Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч, отразившийся от светоделителя, направляется в интерферометр продольных деформаций, а луч, прошедший через светоделитель, направляется зеркалом в интерферометр поперечных деформаций. В устройстве использованы четырехходовые интерферометры, каждый из которых включает в себя поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, два ретроотражателя, четвертьволновую и поляризационную пластины. В интерферометре поперечных деформаций расположены шесть обводных зеркал, направляющих луч рабочего плеча на две противоположные зеркально-полированные боковые поверхности исследуемого образца прямоугольного сечения. В рабочем плече интерферометра продольных деформаций расположены зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите, и две зеркально-полированные наклонные под углом 45 градусов поверхности неподвижной плиты, центры которых находятся в одной плоскости с продольной осью исследуемого образца симметрично относительно нее. С наружных сторон плит установлены электроды, подключенные к источнику постоянного тока. Между одной из плит и соответствующим электродом помещен слой полупроводника. Слой полупроводника может быть также помещен между второй плитой и вторым электродом. Образец устанавливают между плитами, задают предварительную нагрузку, пропускают электрический ток между электродами. После нагрева образца его деформируют, непрерывно регистрируют силу нагружения и температуру образца с помощью термопары. Счет переместившихся интерференционных линий производится с помощью последовательно расположенных после интерферометров по ходу отраженных лучей рабочих плеч соответственно двух коллиматоров, двух диафрагм, двух фотоприемников и электронной схемы обработки. Технический результат – повышение точности измерений упругих постоянных малопластичных металлов и сплавов при высоких температурах. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок.

Известно устройство для измерения деформаций (а.с. СССР №958851, МПК3 G01B 11/16, опубл. 15.09.82, Бюл. №34), содержащее основание, установленные на основании лазер, расположенный по ходу его излучения светоделитель, зеркало, образующее эталонное плечо интерферометра, два измерительных штока, подпружиненных в осевом направлении, три зеркала, расположенных в рабочем плече интерферометра, последовательно расположенные коллиматор, диафрагму, фотоприемник и электронную схему обработки, а также два зеркала, установленных на торцах измерительных штоков.

Недостатком известного устройства является низкая точность вследствие использования контактного метода измерения.

Наиболее близким техническим решением, взятым за прототип, является устройство для определения упругих постоянных малопластичных металлов и сплавов (пат. РФ №1744445, МПК5 G01B 11/00, опубл. 30.06.92, Бюл. №24), которое содержит основание с неподвижной плитой и подвижную в продольном направлении плиту. Между плитами расположен исследуемый образец прямоугольного сечения с одной зеркально-полированной боковой поверхностью. На основании установлен лазер, расположенные по ходу его излучения светоделитель и зеркало, отраженные лучи от которых образуют эталонные плечи двуплечих интерферометров соответственно поперечных и продольных деформаций. После интерферометров по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора, две диафрагмы, два фотоприемника и электронная схема обработки. При этом рабочее плечо интерферометра продольных деформаций образует зеркало, установленное на подвижной плите, а рабочее плечо интерферометра поперечных деформаций образует зеркально-полированная боковая поверхность исследуемого образца. Устройство может быть также снабжено тремя зеркалами, расположенными по ходу излучения в рабочем плече интерферометра поперечных деформаций. В этом случае луч рабочего плеча направляется под углом относительно нормали к передней зеркальной поверхности исследуемого образца.

Недостатками известного устройства являются недостаточная точность измерений из-за погрешностей, возникающих под воздействием силы нагружения от просадки неподвижной плиты и взаимного перекоса плит, погрешности, связанной с направлением луча рабочего плеча под углом относительно нормали к передней зеркальной поверхности исследуемого образца, низкой чувствительности, а также невозможность проведения измерений на нагретом образце из-за быстрой потери тепла, связанной с его стоком в плиты пресса и длительностью установки и настройки.

Задачей изобретения является повышение точности измерений упругих постоянных малопластичных металлов и сплавов при высоких температурах.

