы В при массовом соотношении ядро:оболочка 1:3 или 1:1.
Изобретение относится к медицине, в частности к способу получения нанокапсул иодида калия. Способ получения характеризуется тем, что в качестве оболочки нанокапсул используется каррагинан.

Настоящая группа изобретений относится к области медицины, в частности фармакологии, и раскрывает систему для стерильного получения наночастиц липидов и нуклеиновых кислот и способ стерильного получения наночастиц липидов и нуклеиновых кислот.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул L-аргинина в натрий карбоксиметилцеллюлозе. Способ характеризуется тем, что L-аргинин медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в метаноле в присутствии 0,01 препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают 10 мл петролейного эфира, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка составляет 1:1 или 1:3 или 5:1.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул АЕКола в оболочке из ксантановой камеди. Способ характеризуется тем, что АЕКол прибавляют в суспензию ксантановой камеди в бензоле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, после приливают 10 мл четыреххлористого углерода, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1, или 1:5.

Изобретение относится в области нанотехнологии. Описан способ получения нанокапсул кверцетина или дигидрокверцетина в оболочке из каррагинана.

Изобретение относится к области нанотехнологии, пищевой промышленности. Описан способ получения нанокапсул сухого экстракта топинамбура в оболочке из пектина.

Изобретение относится к фармацевтической промышленности и представляет собой композицию, состоящую из полигексаметиленбигуанида, очищенной воды и по меньшей мере одного полоксамера для применения в местном и/или оромукозном лечении ран.
Наверх