Оптический рефлектометр



Оптический рефлектометр
Оптический рефлектометр
Оптический рефлектометр
H04B10/03 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2655046:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ") (RU)

Устройство оптический рефлектометр относится к области измерительной техники для измерения и контроля параметров оптических волокон (оптическим рефлектометрам) и может быть использовано при прокладке и эксплуатации волоконно-оптических линий связи (ВОЛС), определения типа и местоположения неоднородностей и повреждений в ВОЛС. Устройство состоит из импульсного генератора, к которому подключен передающий лазерный модуль, оптоволоконного разветвителя, один из выходов которого соединен с одним из входов/выходов оптоволоконного циркулятора, второй выход соединен с одним из входов оптоволоконного объединителя. Выход объединителя соединен с фотоприемным устройством, выход которого соединен с измерителем временных интервалов, информационный выход которого соединен с персональным компьютером. Второй вход объединителя через оптическую линию задержки соединен с выходом циркулятора, второй вход выход которого заканчивается разъемом для подключения ВОЛС. Технический результат - повышение точности локализации неоднородностей в ВОЛС, повышение разрешающей способности устройства, устранение «мертвой» зоны за счет применения прямой привязки времени излучения зондирующих импульсов ко времени прихода обратных импульсов в одном фотоприемном тракте, использования калиброванной оптической линии задержки. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники для измерения и контроля параметров оптических волокон (оптическим рефлектометрам) и может быть использовано при прокладке и эксплуатации волоконно-оптических линий связи (ВОЛС), определения типа и местоположения неоднородностей и повреждений в ВОЛС.

Известно устройство, представляющее собой оптический рефлектометр (Листвин А.В., Листвин В.Н. Рефлектометрия оптических волокон. - М.: ЛЕСАРарт, 2005). Устройство содержит оптический модуль и базовый модуль. Оптический модуль состоит из импульсного генератора, лазерного диода, оптического ответвителя, фотоприемника, усилителя, оптического соединителя, усилителя фототока, аналого-цифрового преобразователя. Базовый модуль состоит из микропроцессора и дисплея. Устройство вырабатывает оптический зондирующий импульс, направляемый в волоконно-оптическую линию связи, и анализирует излучение обратного рассеяния на выходе ответвителя. Устройство позволяет измерять затухание оптического сигнала вдоль волоконно-оптического тракта и расстояние до мест неоднородностей.

Недостатками устройства являются наличие «мертвой» зоны, т.е. области волокна вблизи рефлектометра, где неоднородности не выявляются, а также невысокая точность измерения расстояний при увеличении длительности зондирующих оптических импульсов и невысокий динамический диапазон измерений при уменьшении их длительности. При уменьшении длительности зондирующего импульса увеличивается точность измерения расстояния, но при этом уменьшается мощность обратного релеевского рассеяния.

Достигаемым техническим результатом при использовании заявленного устройства является устранение «мертвой» зоны и повышение точности определения локализации оптических неоднородностей, возможность контроля разрешающей способности рефлектометра перед каждым сеансом измерений.

Данный технический результат достигается за счет того, что оптический рефлектометр содержит импульсный генератор, к которому подключен передающий лазерный модуль, оптоволоконный разветвитель, один из выходов которого соединен с одним из входов/выходов оптоволоконного циркулятора, второй выход соединен с одним из входов оптоволоконного объединителя. Выход объединителя соединен с фотоприемным устройством, выход которого соединен с измерителем временных интервалов, информационный выход которого соединен с персональным компьютером. Второй вход объединителя через оптическую линию задержки соединен с выходом циркулятора, второй вход выход которого заканчивается разъемом для подключения ВОЛС.

Особенностью и преимуществом указанного устройства является то, что использование оптической линии задержки устраняет «мертвую» зону рефлектометра, использование объединителя перед фотоприемным устройством позволяет фиксировать время излучения зондирующего импульса и приема обратного в одном фотоприемном тракте и одним измерителем временных интервалов, что повышает точность локализации неоднородностей в ВОЛС.