Поставленная задача решается за счет технических результатов, заключающихся в использовании дифференциальной схемы измерения длины образца, использовании четырехходовых оптических систем интерферометров поперечных и продольных деформаций и реализации нагрева образца в его рабочем положении непосредственно до и во время проведения испытания. Это достигается тем, что устройство содержит основание с неподвижной плитой и подвижную плиту. Между плитами расположен исследуемый образец прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями. На основании установлены лазер, расположенные по ходу его излучения светоделитель и зеркало. Луч, отразившийся от светоделителя, направляется в интерферометр продольных деформаций, а луч, прошедший через светоделитель, направляется зеркалом в интерферометр поперечных деформаций. После интерферометров по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора, две диафрагмы, два фотоприемника и электронная схема обработки. С наружных сторон плит установлены электроды, подключенные к источнику постоянного тока, между одной из плит и соответствующим электродом помещен слой полупроводника. Установлена термопара, контактирующая с исследуемым образцом и связанная электрически с электронной схемой обработки.

В оптической системе измерения продольной деформации образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, четвертьволновую и поляризационную пластины и два ретроотражателя. При этом в рабочем плече интерферометра продольных деформаций расположены зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите, и две зеркально-полированные наклонные под углом 45 градусов поверхности неподвижной плиты, центры которых находятся в одной плоскости с продольной осью исследуемого образца симметрично относительно нее. В оптической системе измерения поперечной деформации образца также использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, четвертьволновую и поляризационную пластины, два ретроотражателя и шесть обводных зеркал для рабочего луча. Причем в рабочем плече интерферометра поперечных деформаций расположены две противоположные зеркально-полированные боковые поверхности исследуемого образца. Для получения более стабильного прогрева образца между второй плитой и вторым электродом также может быть помещен слой полупроводника.

На фиг. 1 изображена оптико-механическая схема устройства; на фиг. 2 - оптическая схема измерения продольной деформации исследуемого образца с использованием четырехходового интерферометра; на фиг. 3 - оптическая схема измерения поперечной деформации исследуемого образца с использованием четырехходового интерферометра; на фиг. 4 - схема компенсации погрешностей, возникающих из-за просадки неподвижной плиты, за счет сохранения величины хода рабочего луча при использовании двух зеркально-полированных поверхностей неподвижной плиты, расположенных под углом 45 градусов, на фиг. 5 - схема компенсации погрешностей, возникающих из-за возможного взаимного перекоса плит.

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание 1 с неподвижной плитой 2 и подвижную плиту 3. Между плитами 2 и 3 расположен исследуемый образец 4 прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями 5 и 6. На основании 1 установлены лазер 7, расположенные по ходу его излучения светоделитель 8 и зеркало 9. Луч, отразившийся от светоделителя 8, направляется в интерферометр 10 продольных деформаций. Луч, прошедший через светоделитель 8 и отразившийся от зеркала 9, направляется в интерферометр 11 поперечных деформаций. После интерферометров 10 и 11 по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора 12 и 13, две диафрагмы 14 и 15, два фотоприемника 16 и 17 и электронная схема обработки 18. С наружных сторон плит 2 и 3 установлены электроды 19 и 20, подключенные к источнику постоянного тока 21. Между одной из плит 2 и соответствующим электродом 20 помещен слой полупроводника 22. Установлена термопара 23, контактирующая с исследуемым образцом 4 и связанная электрически с электронной схемой обработки 18.

Четырехходовой интерферометр 10 продольных деформаций включает поляризованный светоделитель 24, делящий луч лазера 7 на рабочий и эталонный лучи, два ретроотражателя 25 и 26, четвертьволновую пластину 27 и поляризационную пластину 28. При этом в рабочем плече интерферометра 10 продольных деформаций расположены зеркально-полированная поверхность 29 подвижной плиты 3, обращенная к неподвижной плите 2, и две зеркально-полированные наклонные под углом 45 градусов поверхности 30 и 31 неподвижной плиты 2, центры которых находятся в одной плоскости с продольной осью исследуемого образца 4 симметрично относительно нее. Четырехходовой интерферометр 11 поперечных деформаций включает поляризованный светоделитель 32, делящий луч лазера 7 на рабочий и эталонный лучи, четвертьволновую пластину 33, поляризационную пластину 34, два ретроотражателя 35 и 36 и шесть обводных зеркал 37 и 38 для рабочего луча. Причем в рабочем плече интерферометра 11 поперечных деформаций расположены две противоположные зеркально-полированные боковые поверхности 5 и 6 исследуемого образца 4. Для получения более стабильного прогрева образца 4 между второй плитой 3 и вторым электродом 19 также может быть помещен слой полупроводника.

