Способ прессиометрических испытаний горных пород

Изобретение относится к способу исследования скважин и может быть использовано для определения физико-механических свойств горных пород в их естественном залегании. Технический результат заключаются в повышении информативности и достоверности прессиометрических исследований необсаженных скважин с получением дополнительной информации о физико-механических свойствах горных пород в их естественном залегании. Способ включает нагружение стенок скважины ступенями возрастающего давления путем подачи заданных объемов флюида в прессиометрический зонд. Измеряют изменившееся давление и перемещения стенок скважины. При этом нагружение стенок скважины проводят в интервале, содержащем закрытую трещину гидроразрыва. Раскрывают эту трещину за счет повышения давления нагружения и используют измеренное давление раскрытия трещины гидроразрыва в расчетах деформационных свойств горных пород. 9 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам исследования скважин и может быть использовано для определения физико-механических свойств горных пород в их естественном залегании. Достоверное определение свойств горных пород позволяет эффективно и безопасно разрабатывать месторождения полезных ископаемых, вести наземное и подземное строительство в сложных горно-технологических условиях.

Известен способ прессиометрических испытаний грунтов, включающий нагружение стенок скважины радиальным давлением, измерение образующихся при этом перемещений оболочки эластичной камеры зонда и определение модуля сдвига (см. Трофименков Ю.Г., Воробков Л.Н. Полевые методы исследования строительных свойств грунтов. - М.: Стройиздат, 1981 - с. 152.). Схема интерпретации полученных данных и определение упругих модулей основывается на решении задачи Ламэ для толстостенной бесконечно длинной трубы под действием внутреннего давления. При этом полагают, что внутренний диаметр трубы равен диаметру скважины, а внешний диаметр трубы соответствует зоне влияния скважинного зонда на массив горных пород. Это решение не учитывает возможную неоднородность грунта, его уплотнение и деформацию порового пространства при приложении нагрузки на стенки скважины.

Также известна модификация данного способа с использованием устройств с секторным приложением нагрузки (см. ГОСТ 20276-2012, Приложение А), включающая нагрузку стенок скважины посредством раздвижения двух стальных пуансонов-штампов, располагаемых на диаметрально противоположных сторонах устройства и определения деформационных свойств по результатам последующей разгрузки.

К недостаткам данного способа относится невозможность прямых замеров нагрузки, передаваемой непосредственно на стенки скважины каждым сектором прессиометра, а также сложность технических решений, с помощью которых можно реализовать замеры линейных перемещений стенок скважины под действием этой нагрузки.

К общим проблемам приведенных прессиометрических методов относится то, что для большинства практических задач необходимо знать не модуль сдвига, определяемый по данному методу, а модуль Юнга, для вычисления которого при интерпретации результатов прессиометрических испытаний используется коэффициент Пуассона вмещающих пород. Чаще всего значение коэффициента Пуассона берется из табличных данных, что уменьшает достоверность рассматриваемых способов и может привести к неверным технологическим решениям. Другим общим недостатком является принимаемое в приведенных способах приближение, согласно которому при нагрузке изучаемого интервала контур скважины деформируется равномерно и описывается окружностью с определенным радиусом. Такая модель нагружения не учитывает возможные деформации стенок скважины в неравномерном поле напряжений, в результате которых ее контур принимает вид эллипса.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является известный способ прессиометрических испытаний горных пород и скальных грунтов по патенту SU 1785548 (МПК E02D 1/00, опубл. 30.12.1991), включающий нагрузку стенок скважины ступенями возрастающего давления с различным временем выдержки для различных типов вмещающих пород, определение приведенного времени и построение зависимости относительного перемещения породы в стенке скважины от приведенного времени. К недостаткам известного способа по патенту SU 1785548 относится использование в расчетных формулах параметров, для вычисления которых необходимо проводить дополнительные исследования образцов в лабораторных условиях, что снижает производительность метода и повышает стоимость работ.

Технические задачи, решаемые в предлагаемом изобретении, заключаются в расширении возможностей известных способов прессиометрических исследований необсаженных скважин, в получении дополнительной информации о физико-механических свойствах горных пород в их естественном залегании.

Поставленные задачи решаются тем, что в способе прессиометрических испытаний горных пород, включающем нагружение стенок скважины ступенями возрастающего давления путем подачи заданных объемов флюида в прессиометрический зонд, измерение изменившегося давления и перемещений стенок скважины в момент прекращения подачи флюида, расчет параметров горных пород по измеренным данным, согласно техническому решению, нагружение стенок скважины проводят в интервале, содержащем закрытую трещину гидроразрыва, раскрывают эту трещину за счет повышения давления нагружения, и используют измеренное давление раскрытия трещины гидроразрыва в расчетах деформационных свойств горных пород.

