Способ биодеструкции дегидроабиетиновой кислоты с использованием штамма rhodococcus rhodochrous иэгм 107

Изобретение относится к области микробиологии и биотехнологии, касается биодеструкции токсичных органических соединений с помощью микроорганизмов. Способ предусматривает биодеструкцию дегидроабиетиновой кислоты, аккумулирующейся в составе сточных вод целлюлозно-бумажной промышленности токсичного трициклического дитерпеноида, с использованием актинобактериальных клеток Rhodococcus rhodochrous ИЭГМ 107. Полная биодеструкция от 500 до 750 мг/л дегидроабиетиновой кислоты достигается в течение 7-11 суток в условиях культивирования R. rhodochrous ИЭГМ 107 в присутствии 0,1 об. % н-гексадекана. В этих условиях биодеструкция является практически полной. Культура R. rhodochrous ИЭГМ 107 хранится в Региональной профилированной коллекции алканотрофных микроорганизмов (коллекция ИЭГМ). 1 з.п. ф-лы, 5 пр.

 

Изобретение относится к области микробиологии и биотехнологии, в частности касается биодеструкции токсичных органических соединений с помощью микроорганизмов.

Дегидроабиетиновая кислота, основные показатели острой токсичности (ЛД50) которой в отношении различных тестовых организмов составляют от 0,1 до 6,5 мг/л [Peng G., Roberts J. Solubility and toxicity of resin acids // Water Research. 2000. Vol. 34. №10. P. 2779-2785; Kamaya Y, Tokita N., Suzuki K. Effects of dehydroabietic acid and abietic acid on survival, reproduction, and growth of the crustacean Daphnia magna // Ecotoxicology and Environment Safety. 2005. Vol. 61. P. 83-88], накапливается в составе сточных вод целлюлозно-бумажной промышленности в относительно высоких (до 500 мг/л) концентрациях и при выделении в окружающую среду оказывает негативное воздействие на водную фауну, способствуя нарушению экологического баланса.

В настоящее время при решении проблемы детоксикации сточных вод промышленных стоков приоритет принадлежит природоподобным технологиям, основанным на использовании ферментативной активности микроорганизмов и естественных процессов разложения экополютантов. Среди описанных биодеструкторов дегидроабиетиновой кислоты - представители бактериальных родов Pseudomonas [Biellmann J.F., Branlant G. Gero-Robert M., Poiret M. Degradation bacterienne de l'acide dehydroabietique par un Pseudomonas et une Alcaligenes // Tetrahedron Letters. 1973. Vol. 29. P. 1227-1236; Bicho P.A., Martin V., Saddler J.N. Growth, Induction, and Substrate Specificity of Dehydroabietic Acid-Degrading Bacteria Isolated from a Kraft Mill Effluent Enrichment // Applied and Environment Microbiology. 1995. Vol. 61. P. 3245-3250], Sphingomonas [Mohn W.W., Yu Z., Moore E.R.B., Muttray A.F Lessons learned from Sphingomonas species that degradeabietane triterpenoids // Journal of Industrial Microbiology and Biotechnology. 1999. Vol. 23. P. 374-379], Zoogloea [Mohn W.W. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid // Applied and Environment Microbiology. 1995. Vol. 61. P. 2145-2150], Flavobacterium [Biellmann, J.F., Branlant, G., Gero-Robert, M., Poiret M. Degradation bacterienne de l'acide dehydroabietique Flavobacterium resinovorum // Tetrahedron. 1973. Vol. 29. P. 1227-1236.], а также мицелиальные грибы родов Mortierella [Kutney J.P., Dimitriadis E., Hewitt G.M., Salisbury P.J., Singh M., Servizi J.A., Martens D.W., Gordon R.W. Studies related to biological detoxification of kraft pulp mill effluent. IV. The biodegradation of 14-chlorodehydroabietic acid with Mortierella isabellina // Helvetica Chimica Acta. 1982. Vol. 65. P. 1343-1350] и Mucor [Mitsukura K., Imoto Т., Nagaoka H., Yoshida Т., Nagasawa T. Regio- and stereoselective hydroxylation of abietic acid derivatives by Mucor circinelloides and Mortierella isabellina // Biotechnology Letters. 2005. Vol. 27. P. 1305-1310]. Казалось бы, несмотря на широкий спектр биодеструкторов, наиболее эффективные из них проявляют активность при концентрации дегидроабиетиновой кислоты в среде культивирования не более 180 мг/л при использовании бактериальных культур и не более 250 мг/л - грибов. При этом использование грибов потенциально опасно вследствие характера их посевного (спорового) материала и способности синтеза микотоксинов, обладающих мутогенными и канцерогенными свойствами. В связи с этим актуален поиск новых непатогенных микроорганизмов, проявляющих деградирующую активность в условиях повышенных (≥500 мг/л) концентраций дегидроабиетиновой кислоты.