Устройство работает следующим образом.

Излучение лазера 7 делится светоделителем 8 на два пучка, один из которых, отразившийся от светоделителя 8, направляется в интерферометр 10 продольных деформаций, а другой, прошедший через светоделитель 8 и отразившийся от зеркала 9, направляется в интерферометр 11 поперечных деформаций. Продольная деформация образца 4 регистрируется с помощью четырехходового интерферометра 10. Поляризованный под углом 45 градусов луч лазера 7 делится поляризованным светоделителем 24 интерферометра 10 на рабочий и эталонный лучи. Рабочий луч, образуемый путем прохождения через наклонную поверхность поляризованного светоделителя 24, получает горизонтальную поляризацию, а отразившийся от наклонной поверхности эталонный луч - вертикальную поляризацию. Установленная по ходу рабочего луча четвертьволновая пластина 27 меняет поляризацию рабочего луча на круговую с направлением по часовой стрелке.

С помощью зеркально-полированной поверхности 30 неподвижной плиты 2, расположенной под углом 45 градусов, рабочий луч направляется вдоль оси симметрии исследуемого образца на зеркально-полированную поверхность 29 подвижной плиты 3, а после отражения от последней обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 27, пройдя которую приобретает вертикальную поляризацию.

Далее рабочий луч отражается от наклонной поверхности поляризованного светоделителя 24 без изменения плоскости поляризации и направляется в ретроотражатель 26. После прохождения ретроотражателя 26 и отразившись от наклонной поверхности поляризованного светоделителя 24, рабочий луч снова проходит через четвертьволновую пластину 27 со сменой вертикальной поляризации на круговую с направлением против часовой стрелки. С помощью зеркально-полированной поверхности 31, расположенной под углом 45 градусов с другой стороны неподвижной плиты 2, рабочий луч снова направляется вдоль оси симметрии исследуемого образца на зеркально-полированную поверхность 29 подвижной плиты 3, а после отражения от последней обретает противоположное направление круговой поляризации и снова возвращается тем же путем на четвертьволновую пластину 27. Пройдя сквозь последнюю, рабочий луч приобретает горизонтальную поляризацию, проходит через наклонную поверхность поляризованного светоделителя 24 и совмещается с эталонным лучом, который направляется туда же ретроотражателем 25. Далее совмещенные эталонный и рабочий лучи проходят через поляризационную пластину 28, на которой плоскости поляризации лучей совмещаются, в результате чего происходит их интерференция.

Поперечная деформация образца 4 регистрируется с помощью четырехходового интерферометра 11. Поляризованный под углом 45 градусов луч лазера 7 делится поляризованным светоделителем 32 интерферометра 11 на рабочий и эталонный лучи. Рабочий луч, образуемый путем прохождения через наклонную поверхность поляризованного светоделителя 32, получает горизонтальную поляризацию, а отразившийся от наклонной поверхности эталонный луч - вертикальную поляризацию. Установленная по ходу рабочего луча четвертьволновая пластина 33 меняет поляризацию рабочего луча на круговую с направлением по часовой стрелке. С помощью трех обводных зеркал 37 рабочий луч направляется на зеркально-полированную боковую поверхность 5 исследуемого образца 4. После отражения от зеркально-полированной боковой поверхности 5 рабочий луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 33, пройдя которую приобретает вертикальную поляризацию.

Далее рабочий луч отражается от наклонной поверхности поляризованного светоделителя 32 без изменения плоскости поляризации и направляется в ретроотражатель 36. После прохождения ретроотражателя 36 и отразившись от наклонной поверхности поляризованного светоделителя 32 рабочий луч снова проходит через четвертьволновую пластину 33 со сменой вертикальной поляризации на круговую с направлением против часовой стрелки. С помощью трех обводных зеркал 38 рабочий луч направляется на противоположную зеркально-полированную боковую поверхность 6 исследуемого образца 4, отразившись от которой, меняет направление круговой поляризации на противоположное и возвращается тем же путем на четвертьволновую пластину 33. Пройдя сквозь последнюю, рабочий луч приобретает горизонтальную поляризацию, проходит через наклонную поверхность поляризованного светоделителя 32 и совмещается с эталонным лучом, который направляется туда же ретроотражателем 35. Далее совмещенные эталонный и рабочий лучи проходят через поляризационную пластину 34, на которой их плоскости поляризации совмещаются, в результате чего происходит их интерференция.

