Способ калибровки критических сопел и устройство для калибровки критических сопел

Изобретение относится к области расходоизмерительной техники и предназначено для передачи единицы объемного расхода газа от опорного критического сопла к калибруемому с минимальным влиянием передаточной функции компаратора на конечную переданную единицу расхода. В способе калибровки критических сопел, по которому через откалиброванные эталонные сопла и калибруемое сопло пропускают газ в критическом режиме и измеряют величину расхода газа, согласно изобретению что формируют две величины расхода газа из по меньшей мере двух наборов параллельно подключенных и ранее откалиброванных эталонных сопел, большую и меньшую относительно расчетного расхода калибруемого сопла, поочередно подключают к индикатору расхода – компаратору - калибруемое сопло и каждый набор откалиброванных эталонных сопел, пропускают газ в критическом режиме и соответственно измеряют перепад давления на компараторе при подключении каждого набора откалиброванных эталонных сопел и перепад давления на компараторе при подключении калибруемого сопла, а величину расхода калибруемого сопла определяют из выражения:

где Q1, Q2 - расходы эталонных сопел (меньше и больше поверяемого), ΔР1, ΔР2 - перепады давления на компараторе при работе эталонных сопел, ΔР - перепад давления на компараторе при работе калибруемого сопла, перепад давления на компараторе измеряют на участке развитого ламинарного течения. Технический результат - повышение точности передачи единицы расхода, стабильности показаний во времени и независимости от механических сопротивлений, а также уменьшение влияния компаратора на точность результата. 2 н. и 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области расходоизмерительной техники и предназначено для передачи единицы объемного расхода газа от опорного критического сопла к калибруемому с минимальным влиянием передаточной функции компаратора на конечную переданную единицу расхода.

Известен метод определения критического расхода в сопле (патент US 6,601,460 В1, МПК G01F 1/40, опубл. 05.08.2003. «Flowmeter based on pressure drop across parallel geometry using Boundary layer flow including Reynolds numbers above the Laminar range»), в котором поток газа, проходящий через тонкие продольные пластины, вызывает местное сопротивление. Данное сопротивление регистрируется датчиком давления и преобразуется в электрический импульс, пропорциональный величине объемного расхода.

Известен метод определения критического расхода в сопле с помощью преобразователей температуры. Данные сенсоры установлены в критическом сечении и на некотором расстоянии ниже по потоку (патент US 4,753,114, МПК G01F 1/36, G01F 1/42, опубл. 28.06.1988. «Critical flow detection»).

Известен метод калибровки критических сопел путем измерения и сравнения давления на входе и выходе сопел (патент JPH08247827 (А) МПК В05В 1/00, В05В 9/01, опубл. 30.01.1996. «Convenient calibration device for critical nozzle and method thereof»).

Известен принцип работы компаратора объема газа, описанный в работе «Double piston prover usable as Flowrate comparator for various gases». XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, September, 17-22, 2006, Rio de Janeiro, Brazil.

Известна установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа (патент на полезную модель №135705, МПК G01F D 25/00, опубл. 20.12.2013), содержащая эталонные измерители расхода - критические сопла, каждое из которых снабжено запорным клапаном, насос, ресивер (форкамеру), систему контроля и управления, содержащую блок управления запорными клапанами, в систему контроля и управления дополнительно введен блок формирования набора критических сопел по заданному значению расхода поверочной среды, выполненный в виде программного модуля.

Известен способ калибровки критических сопел и устройство для его реализации, наиболее близкий к заявляемому и принятый за прототип (заявка №2001121223/28, МПК G01F 25/00, опубл. 20.06.2003), по которому через сопло пропускают газ в критическом режиме и измеряют величину расхода газа, из набора параллельно подключенных и ранее откалиброванных сопел формируют величину расхода газа, близкую по значению расчетному расходу калибруемого сопла, и, используя метод замещения, подключают поочередно к индикатору расхода калибруемое сопло и выбранный набор откалиброванных сопел, определяют величину расхода из математического выражения. Устройство для калибровки критических сопел (заявка №2001121223/28, МПК G01F 25/00, опубл. 20.06.2003), ближайшее по технической сущности к заявляемому и принятое за прототип устройства содержит измерительные приборы, источник вакуума и участок для установки калибруемого сопла, подключенный между источником вакуума и индикатором расхода, параллельно участку для установки калибруемого сопла подключен набор ранее откалиброванных сопел, выходы которых через свою запорную арматуру соединены с источником вакуума, а входы через индикатор расхода - с атмосферой. Однако известные способ и устройство не обеспечивают достаточной точности передачи единицы расхода, стабильности показаний во времени. Связь выходного сигнала реальных индикаторов расхода с величиной расхода всегда отличается от прямо пропорциональной, на которой основан способ калибровки в прототипе. По этой причине известные способ и устройство могут применяться только при очень близких расходах эталонного и поверяемого сопел, что требует иметь необычайно большой набор эталонных сопел.