Изобретение поясняется фиг. 1, где показана схема устройства, которое содержит импульсный генератор 1 и подключенный к нему передающий лазерный модуль 2, к которому подключен вход оптоволоконного разветвителя 3. Один из выходов разветвителя 3 подключен к одному из входов оптоволоконного объединителя 4, выход которого соединен со входом фотоприемного устройства 5. Выход фотоприемного устройства 5 соединен с измерителем временных интервалов 6, информационный канал которого соединен с компьютером 7. Второй выход разветвителя 3 соединен с входом/выходом оптоволоконного циркулятора 8, другой вход/выход которого соединен с оптическим разъемом 9, к которому подключается ВОЛС. Выход циркулятора 8 через оптическую линию задержки 10 подключен ко второму входу объединителя 4.

Устройство в соответствии с фиг. 1 работает следующим образом.

Электрический импульс с импульсного генератора 1 в произвольный момент времени поступает на передающий лазерный модуль 2, который формирует оптический импульс, поступающий на вход оптоволоконного разветвителя 3. Некоторая часть мощности оптического импульса с одного из выходов разветвителя 3 через оптоволоконный объединитель 4 поступает в фотоприемное устройство 5, электрический импульс с которого поступает в измеритель временных интервалов 6, где фиксируется время прихода этого импульса t1. Информация о значении t1 поступает в компьютер 7. Основная часть мощности оптического импульса с другого выхода разветвителя 3 поступает в циркулятор 8 и затем через разъем 9 - в исследуемую ВОЛС. Оптические импульсы обратного рассеяния от каждой i-й неоднородности в ВОЛС через разъем 9, циркулятор 8, оптическую линию задержки 10 с калиброванным временем задержки Δt, объединитель 4 поступают в фотоприемное устройство 5, электрические импульсы с которого поступают в измеритель временных интервалов 6, где фиксируется время прихода этих импульсов Информация о значениях поступает в компьютер 7.

На основании данных о значениях t1 и зная диэлектрическую проницаемость среды распространения, известную по используемой в ВОЛС марке оптического волокна, а следовательно, скорость распространения света в ВОЛС, можно определить расстояния до неоднородности по следующей формуле:

где с - скорость света в вакууме,

- время прихода i-го обратного импульса,

Δt - время прохождения обратным импульсом оптической линии задержки,

t1 - время излучения импульса,

n - групповой показатель преломления оптического волокна.

1. Оптический рефлектометр содержит импульсный генератор с подключенным передающим лазерным модулем, оптоволоконный разветвитель, один из выходов которого соединен с одним из входов/выходов оптоволоконного циркулятора, второй выход соединен с одним из входов оптоволоконного объединителя, выход объединителя соединен с фотоприемным устройством, выход которого соединен с измерителем временных интервалов, информационный выход которого соединен с персональным компьютером, при этом второй вход объединителя через оптическую линию задержки соединен с выходом циркулятора, второй вход выход которого заканчивается разъемом для подключения ВОЛС.

2. Оптический рефлектометр по п. 1, отличающееся тем, что оптоволоконный выходной разъем оптического рефлектометра дополнительно содержит оптический переход с нанесенными на его торцы полупрозрачными зеркалами и длиной, равной заявленному разрешению устройства для подтверждения до начала работы метрологических характеристик устройства.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и может быть использовано в системе оптической беспроводной связи, использующей эффект рассеяния света, в данном случае в ультрафиолетовой области спектра, в атмосфере на молекулах воды, парах, аэрозолях, пыли и т.п.

Изобретение относится к способу связи с использованием квантовой запутанности. Технический результат, достигаемый от осуществления заявленного изобретения, заключается в расширении арсенала средств того же назначения, а именно состоит в передаче и приеме информации на расстояние на основе квантовой корреляции.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к области регистрации импульсных сигналов и касается многоканальной волоконно-оптической системы для синхронного запуска регистраторов. Система включает в себя передающий блок с одним электрическим пусковым входом и несколькими оптическими выходами, приемные блоки и регистраторы.
Изобретение относится к компьютерной технике и может быть использовано для создания и организации работы беспроводной компьютерной сети. Техническим результатом является то, что в каждом беспроводном канале связи этой беспроводной компьютерной сети для передачи данных используется видимый свет и при этом не используется модуляция с использованием изменения параметров излучения, производимого искусственными источниками видимого света.