Такая совокупность существенных признаков позволяет повысить информативность и достоверность прессиометрических способов испытаний горных пород, дает возможность получить дополнительные данные об околоскважинной области в массиве, затронутой развитием трещины гидроразрыва. Наличие на контуре скважины раскрываемой трещины гидроразрыва ведет к изменению характера регистрируемой в ходе эксперимента зависимости перемещений стенок скважины от прилагаемой нагрузки, что обеспечивает получение дополнительной информации о вмещающих горных породах. На прессиометрической диаграмме начало раскрытия трещины соответствует точке перехода линейного участка деформирования скважины со сплошным контуром в нелинейный участок неполного раскрытия существующей трещины гидроразрыва.

Трещина гидроразрыва может быть направлена вдоль оси скважины, что позволяет проводить ее раскрытие при меньших давлениях в прессиометрическом зонде, или поперек оси скважины, а стенки скважины дополнительно нагружают вдоль оси скважины возрастающей касательной нагрузкой и измеряют эту нагрузку, что позволяет определять действующее вдоль оси скважины горное давление и использовать его для расчетов деформационных свойств горных пород.

Для трещины гидроразрыва может быть известно давление запирания, измеренное при выполнении гидроразрыва, и оно может быть использовано в расчетах деформационных свойств горных пород, что позволяет расширить возможности способа прессиометрических испытаний за счет дополнительного определения минимального действующего напряжения σmin.

Расчеты деформационных свойств горных пород могут выполняться по данным, измеренным при раскрытой или не полностью раскрытой трещине гидроразрыва, или когда нагружение стенок скважины проводится в интервале, содержащем трещину направленного гидроразрыва известной ориентации, или в двух близко расположенных интервалах, содержащих трещины направленного гидроразрыва с отличными друг от друга известными ориентациями, что приводит к получению дополнительной информации об околоскважинной области горных пород, затронутой развитием трещины гидроразрыва и повышает достоверность и возможности метода.

Для расчетов деформационных свойств горных пород можно использовать две области прессиометрической кривой ΔR(P), одна из которых соответствует нагружению стенок скважины до давления раскрытия трещины гидроразрыва, а другая выше него, что расширяет возможности прессиометрического способа испытаний и повышает его эффективность:

где ΔR(P) - прессиометрическая кривая, описывающая изменение радиуса скважины ΔR при нагрузке Р;

C1(E,ν) и C2(E,ν) - функции, зависящие от модуля Юнга Е и коэффициента Пуассона ν;

A(R0,P0minmax) - функция, зависящая от начального значения радиуса скважины R0 при начальном давлении Р0, минимального σmin и максимального σmax сжимающих напряжений в горных породах;

B(R0,P0minmax,Pr) - функция, зависящая от переменных R0, Р0, σmin и σmax, а также давления раскрытия трещины гидроразрыва Pr.

Предлагаемый способ поясняется на фиг. 1. Для проведения исследований бурят скважину 1, в которую с помощью колонны труб 5, или иным способом, доставляют прессиометрический зонд 4 на заданное расстояние от устья скважины. Прессиометрический зонд имеет одну или несколько эластичных камер, и может быть оборудован датчиками измерения перемещений оболочки зонда. Общая длина камер зонда должна быть не менее четырех их диаметров, а диаметр скважины не должен превышать диаметра зонда более чем на 10 мм.

В данной скважине в заданном интервале измерений заранее с помощью известных способов и технических решений создается трещина гидроразрыва 3, которая может быть направлена вдоль или поперек оси скважины, и давление запирания которой может быть известно по результатам выполнения гидроразрыва и использовано для расчета деформационных свойств горных пород. Трещина может быть создана посредством направленного гидроразрыва и иметь известную ориентацию, либо таких трещин может быть две в близко расположенных интервалах, причем их ориентация будет различна.

Затем по трубам 5 в прессиометрический зонд подают давление до момента соприкосновения оболочки зонда со стенками скважины и определяют начальный радиус скважины R0, относительно которого в дальнейшем измеряют деформацию стенок скважины. Далее приступают к нагружению стенок скважины ступенями давления, при этом измерение давления в камере зонда необходимо проводить с погрешностью не более 5% ступени, а значение давления на каждой ступени и время действия этого давления выбирают исходя из типа горных пород. В процессе нагрузки происходит раскрытие существующей трещины гидроразрыва 3 с формированием области 2, в которой берега трещины не соприкасаются друг с другом. По данным испытаний строят график зависимости перемещения стенок скважины от давления в прессиометрическом зонде.

На графике проводят осредняющую прямую методом наименьших квадратов или графическим методом. Первой точкой, включаемой в осреднение, является точка, соответствующая моменту полного обжатия неровностей стенок скважины, которая является началом линейного участка графика. За конечную точку, ограничивающую линейный участок графика, принимают точку, соответствующую моменту раскрытия трещины гидроразрыва при давлении Pr. Дальнейшее повышение давления в зонде приводит к получению данных при раскрытой трещине гидроразрыва, либо когда трещина гидроразрыва раскрыта не на всю длину.