Технической проблемой, на решение которой направлено заявляемое изобретение, является создание эффективной системы передачи единицы расхода от исходной эталонной установки единиц объемного и массового расхода газа к ее рабочим элементам (установкам ЭУ-2, ЭУ-3, ЭУ-4).

Технический результат, на достижение которого направлено предлагаемое изобретение заключается в повышении точности передачи единицы расхода, стабильности показаний во времени и независимости от механических сопротивлений, а также уменьшение влияния компаратора на точность результата.

Технический результат достигается тем, что в способе калибровки критических сопел, по которому через калибруемое сопло с расчетной величиной расхода пропускают газ в критическом режиме и измеряют величину расхода газа, новым является то, что формируют две величины расхода газа - меньшую и большую относительно расчетного расхода калибруемого сопла соответственно на двух параллельно подключенных участках с ранее откалиброванными эталонными соплами, поочередно подключают к индикатору расхода – компаратору - участок с калибруемым соплом и каждый участок с откалиброванными эталонными соплами, пропускают газ в критическом режиме и соответственно измеряют перепад давления на компараторе при подключении каждого участка с откалиброванными эталонными соплами и перепад давления на компараторе при подключении участка с калибруемым соплом, а величину расхода калибруемого сопла определяют из выражения:

где Q1, Q2 - расходы эталонных сопел (соответственно меньше и больше расчетного расхода калибруемого сопла); ΔP1, ΔР2 - перепады давления на компараторе при подключении эталонных сопел; ΔР - перепад давления на компараторе при подключении калибруемого сопла.

Каждый из двух параллельно подключенных участков с ранее откалиброванными эталонными соплами включает по меньшей мере одно или несколько сопел с суммарным расходом, соответственно меньшим и большим расхода калибруемого сопла.

Индикатором расхода служит перепад давления на компараторе, который измеряют на участке развитого ламинарного течения на расстоянии, определяемом из отношения: lнач/d=0,029Re, где lнач - начальный участок канала до начала развитого ламинарного течения; d - диаметр канала; Re - число Рейнольдса.

Технический результат достигается тем, что в устройстве для калибровки критических сопел, содержащем компаратор, вход которого сообщен с атмосферой, датчик давления, участок для установки калибруемого сопла со своей запорной арматурой, выход которого соединен с вакуумным насосом, а вход с компаратором, новым является то, что параллельно участку для установки калибруемого сопла между компаратором и вакуумным насосом подключены два участка, в каждом из них имеется по меньшей мере одно ранее откалиброванное эталонное сопло с расходом в каждом участке, соответственно меньшим и большим расхода калибруемого сопла, входы участков через свою запорную арматуру соединены с компаратором, а их выходы соединены с вакуумным насосом, компаратор выполнен из набора ламинарных каналов.

Набор ламинарных каналов компаратора образован плоскими параллельными пластинами, расположенными на одинаковых расстояниях между собой и общими боковыми стенками.

Датчик давления подключен к компаратору на расстоянии lнач=d×0,029Re, где lнач - начальный участок канала до начала развитого ламинарного течения; d - диаметр канала; Re - число Рейнольдса.

На чертеже представлен общий вид установки для калибровки критических сопел, где

1 - компаратор;

2 - датчик давления;

3 - кран на участке с откалиброванным эталонным соплом меньшего расхода;

4 - эталонное откалиброванное сопло с меньшим расходом;

5 - кран на участке с откалиброванным эталонным соплом большего расхода;

6 - эталонное откалиброванное сопло большего расхода;

7 - краново-сопловой блок эталонных откалиброванных сопел;

8 - кран на участке с калибруемым критическим соплом;

9 - калибруемое критическое сопло;

10 - краново-сопловой блок калибруемого критического сопла;

11 - вакуумный насос;

12 - ламинарные каналы компаратора.

Сущность способа заключается в следующем.