Счет переместившихся интерференционных линий производится с помощью последовательно расположенных после интерферометров 10 и 11 по ходу отраженных лучей рабочих плеч соответственно двух коллиматоров 12 и 13, двух диафрагм 14 и 15, двух фотоприемников 16 и 17 и электронной схемы обработки 18.

Перед испытанием исследуемый образец 4 прямоугольного сечения устанавливают между плитами 2 и 3, соблюдая перпендикулярность его зеркально-полированных боковых поверхностей 5 и 6 направлению лучей рабочего плеча интерферометра 11 поперечных деформаций. Далее задают предварительную нагрузку на образец 4. Пропускают постоянный электрический ток между электродами 19 и 20 через образец 4, плиты 2 и 3 и слой полупроводника 22. При прохождении электрического тока через слой полупроводника 22 выделяется тепло, благодаря которому происходит нагрев плиты 2 и соответственно образца 4. В процессе испытания после нагрева исследуемого образца 4 его деформируют, непрерывно регистрируют температуру образца 4 с помощью термопары 23 и силу нагружения Р и ведут счет чисел n и m интерференционных линий с помощью фотоприемников 16 и 17, а результаты измерений записывают и обрабатывают с помощью электронной схемы обработки 18, в качестве которой может быть использована ПЭВМ. По изменению интерференционных картин определяют деформации материала, а модуль упругости Е и коэффициент Пуассона μ определяют по формулам:

; ,

где Р - сила нагружения;

n и m - числа считанных интерференционных линий соответственно в интерферометрах продольной и поперечной деформаций;

а - толщина образца между его зеркально-полированными боковыми поверхностями;

l и b - длина и ширина образца соответственно;

λ - длина волны источника когерентного монохроматического излучения.

Для получения более стабильного прогрева образца 4 между второй плитой 3 и вторым электродом 19 также помещают слой полупроводника.

Направление луча рабочего плеча интерферометра 10 продольных деформаций на зеркально-полированную поверхность 29 подвижной плиты 3 через предварительно-изготовленные на неподвижной плите 2 под углом 45 градусов зеркально-полированные поверхности 30 и 31, центры которых находятся в одной плоскости с продольной осью исследуемого образца симметрично относительно нее, позволяет реализовать дифференциальную схему измерения длины образца 4 и, таким образом, автоматически компенсировать погрешности Δl, возникающие из-за просадки неподвижной плиты 2, за счет сохранения величины хода луча рабочего плеча, а также компенсировать погрешность Δl1 взаимного перекоса плит. Кроме того, использование четырехходовых интерферометров для измерения продольной и поперечной деформаций позволяет увеличить чувствительность устройства и, соответственно, повысить точность измерения упругих постоянных, а также устранить погрешность, которая возникает в случае направления луча рабочего плеча интерферометра поперечных деформаций под углом относительно нормали к передней зеркальной поверхности исследуемого образца.

Таким образом, описанное устройство, благодаря использованию дифференциальной схемы измерения длины образца, использованию четырехходовых интерферометров для измерения продольной и поперечной деформаций и реализации нагрева образца в его рабочем положении непосредственно перед проведением испытания, позволяет реализовать определение упругих постоянных материала малопластичных металлов и сплавов при высоких температурах с высокой точностью.

1. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре, содержащее основание с неподвижной плитой и подвижную плиту, расположенный между плитами исследуемый образец прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями, установленные на основании лазер, расположенные по ходу его излучения светоделитель и зеркало, интерферометры продольных и поперечных деформаций и расположенные после интерферометров по ходу отраженных лучей рабочих плеч последовательно два коллиматора, две диафрагмы, два фотоприемника и электронную схему обработки, причем для направления луча лазера на зеркально-полированные боковые поверхности исследуемого образца в рабочем плече интерферометра поперечных деформаций расположены обводные зеркала, отличающееся тем, что с наружных сторон плит установлены электроды, подключенные к источнику постоянного тока, между одной из плит и соответствующим электродом помещен слой полупроводника, установлена термопара, контактирующая с исследуемым образцом и связанная электрически с электронной схемой обработки, в оптических системах для измерения поперечной и продольной деформаций исследуемого образца использованы четырехходовые интерферометры, каждый из которых включает в себя поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, два ретроотражателя, четвертьволновую и поляризационную пластины, при этом в интерферометре поперечных деформаций расположены по три обводных зеркала для направления рабочего луча на каждую из зеркально-полированных боковых поверхностей исследуемого образца, а в рабочем плече интерферометра продольных деформаций расположены зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите, и две зеркально-полированные наклонные под углом 45 градусов поверхности неподвижной плиты, центры которых находятся в одной плоскости с продольной осью исследуемого образца симметрично относительно нее.

2. Устройство по п. 1, отличающееся тем, что между второй плитой и вторым электродом также помещен слой полупроводника.



 

Похожие патенты:

Изобретение относится к технике испытаний материалов, в частности к устройствам для испытания образца материала на сжатие в условиях гидростатического давления. Устройство содержит герметичный контейнер, установленные в его полости опору и размещенный со стороны одного из торцов контейнера плунжер, матрицу с коническим отверстием, закрепленную со стороны второго торца контейнера, вспомогательный образец, установленный на матрице и предназначенный для выпрессовывания его через матрицу, и две плиты для сжатия испытуемого образца, одна из которых установлена на опоре.

Изобретение относится к измерительному и испытательному оборудованию, в частности к устройствам для измерения усилия расчленения соединителей, в том числе многоштырьковых.

Изобретение относится к способам измерения коэффициента Пуассона материала готовой герметичной тонкостенной полимерной трубки и может быть использовано для создания координатных детекторов на базе цилиндрических тонкостенных дрейфовых трубок, включающих, как правило, несколько тысяч каналов регистрации.

Изобретение относится к оптическим способам измерения деформаций в области исследования механических свойств материалов, в частности инструментальных сталей и твердых сплавов, путем приложения сжимающих статических нагрузок.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание с неподвижной плитой и подвижную плиту.

Изобретение относится к технике испытаний и измерений. Способ включает подготовку и разметку образцов, закрепление зажимов разрывной машины, нагружение, фиксирование и определение характера деформации пробы и ее измерение.

Изобретение относится к испытательной технике и может быть использовано для оценки работоспособности металлов в конструкции. Сущность: осуществляют нагружение образца с трещиной или с концентратором напряжений, в котором ось приложения нагрузки и ось действия распорного болта разнесены, фиксирование распорным болтом заданной деформации на образце с трещиной или с концентратором напряжений и последующую экспозицию нагруженного образца.

Изобретение относится к области строительства, в частности к способу изготовления образцов для испытания на внецентренное сжатие. Сущность: осуществляют высверливание на верхней и нижней опорной поверхности четырехугольной призмы симметричных парных сферических лунок для центрирующих элементов, одну пару из которых размещают по ее продольной оси.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала механического узла. Абсолютный оптический однооборотный угловой энкодер, содержит n оптических пар (где n - разрядность энкодера), которые распределены равномерно с угловым шагом 360/n, растровый диск с одной кодирующей дорожкой в виде чередующихся прозрачных и непрозрачных секторов, причем прозрачные и непрозрачные сектора формируются путем комбинации точной и грубой шкал.

Изобретение относится к прогнозированию на ранней стадии возникновения дефектов в больших инженерных сооружениях и направлено на увеличение чувствительности при снижении аппаратурных затрат.

Изобретение относится к устройствам для контроля поверхности цилиндрических объектов и, в частности, может быть использовано в производстве ядерного топлива при контроле внешнего вида торцевой поверхности топливных таблеток.

Изобретение относится к вспомогательным приспособлениям контрольно-измерительной техники и может быть использовано для повышения точности измерений деформаций при статических и повторно-статических испытаниях образцов на растяжение, сжатие и изгиб в особенности при многоосевом нагружении образца.

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформацией объектов. Волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика.

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформацией объектов. Волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика.