Изобретение относится к технике связи и может быть использована в системе оптической связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к оптоволоконной технике. Устройство содержит станционную часть, оптоволоконный транспортный кабель, соединенный оптическим контактом с рефлектометром одним концом, а вторым концом соединенный со сплиттером, используемым для разветвления и продолжения транспортировки энергии зондирующих импульсов к чувствительным частям оптической схемы устройства, регулировочные оптические катушки, сплиттеры транспортной части оптической схемы; сплиттеры, предназначенные непосредственно для образования оптического кольца чувствительной части устройства, и концевые оптоволоконные извещатели.

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения.

Изобретение относится к радиотехнике. Технический результат – создание технического решения, альтернативного известному решению.

Изобретение относится к технике связи и может использоваться в системах подводной связи. Технический результат состоит в одновременной реализации высокоскоростного стабилизированного оптического канала связи и акустического канала с высокой дальностью действия.

Интерферометр содержит лазерный осветитель и объектив в осветительной ветви, светоделительный кубик, оптические узлы эталонной и рабочей ветвей, анализатор формы волнового фронта в регистрирующей ветви.

Изобретение относится к оптическому приборостроению и может быть использовано для контроля параметров лазерного прибора, содержащего излучающий и наблюдательный каналы.

Изобретение относится к оптическому приборостроению и может быть использовано в многоканальных устройствах, предназначенных для контроля прицельно-наблюдательных систем.

Способ определения коэффициентов отражения зеркал, размещаемых в комбинацию параллельно друг другу, состоит из последовательности этапов измерений, связанных с заменой зеркал в комбинации, измерением мощности излучения после отражений от них в каждой из комбинаций.

Способ включает установку линзы на плоский опорный буртик цилиндрического отверстия промежуточной части оправы, размещаемой фланцем на опорном буртике цилиндрического отверстия основной оправы.

Способ включает установку линзы на плоский опорный буртик цилиндрического отверстия промежуточной части оправы, размещаемой фланцем на опорном буртике цилиндрического отверстия основной оправы.

Способ калибровки оптико-электронного аппарата, который реализуется соответствующим устройством, заключается в том, что ориентируют оптико-электронный аппарат (ОЭА) до совмещения изображения марки коллиматора с центром кадра ОЭА, последовательно проецируют марку коллиматора в заданные точки кадра ОЭА путем поворота и линейного перемещения коллиматора.

Способ может использоваться при сборке объективов для тепловизионных приборов. Способ включает установку в центрирующий патрон токарного станка оправы с линзой и закрепление в оправе насадки с линзой-свидетелем и центрирование поверхностей линз с контролем автоколлимационным микроскопом.

Способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния заключается в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму.

Изобретение относится к области для измерения физических свойств контактных линз. В заявленном устройстве для измерения волнового фронта офтальмологического устройства и способе, реализующем заявленное устройство, производят выравнивание системы волнового фронта офтальмологической линзы, содержащей устройство для измерения физической характеристики офтальмологического устройства, выполняют оптическое измерение оптической оправки и хранение этого измерения интенсивности оптической оправки в качестве справочного файла интенсивности.

Устройство оптический рефлектометр относится к области измерительной техники для измерения и контроля параметров оптических волокон и может быть использовано при прокладке и эксплуатации волоконно-оптических линий связи, определения типа и местоположения неоднородностей и повреждений в ВОЛС. Устройство состоит из импульсного генератора, к которому подключен передающий лазерный модуль, оптоволоконного разветвителя, один из выходов которого соединен с одним из входоввыходов оптоволоконного циркулятора, второй выход соединен с одним из входов оптоволоконного объединителя. Выход объединителя соединен с фотоприемным устройством, выход которого соединен с измерителем временных интервалов, информационный выход которого соединен с персональным компьютером. Второй вход объединителя через оптическую линию задержки соединен с выходом циркулятора, второй вход выход которого заканчивается разъемом для подключения ВОЛС. Технический результат - повышение точности локализации неоднородностей в ВОЛС, повышение разрешающей способности устройства, устранение «мертвой» зоны за счет применения прямой привязки времени излучения зондирующих импульсов ко времени прихода обратных импульсов в одном фотоприемном тракте, использования калиброванной оптической линии задержки. 1 з.п. ф-лы, 1 ил.

Наверх