Среди сравнительно "молодых" биотехнологически значимых групп прокариот - актинобактерии рода Rhodococcus [Ившина, И.Б. Бактерии рода Rhodococcus (иммунодиагностика, детекция, биоразнообразие): дис. д-ра биол. наук: 03.00.07 / Ившина Ирина Борисовна. - Пермь, 1997. - 197 с.; Biodegradation potential of the genus Rhodococcus // Environment International. 2009. Vol. 35. P. 162-177], основная биологическая функция которых ассимиляция нефтяных углеводородов. Отсутствие выраженных патогенных свойств, а так же немицелиальный характер роста, специфика многоцелевых ферментных систем обусловливают перспективность использования родококков в качестве потенциальных биокатализаторов процесса деградации дегидроабиетиновой кислоты.

Цель настоящего изобретения - разработка способа эффективной биодеструкции дегидроабиетиновой кислоты в относительно высокой (≥500 мг/л) концентрации с использованием клеток Rhodococcus rhodochrous ИЭГМ 107.

Техническим результатом описываемого изобретения является обеспечение полной биодеструкции дегидроабиетиновой кислоты с помощью родококков на основе разработанной технологии и подобранных оптимальных условий проведения процесса биодеструкции, при этом концентрация дегидроабиетиновой кислоты 500-750 мг/л является предпочтительной.

Данный технический результат осуществляется посредством реализации способа биодеструкции дегидроабиетиновой кислоты, который предусматривает взаимодействие дегидроабиетиновой кислоты с клетками R. rhodochrous ИЭГМ 107 в присутствии 0,1 об. % н-гексадекана. Процесс осуществляют в минеральной среде, содержащей источники углерода, азота, фосфора и минеральные соли. Применение заявленного способа обеспечивает полную биодеструкцию от 500 до 750 мг/л дегидроабиетиновой кислоты клетками R. rhodochrous ИЭГМ 107 от 7 до 11 сут.

В способе используется R. rhodochrous ИЭГМ 107 из Региональной специализированной коллекции алканотрофных микроорганизмов (акроним ИЭГМ, номер во Всемирной федерации коллекции культур 768, www.iegmcol.ru; реестровый номер УНУ www.ckp-rf.ru/usu/73559). Штамм депонирован во Всероссийской коллекции промышленных микроорганизмов под номером ВКПМ АС-2065.

Изобретение осуществляется следующим образом.