Предложенный способ допускает линейное изменение или параболическую зависимость Q(ΔP), что многократно расширяет диапазон допустимых отличий между расходами поверяемого и эталонных сопел. Допустимые отличия между расходами поверяемого и эталонных сопел зависят от степени нелинейности зависимости расхода с выходным сигналом компаратора. Теоретически строго прямо пропорциональной является связь перепада давления с расходом несжимаемой жидкости на участке развитого ламинарного течения в канале. Для газов из-за изменения плотности газа в зависимости от давления эта прямая пропорциональность нарушается, появляется квадратичный член в зависимости между расходом и перепадом давления, однако этот член пропорционален отношению перепада давления на участке канала к абсолютному давлению. При ΔР/Р<0,01 нелинейность зависимости невелика. Именно поэтому использование перепада давления на участке развитого ламинарного течения в ламинарных каналах в качестве индикатора расхода позволяет существенно увеличить допустимые отличия между расходами поверяемого сопла и эталонных сопел.

Устройство для калибровки критических сопел содержит компаратор 1, вход которого сообщен с атмосферой, датчик давления 2, участок для установки калибруемого сопла 9 со своей запорной арматурой - краном 8, с образованием краново-соплового блока 10, выход которого соединен с вакуумным насосом 11, а вход с компаратором 1. Параллельно участку для установки калибруемого сопла 9 между компаратором 1 и вакуумным насосом 11 подключены два участка, с ранее откалиброванными эталонными соплами соответственно 4 и 6 с расходом в каждом участке, соответственно меньшим и большим расхода калибруемого сопла 9. Входы участков с откалиброванными эталонными соплами 4 и 6 через свою запорную арматуру - краны 3 и 5 - соединены с компаратором 1, а выходы с вакуумным насосом 11. Участки с соплами 4 и 6 с кранами 3 и 5 образуют краново-сопловой блок 7. В каждом участке имеется одно или набор ранее откалиброванных эталонных сопел 4 и 6 с суммарным расходом, соответственно меньшим и большим расхода калибруемого сопла 9.

Компаратор 1 выполнен из набора ламинарных каналов 12, при этом перепад давления на компараторе является индикатором расхода. Компаратор 1 представляет собой устройство, чувствительное к передаваемой величине с известной формой передаточной функции. В силу того, что решается задача передачи единицы расхода, требования к точности выяснения формы передаточной функции самые высокие. Для компаратора 1 важна именно форма передаточной функции, а не ее реальные градуировочные значения. Поэтому требования по точности, удовлетворяющие передаче единицы расхода, целесообразно обеспечивать с помощью хорошо известного, теоретически и экспериментально обоснованного физического принципа. Набор ламинарных каналов 12 компаратора 1 образован плоскими параллельными пластинами, расположенными на одинаковых расстояниях между собой и общими боковыми стенками.

Датчик давления 2 подключен к компаратору 1 на расстоянии lнач=d×0,029Re, где lнач - начальный участок канала до начала развитого ламинарного течения; d - диаметр канала; Re - число Рейнольдса. На начальном участке течения lнач от начала трубы формируется (стабилизируется) параболический профиль скоростей. За пределами этого участка имеем стабилизированное ламинарное течение, параболический профиль скоростей остается неизменным, независимо от длины трубы при условии сохранения ее прямолинейности и постоянства сечения. Перепад давления на компараторе 1 измеряют на участке развитого ламинарного течения. Для определения длины начального участка можно пользоваться приближенной формулой Шиллера, выражающей эту длину, отнесенную к диаметру трубы, как функцию числа Re.

Способ калибровки критических сопел осуществляется следующим образом.

Поток воздуха организуется с помощью компрессорной станции, работающей на всасывание. Рабочая среда (газ) последовательно проходит через компаратор 1 и критические сопла 4, 6 и калибруемое сопло 9.

Процедура сличения с помощью компаратора 1 заключается в следующем.

На первом этапе вакуумным насосом 11 обеспечивается расход газа, последовательно проходящий через компаратор 1 и через участки с эталонными критическими соплами 4 и 6. Последовательно контролируются параметры для сохранения критического режима течения в соплах 4 и 6 и фиксируются выходные сигналы компаратора 1 датчиком давления 2. Затем создается поток газа, проходящий через компаратор 1 и калибруемое сопло 9. Снова контролируются параметры для сохранения критического режима течения и фиксируются выходные сигналы компаратора 1 датчиком давления 2. Используя известную форму передаточной функции компаратора 1, определяют коэффициент расхода неизвестного калибруемого сопла. Перепад давления на компараторе измеряют на участке развитого ламинарного течения.