Изобретение относится к устройствам для регистрации сигналов от набора датчиков физических величин на внутриволоконных решетках Брэгга в системах встроенного неразрушающего контроля.

Изобретения относятся к медицине. Способ калибровки интервенционного медицинского инструмента осуществляют с помощью системы калибровки интервенционного медицинского инструмента.

Заявленная группа изобретений относится области для измерения формы и/или положения связанного объекта в пространстве. Заявленное изобретение состоит из оптической системы, содержащей оптические волокна, имеющие одну или более сердцевин оптического волокна с одной или более волоконными брэгговскими решетками, проходящими вдоль всей длины, где должны определяться положение и/или форма упомянутого объекта.

Устройство контроля напряженно-деформируемого состояния конструкции летательного аппарата содержит измерительные каналы на волоконно-оптических брегговских датчиках, измерительные каналы многовитковых волоконно-оптических датчиков на внутрисветовом эффекте Доплера, блок волоконно-оптической коммутации, блок источника света, блок спектрального анализа, блок хранения и анализа информации, соединенные определенным образом.

Изобретение относится к испытанию на растяжение оптического волокна. Установка содержит двойной шкив с первой периферийной поверхностью, имеющей первый диаметр, и со второй периферийной поверхностью, имеющей второй диаметр, который больше, чем первый диаметр, первую секцию приводного ремня, контактирующую с первой периферийной поверхностью двойного шкива, и вторую секцию приводного ремня, контактирующую со второй периферийной поверхностью двойного шкива, ввод волокна, который ограничен первой периферийной поверхностью и первой секцией приводного ремня, контактирующей с первой периферийной поверхностью, выпуск волокна, который ограничен второй периферийной поверхностью и второй секцией приводного ремня, контактирующей со второй периферийной поверхностью, направляющую, предназначенную для пропускания оптического волокна из ввода волокна до выпуска волокна, и один приводной узел, предназначенный для вращения первой секции приводного ремня и второй секции приводного ремня. Сущность: подают оптическое волокно на ввод волокна, который ограничен первой периферийной поверхностью двойного шкива и первой секцией приводного ремня, контактирующей с первой периферийной поверхностью, пропускают оптическое волокно из ввода волокна через направляющую на выпуск волокна, подают оптическое волокно на выпуск волокна, который ограничен второй периферийной поверхностью двойного шкива, имеющей диаметр больше, чем диаметр первой периферийной поверхности, и второй секцией приводного ремня, которая контактирует со второй периферийной поверхностью, вращают первую секцию приводного ремня и вторую секцию приводного ремня с помощью одного приводного узла и выпускают испытанное оптическое волокно из выпуска волокна. 2 н. и 10 з.п. ф-лы, 10 ил.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч, отразившийся от светоделителя, направляется в интерферометр продольных деформаций, а луч, прошедший через светоделитель, направляется зеркалом в интерферометр поперечных деформаций. В устройстве использованы четырехходовые интерферометры, каждый из которых включает в себя поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, два ретроотражателя, четвертьволновую и поляризационную пластины. В интерферометре поперечных деформаций расположены шесть обводных зеркал, направляющих луч рабочего плеча на две противоположные зеркально-полированные боковые поверхности исследуемого образца прямоугольного сечения. В рабочем плече интерферометра продольных деформаций расположены зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите, и две зеркально-полированные наклонные под углом 45 градусов поверхности неподвижной плиты, центры которых находятся в одной плоскости с продольной осью исследуемого образца симметрично относительно нее. С наружных сторон плит установлены электроды, подключенные к источнику постоянного тока. Между одной из плит и соответствующим электродом помещен слой полупроводника. Слой полупроводника может быть также помещен между второй плитой и вторым электродом. Образец устанавливают между плитами, задают предварительную нагрузку, пропускают электрический ток между электродами. После нагрева образца его деформируют, непрерывно регистрируют силу нагружения и температуру образца с помощью термопары. Счет переместившихся интерференционных линий производится с помощью последовательно расположенных после интерферометров по ходу отраженных лучей рабочих плеч соответственно двух коллиматоров, двух диафрагм, двух фотоприемников и электронной схемы обработки. Технический результат – повышение точности измерений упругих постоянных малопластичных металлов и сплавов при высоких температурах. 1 з.п. ф-лы, 5 ил.

Наверх