Периодическое культивирование родококков проводят в колбах Эрленмейера вместимостью 250 мл при объеме минеральной среды 100 мл в условиях постоянного перемешивания (160 об/мин) и при температуре 28°С. В экспериментах используют минеральную среду следующего состава (г/л): KNO3 - 1,0; K2НРO4 - 1,0; KН2РO4 - 1,0; NaCl - 1,0; MgSO4⋅7H2O - 0,2; СаСl2⋅2Н2O - 0,02; FeCl3 - 0,001; дрожжевой экстракт - 0,1. Дополнительно в среду вносят 0,1 об. % микроэлементов [Atlas R.T. Handbook of Microbiological Media, Fourth Edition Florida: CRC Press. 1993. pp. 1079] и 0,1 об. % н-гексадекана. Бактерии, выращенные на мясопептонном агаре (Oxoid, UK) в течение 48 ч и суспендированные в физиологическом растворе, вносят в среду культивирования до конечной концентрации 0,9×105 кл/мл. Дегидроабиетиновую кислоту (99,1%, «Mosinter Group Limited», Китай) добавляют в концентрации 500 или 750 мг/л в виде раствора в этаноле (1:10). В качестве контроля используют (1) стерильный раствор дегидроабиетиновой кислоты в минеральной среде (для оценки абиотической деградации); (2) минеральную среду без дегидроабиетиновой кислоты, содержащую н-гексадекан и бактериальные клетки (контроль разграничения возможных метаболитов, образующихся в процессе биодеградации н-гексадекана). Продолжительность процесса биодеструкции дегидроабиетиновой кислоты составляет 7-11 сут. Оптическую плотность (ОП) клеточной суспензии определяют с помощью спектрофотометра Lambda EZ201 (Perkin-Elmer, USA) при длине волны 600 нм и кварцевых кювет объемом 2 мл.

Для обнаружения остаточной дегидроабиетиновой кислоты и ее возможных метаболитов среду ферментации подкисляют 10%-ным водным раствором HCl и трижды экстрагируют эквивалентным объемом этилацетата. Объединенные экстракты последовательно промывают 1%-ным водным раствором NaHCO3 и дистиллированной водой (до pH 7,0). Полученный этилацетатный экстракт обезвоживают Na2SO4. Растворитель удаляют с помощью роторного испарителя Laborota 4000 (Heidolph, Germany). Образование метаболитов контролируют методом тонкослойной хроматографии на пластинах с силикагелем (Merck, Germany). Образцы экстрактов для анализа методом газовой хромато-масс-спектрометрии (ГХ-МС) предварительно обрабатывают триметилсилилдиазометаном. Качественный анализ полученных экстрактов осуществляют методом ГХ-МС на хроматографе Agilent 6890N/5975B (Agilent Technologies, USA), оборудованном капиллярной колонкой HP-5ms (30 м×0,25 мм, 0,25 мкм), в режиме ионизации электронным ударом (70 эВ). В качестве газа-носителя используют гелий (1 мл/мин). Количественный анализ дегидроабиетиновой кислоты осуществляют методом обращенно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ) с использованием хроматографа LC Prominence 20AD (Shimadzu, Япония), оборудованного хроматографической колонкой Supelcosil™ LC-18 (150×4,5 мм, 5 мкм) и диоидно-матричным детектором SPD-M20A. В качестве элюента используют 70% водный раствор ацетонитрила.

Изобретение поясняется следующими примерами.

Пример 1

Биодеструкцию дегидроабиетиновой кислоты проводят с использованием клеток R. rhodochrous ИЭГМ 107 в 100 мл минеральной среды, содержащей источники углерода (0,1 об. % н-гексадекана), азота, фосфора, минеральные соли и микроэлементы, при постоянном перемешивании (160 об/мин) и 28°C. Дегидроабиетиновую кислоту (300 мг/л) вносят одновременно с инокулятом в виде раствора в этаноле (1:10). Количество остаточной дегидроабиетиновой кислоты контролируют методами ГХ-МС и ВЭЖХ. Полная биодеструкция дегидроабиетиновой кислоты в концентрации 300 мг/л регистрируется через 15 сут, после внесения кислоты.

Пример 2

Способ осуществляется по примеру 1, но дегидроабиетиновую кислоту вносят в концентрации 500 мг/л. Полная биодеструкция дегидроабиетиновой кислоты регистрируется через 19 сут после внесения кислоты.

Пример 3

Способ осуществляется по примеру 2, но дегидроабиетиновую кислоту (500 мг/л) вносят через 24 ч культивирования родококков. Полная биодеструкция дегидроабиетиновой кислоты регистрируется через 12 сут после внесения кислоты.

