Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженным сопротивлением затвора. Технический результат: снижение сопротивления затвора, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных. В способе изготовления полупроводникового прибора после формирования подзатворного диэлектрика поверх этого слоя осаждают слой окиси олова SnO2 разложением SnCl4 в присутствии кислорода, с использованием газа носителя - гелия, при расходе кислорода 0,2 л/мин, гелия - 0,8 л/мин, при температуре подложки 400-450°С и скорости осаждения окиси олова 20 нм/мин, толщиной 70 нм, с последующим отжигом при температуре 300°С в течение 25 минут. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженным сопротивлением затвора.

Известен способ изготовления полупроводникового прибора [Пат. №5302846, США, МКИ HO1L 29/46] с пониженным сопротивлением затвора, путем формирования структуры полевого транзистора в диффузионном кармане, ограниченном участками полевого окисла. Электрод затвора с боковой пристеночной изоляцией заглублен внутрь кармана, области стока/истока располагаются вблизи поверхности кармана, при этом канал вытянут вдоль одной из боковых поверхностей электрода затвора. В таких полупроводниковых структурах из-за нетехнологичности процесса создания диффузионного кармана образуется большое количество дефектов, которые ухудшают параметры приборов.

Известен способ изготовления полупроводникового прибора [Пат. №5296386 США, МКИ HOIL 21/265] с пониженным сопротивлением областей стока и истока путем создания промежуточного контактного слоя кремния, обогащенного германием. Этот слой формируют имплантацией германия или эпитаксиальным выращиванием твердого раствора кремний-германий.

Недостатками способа являются: высокие значения сопротивления затвора; повышенные значения токов утечек; низкая технологичность.

Задача, решаемая изобретением: снижение сопротивления затвора, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается путем формирования поверх слоя подзатворного диэлектрика SiO2 окиси олова SnO2 толщиной 70 нм со скоростью осаждения окиси олова 20 нм/мин, при температуре подложки 400-450°С, расходе кислорода 0,2 л/мин, гелия - 0,8 л/мин.

Технология способа состоит в следующем: после формирования подзатворного диэлектрика SiO2, поверх этого слоя осаждают окись олова SnO2 разложением SnCl4 в присутствии кислорода, с использованием газа носителя - гелия, при расходе кислорода 0,2 л/мин, гелия - 0,8 л/мин, при температуре подложки 400-450°С и скорости осаждения окиси олова 20 нм/мин, толщиной 70 нм, с последующим отжигом при температуре 300°С в течение 25 минут. Затем формировали n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы приборы. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных полупроводниковых приборов, на партии пластин сформированных в оптимальном режиме увеличился на 19,6%.

Технический результат: снижение сопротивления затвора, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводникового прибора путем формирования поверх слоя подзатворного диэлектрика SiO2 окиси олова SnO2 толщиной 70 нм со скоростью осаждения окиси олова 20 нм/мин, при температуре подложки 400-450°С, расходе кислорода 0,2 л/мин, гелия - 0,8 л/мин, позволяет повысить процент выхода годных приборов и улучшить их надежность.

Способ изготовления полупроводникового прибора, включающий подложку, процессы формирования областей стока, истока, затвора и подзатворного диэлектрика, отличающийся тем, что после формирования подзатворного диэлектрика, поверх этого слоя осаждают окись олова SnO2 разложением SnCl4 в присутствии кислорода, с использованием газа носителя - гелия, при расходе кислорода 0,2 л/мин, гелия - 0,8 л/мин, при температуре подложки 400-450°C, со скоростью - 20 нм/мин, толщиной 70 нм, с последующим отжигом при температуре 300°C в течение 25 мин.



 

Похожие патенты:

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку Al2O3 наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного оксида полевого транзистора.

Настоящее изобретение касается способа изготовления полупроводникового ламината, включающего в себя первый и второй слои оксида металла, а также слой диэлектрика, причем первый слой оксида металла располагается между вторым слоем оксида металла и слоем диэлектрика и имеет толщину равную или менее 20 нм.

Использование: для формирования стабильного и кристаллического оксидного слоя на подложке. Сущность изобретения заключается в том, что очищают поверхность подложки из In-содержащего III-As, III-Sb или III-P от аморфных естественных оксидов, нагревают очищенную подложку из In-содержащего III-As до температуры примерно 340-400°С, очищенную подложку из In-содержащего III-Sb нагревают до температуры примерно 340-450°С, или очищенную подложку из In-содержащего III-P нагревают до температуры примерно 450-500°С и окисляют подложку введением газообразного кислорода к поверхности подложки.

Изобретение относится к микроэлектронике. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 400-750°С, введение окислителя закиси азота и моносилана и поддержание давления в реакторе в диапазоне 0,3-20 мм рт.

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АIIIBV, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и длинноволновых лазерах, а также в солнечных элементах.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкого подзатворного слоя диоксида кремния с высокой диэлектрической прочностью.

Изобретение относится к способу образования кремнистой пленки. Согласно данному способу, кремнистая пленка, имеющая гидрофильную поверхность, может быть образована из полисилазанового соединения при низкой температуре.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности кристаллов p-n переходов от различных внешних воздействий.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n- переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженным сопротивлением затвора. Технический результат: снижение сопротивления затвора, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных. В способе изготовления полупроводникового прибора после формирования подзатворного диэлектрика поверх этого слоя осаждают слой окиси олова SnO2 разложением SnCl4 в присутствии кислорода, с использованием газа носителя - гелия, при расходе кислорода 0,2 лмин, гелия - 0,8 лмин, при температуре подложки 400-450°С и скорости осаждения окиси олова 20 нммин, толщиной 70 нм, с последующим отжигом при температуре 300°С в течение 25 минут. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии.

Наверх