Величину расхода калибруемого сопла определяют из выражения:

где Q1, Q2 - расходы эталонных сопел (меньше и больше поверяемого), ΔP1, ΔР2 - перепады давления на компараторе при работе эталонных сопел, ΔР - перепад давления на компараторе при работе калибруемого сопла.

Таким образом, использование перепада давления на участке развитого ламинарного течения в ламинарных каналах в качестве индикатора расхода позволяет существенно увеличить допустимые отличия между расходами поверяемого сопла и эталонных сопел, что приводит к повышению точности передачи единицы расхода, стабильности показаний во времени и независимости от механических сопротивлений, а также уменьшению влияния компаратора на точность результата.

1. Способ калибровки критических сопел, по которому через калибруемое сопло с расчетной величиной расхода пропускают газ в критическом режиме и измеряют величину расхода газа, отличающийся тем, что формируют две величины расхода газа - меньшую и большую относительно расчетного расхода калибруемого сопла соответственно на двух параллельно подключенных участках с ранее откалиброванными эталонными соплами, поочередно подключают к индикатору расхода – компаратору - участок с калибруемым соплом и каждый участок с откалиброванными эталонными соплами, пропускают газ в критическом режиме и, соответственно, измеряют перепад давления на компараторе при подключении каждого участка с откалиброванными эталонными соплами и перепад давления на компараторе при подключении участка с калибруемым соплом, а величину расхода калибруемого сопла определяют из выражения:

где Q1, Q2 - расходы эталонных сопел (соответственно меньше и больше расчетного расхода калибруемого сопла); ΔP1, ΔР2 - перепады давления на компараторе при подключении эталонных сопел; ΔР - перепад давления на компараторе при подключении калибруемого сопла.

2. Способ по п. 1, отличающийся тем, что каждый из двух параллельно подключенных участков с ранее откалиброванными эталонными соплами включает по меньшей мере одно или несколько сопел с суммарным расходом, соответственно меньшим и большим расхода калибруемого сопла.

3. Способ по п. 1, отличающийся тем, что индикатором расхода служит перепад давления на компараторе, который измеряют на участке развитого ламинарного течения на расстоянии, определяемом из отношения: lнач/d=0,029Re, где lнач - начальный участок канала до начала развитого ламинарного течения; d - диаметр канала; Re - число Рейнольдса.

4. Устройство для калибровки критических сопел, содержащее компаратор, вход которого сообщен с атмосферой, датчик давления, участок для установки калибруемого сопла со своей запорной арматурой, выход которого соединен с вакуумным насосом, а вход с компаратором, отличающееся тем, что параллельно участку для установки калибруемого сопла между компаратором и вакуумным насосом подключены два участка, в каждом из них имеется по меньшей мере одно ранее откалиброванное эталонное сопло с расходом в каждом участке, соответственно меньшим и большим расхода калибруемого сопла, входы участков через свою запорную арматуру соединены с компаратором, а их выходы соединены с вакуумным насосом, компаратор выполнен из набора ламинарных каналов.

5. Устройство по п. 4, отличающееся тем, что набор ламинарных каналов компаратора образован плоскими параллельными пластинами, расположенными на одинаковых расстояниях между собой и общими боковыми стенками.

6. Устройство по п. 4, или 5, отличающееся тем, что датчик давления на компараторе подключен на расстоянии lнач=d×0,029Re, где lнач - начальный участок канала до начала развитого ламинарного течения; d - диаметр канала; Re - число Рейнольдса.



 

Похожие патенты:

Группа изобретений относится к акустическим методам измерения и контроля и может быть использована для определения уровня жидкости в скважинах, колодцах и резервуарах.

Изобретение относится к измерительной технике и предназначено для измерения уровней границ раздела диэлектрических сред в различных отраслях промышленности - нефтеперерабатывающей, газовой, химической и др.