Для расчетов деформационных свойств горных пород используют две области прессиометрической кривой ΔR(P), одна из которых соответствует нагружению стенок скважины до давления раскрытия трещины гидроразрыва, а другая выше него

где ΔR(P) - прессиометрическая кривая, описывающая изменение радиуса скважины ΔR при нагрузке Р;

C1(E,ν) и C2(E,ν) - функции, зависящие от модуля Юнга Е и коэффициента Пуассона ν;

A(R0,P0minmax) - функция, зависящая от начального значения радиуса скважины R0 при начальном давлении Р0, минимального σmin и максимального σmax сжимающих напряжений в горных породах;

B(R0,P0minmax,Pr) - функция, зависящая от переменных R0, Р0, σmin и σmax, а также давления раскрытия трещины гидроразрыва Pr.

Совместное решение данных уравнений позволяет определить модуль Юнга Е и коэффициент Пуассона ν горных пород в месте их залегания.

Таким образом, дополняя обычные исследования скважины со сплошным контуром исследованиями этой же скважины с раскрываемой трещиной можно расширить возможности существующих методов прессиометрических испытаний, повысить эффективность и надежность определения физико-механических свойств горных пород.

1. Способ прессиометрических испытаний горных пород, включающий нагружение стенок скважины ступенями возрастающего давления путем подачи заданных объемов флюида в прессиометрический зонд, измерение изменившегося давления и перемещений стенок скважины в момент прекращения подачи флюида, расчет параметров горных пород по измеренным данным, отличающийся тем, что нагружение стенок скважины проводят в интервале, содержащем закрытую трещину гидроразрыва, раскрывают эту трещину за счет повышения давления нагружения и используют измеренное давление раскрытия трещины гидроразрыва в расчетах деформационных свойств горных пород.

2. Способ по п. 1, отличающийся тем, что трещина гидроразрыва направлена вдоль оси скважины.

3. Способ по п. 1, отличающийся тем, что трещина гидроразрыва направлена поперек оси скважины, а стенки скважины дополнительно нагружают вдоль оси скважины возрастающей касательной нагрузкой и измеряют эту нагрузку.

4. Способ по п. 1, отличающийся тем, для трещины гидроразрыва известно давление запирания, измеренное при выполнении гидроразрыва.

5. Способ по п. 4, отличающийся тем, давление запирания трещины гидроразрыва используют в расчетах деформационных свойств горных пород.

6. Способ по п. 1, отличающийся тем, что расчеты деформационных свойств горных пород выполняют по данным, измеренным при раскрытой трещине гидроразрыва.

7. Способ по п. 1, отличающийся тем, что трещину гидроразрыва раскрывают не на всю длину.

8. Способ по п. 1, отличающийся тем, что нагружение стенок скважины проводят в интервале, содержащем трещину направленного гидроразрыва известной ориентации.

9. Способ по п. 8, отличающийся тем, что нагружение стенок скважины проводят в двух близко расположенных интервалах, содержащих трещины направленного гидроразрыва с отличными друг от друга известными ориентациями.

10. Способ по п. 1, отличающийся тем, что для расчетов деформационных свойств горных пород используют две области прессиометрической кривой, одна из которых соответствует нагружению стенок скважины до давления раскрытия трещины гидроразрыва, а другая выше него

где – прессиометрическая кривая, описывающая изменение радиуса скважины при нагрузке ;

и – функции, зависящие от модуля Юнга и коэффициента Пуассона ;

– функция, зависящая от начального значения радиуса скважины при начальном давлении , минимального и максимального сжимающих напряжений в горных породах;

– функция, зависящая от переменных , , и , а также давления раскрытия трещины гидроразрыва .



 

Похожие патенты:

Изобретение относится к горному делу - к приборам горной геофизики, используется для определения напряжений в породном массиве путем нагнетания жидкости под давлением в герметизированный участок скважины до разрушения ее стенок.

Изобретение относится к исследованию механических свойств горных пород, а именно к устройству для определения энергоемкости разрушения горных пород. Технический результат заключается в обеспечении равномерного нагружения испытуемой горной породы, а также упрощении конструкции устройства без ухудшения его характеристик.

Изобретение относится к горному делу и может быть использовано для оценки напряженного состояния горных пород в породном массиве. Технический результат заключается в повышении эффективности способа оценки напряженного состояния горных пород за счет увеличения локального напряжения в горной породе до предела ее прочности и оценки значений фактически действующих в ней напряжений.

Изобретение относится к ледоведению и ледотехнике и может быть использовано в ледовых исследованиях, в частности в районах добычи углеводородов на шельфе замерзающих морей.