Пример 4

Способ осуществляется по примеру 2, но дегидроабиетиновую кислоту (500 мг/л) вносят через 48 ч культивирования родококков. Полная биодеструкция дегидроабиетиновой кислоты регистрируется через 7 сут после внесения кислоты.

Пример 5

Способ осуществляется по примеру 3, но дегидроабиетиновую кислоту вносят в концентрации 750 мг/л. Полная биодеструкция дегидроабиетиновой кислоты регистрируется через 11 сут после внесения кислоты.

1. Способ биодеструкции дегидроабиетиновой кислоты, предусматривающий взаимодействие дегидроабиетиновой кислоты с клетками Rhodococcus rhodochrous ИЭГМ 107 в жидкой минеральной среде в присутствии 0,1 об. % н-гексадекана.

2. Способ по п. 1, отличающийся тем, что дегидроабиетиновую кислоту используют в концентрации 500-750 мг/л.



 

Похожие патенты:

Группа изобретений относится к биотехнологии. Штамм Gluconacetobacter intermedius, продуцирующий бактериальную целлюлозу, депонирован в Национальном Институте передовой промышленной науки и технологии (Япония) под регистрационным номером SIID 9587.
Изобретение относится к микробиологии. Диагностическая питательная среда для дифференциации возбудителя сибирской язвы по капсуло- и токсинообразованию содержит сухой питательный бульон, дрожжевой экстракт, NaCl, агар-агар, L-аланин, инозин, 20 %-ный раствор D-сорбита, 1,6% раствор бромтимолового синего, 10%-ный раствор натрия двууглекислого, полимиксина сульфат, сыворотку крупного рогатого скота и дистиллированную воду при заданном соотношении компонентов.
Изобретение относится к биотехнологии. Способ предусматривает раздельное глубинное культивирование штаммов Bacillus subtilis ВКПМ В-8130, Bacillus subtilis ВКПМ В-2984, Bacillus licheniformis ВКПМ В-4162, Bacillus megaterium ВКПМ В-204 и Lactobacillus plantarum ВКПМ В-5337 на питательных средах заданного состава.

Изобретение относится к биотехнологии. Предложен способ получения лакокрасочного водоразбавляемого материала с биоцидными свойствами.

Изобретение относится к биотехнологии, в частности к производству микробиологических средств защиты растений от болезней. Предлагается штамм бактерий Pantoea brenneri ВКПМ В-12911, обладающий фосфатмобилизующей активностью к неорганическим и органическим фосфатам почвы и фунгицидной активностью.

Изобретение относится к биотехнологии. Предложен способ снижения содержания селена в биомассе после ферментации содержащего СО газообразного субстрата.

Изобретение относится к биотехнологии. Предложен штамм клубеньковых бактерий Bradyrhizobium diazoefficiens CCM GS-4, который обладает способностью образовывать клубеньки с растениями сои.

Группа изобретений относится к микроорганизму рода Corynebacterium, обладающему повышенной путресцин-продуцирующей способностью, и способу получения путресцина с его использованием.

Группа изобретений относится к биотехнологии. Предложены композиция, включающая штаммы нескольких культур микроорганизмов, применение указанной композиции, способ нанесения композиции, способ предотвращения запаха, способ проверки запаха в системе кондиционирования воздуха транспортного средства, предусматривающие нанесение композиции на сердцевину испарителя в концентрации 104-108 КОЕ/г, а также 14 штаммов, относящихся к видам микроорганизмов, входящим в состав композиции.

Группа изобретений относится к области биотехнологии. Предложено применение полипептида с аминокислотной последовательностью SEQ ID NO: 1 в качестве гомосеринсукцинилтрансферазы или кодирующего его полинуклеотида, имеющего нуклеотидную последовательность SEQ ID NO: 2 или 3, для получения О-сукцинилгомосерина.