Представлена система регулирования уровня жидкости в технологической установке. Система регулирования уровня жидкости содержит: подвижный узел, содержащий стержень, при этом стержень подвижного узла включает в себя ближний конец и дальний конец; поплавок, прикрепленный к дальнему концу стержня; приводной механизм, функционально связанный с подвижным узлом; процессор, связанный с приводным механизмом и выполненный с возможностью перемещения поплавка с помощью подвижного узла; датчик, содержащий вход и выход, причем вход датчика функционально связан с подвижным узлом для приема входного сигнала, представляющего характеристику поплавка или рабочей среды, а выход датчика функционально связан с процессором для создания выходного сигнала, связанного с входным сигналом; запоминающее устройство, связанное с процессором; приводящий в действие модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, приводит в действие приводной механизм; устройство вывода данных, соединенное с процессором, и демонстрирующий модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, демонстрирует выходной сигнал датчика на устройстве вывода данных.

Изобретение относится к области измерительной техники, а именно к устройствам, позволяющим провести измерения объемного расхода не только газа, но и газовых смесей.

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к измерительной технике и может служить метрологическим обеспечением для счетчиков газа, а также использоваться в специальных технологических процессах.

Изобретение относится к транспортировке газа по магистральным газопроводам, снабженным компрессорными станциями, а именно к устройству и способу для поверки и калибровки измерительных приборов, контролирующих расход газа, транспортируемого по магистральным газопроводам.

Изобретение относится к технологическим процессам. Способ мониторинга устройства управления процессом, реализуемый в системе мониторинга устройства управления процессом, включает измерение параметров рабочих состояний устройства управления процессом.

Мерник // 2631027
Изобретение относится к средствам измерения объема жидкостей, и может быть использовано для поверки топливораздаточных колонок (ТРК). Мерник содержит резервуар с фланцем, горловину с фланцем, пеногаситель с фланцем и патрубком для отвода газа из полости пеногасителя в атмосферу, опорную раму с тремя установочными винтами, первый кран для слива рабочей жидкости из резервуара, емкость для сбора розлива рабочей жидкости, уровень, измерительную емкость для измерения плотности и температуры рабочей жидкости, второй кран для заполнения измерительной емкости рабочей жидкости, первую металлическую трубку, соединяющую второй кран с тройником, третий сливной кран со штуцером, ручки на резервуаре, вторую металлическую трубку с просветом и четырьмя шкалами вместимости, внутри которой установлена стеклянная трубка напротив просвета, рамку со шкалами погрешности топливораздаточной колонки, направляющую до дна резервуара с участками перфорации, посредством которых происходит дополнительное растекание рабочей жидкости в горловину мерника и полость пеногасителя при снижении напора на последнем литре отпуска жидкости потребителю.

Изобретение относится к способу поверки точности измерений, обеспечиваемой системой измерения уровня. Способ включает получение результата первого измерения, определяющего время прохождения первого отраженного электромагнитного сигнала от измерительного блока до референтного отражателя и обратно, до измерительного блока; определение результата измерения для поверки измерительного блока по сигналу отклика, формируемому поверочным устройством; получение результата второго измерения, определяющего время прохождения второго отраженного электромагнитного сигнала от измерительного блока до референтного отражателя и обратно, до измерительного блока, и определение результата поверки на основе результатов первого измерения, второго измерения и измерения для поверки измерительного блока.

Изобретение относится к области расходоизмерительной техники и предназначено для передачи единицы объемного расхода газа от опорного критического сопла к калибруемому с минимальным влиянием передаточной функции компаратора на конечную переданную единицу расхода. В способе калибровки критических сопел, по которому через откалиброванные эталонные сопла и калибруемое сопло пропускают газ в критическом режиме и измеряют величину расхода газа, согласно изобретению что формируют две величины расхода газа из по меньшей мере двух наборов параллельно подключенных и ранее откалиброванных эталонных сопел, большую и меньшую относительно расчетного расхода калибруемого сопла, поочередно подключают к индикатору расхода – компаратору - калибруемое сопло и каждый набор откалиброванных эталонных сопел, пропускают газ в критическом режиме и соответственно измеряют перепад давления на компараторе при подключении каждого набора откалиброванных эталонных сопел и перепад давления на компараторе при подключении калибруемого сопла, а величину расхода калибруемого сопла определяют из выражения: где Q1, Q2 - расходы эталонных сопел, ΔР1, ΔР2 - перепады давления на компараторе при работе эталонных сопел, ΔР - перепад давления на компараторе при работе калибруемого сопла, перепад давления на компараторе измеряют на участке развитого ламинарного течения. Технический результат - повышение точности передачи единицы расхода, стабильности показаний во времени и независимости от механических сопротивлений, а также уменьшение влияния компаратора на точность результата. 2 н. и 4 з.п. ф-лы, 1 ил.

Наверх