Изобретения относятся к исследованию материалов путем определения их физических свойств и могут быть использованы для статического и динамического сжатия образцов горных пород и определения совокупности физических величин, характеризующих начальную стадию процесса их разрушения, например спектра упругих колебаний от образования микротрещин.

Изобретение относится к ледоведению и ледотехнике и может быть использовано в ледовых исследованиях, в частности в районах добычи углеводородов на шельфе замерзающих морей.

Изобретение относится к устройствам для теплового бурения скважин во льду и может быть использовано для исследования внутреннего строения ледников и нагромождений морского льда - торосов и стамух.

Изобретение относится к горному делу и может быть использовано для прогноза устойчивости и деформируемости массивов раздробленных скальных пород. Технический результат заключается в повышении эффективности и достоверности определения коэффициентов Пуассона и поперечной деформации фрагментов массива раздробленных скальных пород, а также сжимаемости пород в массиве.
Изобретение относится к ледоведению и ледотехнике и может быть использовано в ледовых исследованиях, в частности в районах добычи углеводородов на шельфе замерзающих морей.

Изобретение относится к горнодобывающей промышленности и может быть использовано при контроле состояния пород кровли горных выработок. Технический результат заключается в упрощении измерений и конструкции реперной станции и возможности повторного ее использования.

Изобретение относится к области строительства, а именно к способам проведения геомеханических изысканий для определения механических свойств грунтов. Способ определения параметров прочности грунта методом вращательного среза включает задавливание в забой скважины лопастной крыльчатки, приложение к ней возрастающего момента, фиксацию максимального крутящего момента, приводящего к повороту крыльчатки за счет среза грунта по образовавшейся цилиндрической поверхности, и определение по величине крутящего момента параметра прочности грунта.

Изобретение относится к способам контроля целостности железобетонных гидротехнических резервуаров с помощью волоконно-оптической контрольно-измерительной аппаратуры и предназначено для определения местоположения повреждений в днище бассейнов суточного регулирования и контроля протечек через них.

Изобретение относится к строительству мелкозаглубленных фундаментов на естественном основании, малозаглубленных ростверков свайных фундаментов и подземных сооружений нормального уровня ответственности на набухающих грунтовых основаниях.

Изобретение относится к области инженерно-геологических изысканий для строительства зданий и сооружений на многолетнемерзлых грунтах, основания которых используются для строительства зданий в оттаянном или оттаивающем состоянии.

Изобретение относится к области инженерных изысканий. В способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Iр, при степени влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания, образец грунта помещают в цилиндрическую камеру диаметром не менее 60 мм и высотой не менее 45 мм и размещают соосно вершине конуса индентора, а погружение конусного индентора производят с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм и с регистрацией величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н, при этом в полученном массиве значений сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора из заданного соотношения, а определение влажности грунта на границе текучести и на границе раскатывания производят на основании заданных расчетных зависимостей.

Изобретение относится к области строительства и предназначено для определения количества выработок, осадок и кренов зданий при проведении инженерно-геологических изысканий.

Изобретение относится к исследованию деформационных и прочностных свойств грунтов при инженерно-геологических изысканиях в строительстве. Способ включает деформирование образца грунта природного или нарушенного сложения в условиях трехосного осесимметричного гидростатического и последующего девиаторного нагружения, дающих возможность ограниченного бокового расширения образца грунта, близкого к реальным условиям, затем после установления условной стабилизации при статическом режиме достижением скорости деформирования образца, соответствующей условной стабилизации деформации образца на данной ступени деформирования, переходят поочередно на следующие ступени испытания, а по окончании испытаний, по конечным результатам, полученным на каждой из ступеней испытания, строят график зависимости относительной осевой деформации от осевых напряжений и определяют искомые характеристики грунта, причем после стабилизации деформаций гидростатического нагружения выполняют контролируемое девиаторное нагружение, первая часть которого - дозированное кинематическое нагружение с управляемой скоростью деформации и ограничением по приращению осевых напряжений, а вторая часть - стабилизация напряженно-деформированного состояния образца в режиме ползучести - релаксации напряжений по условной стабилизации модуля общей деформации, многократно повторяя нагружения и стабилизацию до достижения предельного напряженного состояния, а далее продолжают (при необходимости) только кинематическое нагружение до величины предельной относительной осевой деформации.

Изобретение относится к области «Физики материального контактного взаимодействия», конкретно к способу определения несущей способности и устойчивости связной среды, предельно нагруженной давлением перед разрушением.

Изобретение относится к строительству и может быть использовано при исследовании деформационных свойств несвязного дисперсного грунта при устройстве оснований зданий и сооружений из несвязного дисперсного грунта с требуемыми деформационными свойствами.

Изобретение относится к инженерным изысканиям в строительстве, а именно применяется при определении прочностных характеристик грунтов, требуемых для проектирования фундаментов сооружений.
Наверх