Изобретение относится к области охраны окружающей среды, а именно к составам для очистки грунта, нефтешламов, жидких отходов и сточных вод от органических соединений и нефтепродуктов.

Изобретение относится к области охраны окружающей среды, а именно к составам для очистки грунта, нефтешламов, жидких отходов и сточных вод от органических соединений и нефтепродуктов.

Изобретение относится к биотехнологии. Предложен экобиопрепарат «Центрум-MMS», представляющий собой ассоциацию микроорганизмов Pseudomonas fluorescens ВКМ В-6847 и Rhodococcus erythropolis ВКМ Ас-1769, который предложено применять для биодеградации несимметричного диметилгидразина.

Группа изобретений относится к биотехнологии. Предложены способ контроля пролиферации Naegleria fowleri и применение дезинфицирующего агента.

Изобретение относится к биохимической денитрификации гиперсоленых сточных вод. Биохимический способ денитрификации гиперсоленой композиции сточных вод, концентрация нитрата в которой составляет по меньшей мере 0,1% мас./об., а концентрация хлорида составляет по меньшей мере 5% (мас./об.), включает использование сообщества галофильных и/или солеустойчивых бактерий, где указанное сообщество выбрано из смеси ила, состоящей на от 85 до 95 мас.% из активированного ила, получаемого на этапе денитрификации при плановой обработке муниципальных сточных вод, и на приблизительно от 5 до 15 мас.% из солесодержащего ила, получаемого из кристаллизационного пруда «солнечной» солеварни.

Изобретение относится к области биохимии. Предложена композиция для биологической очистки грунта, нефтешламов, жидких отходов и сточных вод от органических соединений и нефтепродуктов.

Изобретение относится к области биотехнологии. Штамм бактерий Pseudomonas plecoglossicida 2,4-D, обладающий способностью биодеградировать устойчивые токсичные соединения перфтороктансульфоновой кислоты (ПФОС), депонирован во Всероссийской коллекции микроорганизмов Федерального государственного бюджетного учреждения науки Институт биохимии и физиологии микроорганизмов им.

Изобретение относится к промышленной и экологической микробиологии. Предложен способ очистки содержащих толуол сточных вод нефтеперерабатывающих и нефтехимических предприятий.

Изобретение относится к биотехнологии. Предложен способ очистки нефтесодержащих сточных вод.
Группа изобретений относится к биотехнологии. Предложены способ получения биосорбента и биосорбент для очистки воды от углеводородных загрязнений. Способ включает предварительную сушку измельченного до фракций 1-1,5 мм торфа при 40-50°С до влажности не более 3%, пиролиз под вакуумом при температуре 210-250°С, затем его внесение в суспензию консорциума нефтеокисляющих микроорганизмов штаммов Candida maltosa ВКПМ Y-3446 и Dietzia maris ВКПМ Ac-1824, взятых в соотношении 1:1. Биосорбент получен указанным способом. Изобретения обеспечивают увеличение сорбционной емкости биосорбента и повышение эффективности очистки водоемов от углеводородных загрязнений. 2 н.п. ф-лы, 3 пр.

Изобретение относится к области микробиологии и биотехнологии, касается биодеструкции токсичных органических соединений с помощью микроорганизмов. Способ предусматривает биодеструкцию дегидроабиетиновой кислоты, аккумулирующейся в составе сточных вод целлюлозно-бумажной промышленности токсичного трициклического дитерпеноида, с использованием актинобактериальных клеток Rhodococcus rhodochrous ИЭГМ 107. Полная биодеструкция от 500 до 750 мгл дегидроабиетиновой кислоты достигается в течение 7-11 суток в условиях культивирования R. rhodochrous ИЭГМ 107 в присутствии 0,1 об. н-гексадекана. В этих условиях биодеструкция является практически полной. Культура R. rhodochrous ИЭГМ 107 хранится в Региональной профилированной коллекции алканотрофных микроорганизмов. 1 з.п. ф-лы, 5 пр.

Наверх