Устройство для обработки изделия из стали в плазме тлеющего разряда

Изобретение относится к химико-термической обработке металлов в плазме тлеющего разряда и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента. Устройство для азотирования стальной детали в плазме тлеющего разряда содержит вакуумную камеру, источник питания, обрабатываемую деталь в виде катод-детали, экран в виде сетки, установленный на расстоянии от катод-детали и устройство для подачи газа. Источник питания выполнен регулируемым, катод-деталь подключена к отрицательному полюсу регулируемого источника питания, а экран подключен к катод-детали и выполнен в виде сетки с цилиндрическими ячейками. Длина L упомянутой цилиндрической ячейки экрана, расстояние X от экрана до катод-детали и диаметр d упомянутой цилиндрической ячейки экрана имеют следующее соотношение (L+X)/d=2,5. Обеспечивается повышение микротвердости азотированного покрытия и его равномерности. 1 ил., 1 пр.

 

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента.

Известно устройство для обработки в разряде (Арзамасов Б.М., Химико-термическая обработка металлов в активизированных газовых средах. - М.,1979, с. 118-120), включающее вакуумную камеру, подложку с отрицательным потенциалом и закрепленной на ней оснасткой для загрузки деталей.

Недостатками прототипа являются небольшая толщина получаемых диффузионных покрытий и их твердость, неравномерность азотированного покрытия на деталях сложной формы.

Известно устройство, описанное в патенте RU №2095462, кл. С23С 8/36, 17.10.1994, для азотирования изделий в тлеющем разряде, включающее вакуумную камеру, специальный источник, анод, катод-деталь, экран, установленный на определенном расстоянии от катод-детали.

Недостатками прототипа являются небольшая толщина получаемых диффузионных покрытий и их твердость, неравномерность азотированного покрытия на деталях сложной формы.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является устройство, описанное в патенте RU №2276201, кл. С23С 8/36, С23С 8/80, 09.11.2004, для азотирования в тлеющем разряде с эффектом полого катода, включающее вакуумную камеру, источник питания, катод-деталь, экран в виде сетки, установленный на определенном расстоянии от катод-детали, устройство подачи газа.

Недостатками прототипа являются небольшая толщина получаемых диффузионных покрытий и их твердость, неравномерность азотированного покрытия на деталях сложной формы.

Задачей настоящего изобретения является повышение толщины получаемых диффузионных покрытий, их твердости и равномерности азотированного покрытия на деталях сложной формы.

Техническим результатом является повышение микротвердости азотированного покрытия и его равномерности.

Технический результат достигается тем, что устройство для азотирования стальной детали в плазме тлеющего разряда, содержащее вакуумную камеру, источник питания, обрабатываемую деталь в виде катод-детали, экран в виде сетки, установленный на расстоянии от катод-детали и устройство для подачи газа, источник питания выполнен регулируемым, катод-деталь подключена к отрицательному полюсу регулируемого источника питания, а экран подключен к катод-детали и выполнен в виде сетки с цилиндрическими ячейками, при этом длина L упомянутой цилиндрической ячейки экрана, расстояние X от экрана до катод-детали и диаметр d упомянутой цилиндрической ячейки экрана имеют следующее соотношение (L+X)/d=2,5.

Эффектом полого катода является большая величина тока, протекающего через разряд, по сравнению с системой с плоскими электродами, имеющей геометрические размеры того же порядка. Это обусловлено тем, что в полом катоде электроны под действием электрического поля начинают осциллировать около центральной части катода вследствие наличия внутри катода потенциальной ямы. Часть этих электронов вылетает из полости катода через отверстие, ионизируя и возбуждая молекулы газа в промежутке между анодом и катодом. При изменении геометрии катода мы меняем форму потенциальной ямы внутри него. При увеличении длины катода условия возникновения разряда изменяются все слабее, и в пределе при достаточно большой глубине будут оставаться постоянными. Когда длина катода настолько мала, что электроны не успевают совершить колебания внутри полости и уходят на анод, эффект полого катода практически исчезает и разряд протекает как в случае системы с плоскими электродами. Сила тока разряда в системе с полым катодом зависит не только от длины катода, но и от его диаметра. При напряжении между электродами ≈520 В и давлении 8⋅10-5 мм рт.ст. зависимость тока разряда имеет максимум в диапазоне отношений длины полого катода (суммарной длины цилиндра экрана и расстояния от экрана до обрабатываемого изделия (подвижного коллектора)) к диаметру цилиндра экрана в диапазоне 2÷3. [Электронный журнал НГУ, "Физика и студенты", http://psj.ru/. Алексей Петренко. "Влияние длины полого катода на вольтамперную характеристику газового разряда", с. 6]. Таким образом, в нашем случае, полый катод образуется цилиндром экрана и катод-деталью, а сетка экрана представляет собой совокупность полых катодов.

Осциляция электронов в полом катоде увеличивает их путь в разряде, число соударений с нейтральными атомами азота и количество положительно ионизованного атомарного азота. Увеличение числа положительных ионов атомарного азота приводит к возрастанию азотного потенциала насыщающей атмосферы и, как следствие, к интенсификации процесса азотирования и увеличению толщины азотированного слоя (Арзамасов Б.Н. Химико-термическая обработка металлов в активированных газовых средах. - М.: Машиностроение, 1979, с. 115). Азотированный слой состоит из поверхностной нитридной зоны и подслоя твердого раствора называемого зоной внутреннего азотирования. Нитридная зона представляет собой зону соединений азота с различными элементами (железом, хромом, титаном и т.д.) и обладает более высокой твердостью и износостойкостью по сравнению с зоной внутреннего азотирования. Общее увеличение толщины азотированного слоя, приводит к увеличению и нитридной зоны, вследствие чего увеличивается микротвердость и износостойкость азотированного слоя (Химико-термическая обработка металлов. Лахтин Ю.М., Арзамасов Б.Н.: Металлургия, 1985. с. 145, 154, 158, 161).

Увеличение длины полого катода (суммарной длины цилиндра экрана и расстояния от экрана до катод-детали) более некоторой оптимальной величины приводит к не столь быстрому уменьшению плотности тока разряда, как при ее уменьшении [Электронный журнал НГУ "Физика и студенты" http://psj.ru/. Алексей Петренко. "Влияние длины полого катода на вольтамперную характеристику газового разряда", с. 5]. А потому можно говорить о более равномерном азотированном покрытии поверхности изделий сложной формы при выполнении экрана в виде сетки, ячейки которой представляют собой цилиндры (полые катоды, торцом (подвижным коллектором) которых является катод-деталь) с оптимальным отношением суммарной длины цилиндра экрана и расстояния от экрана до катод-детали к диаметру цилиндра экрана в диапазоне 2÷3 [Электронный журнал НГУ "Физика и Студенты" http://psj.ru/. Алексей Петренко. "Влияние длины полого катода на вольтамперную характеристику газового разряда", с. 3].

Поскольку поверхность катод-детали может быть рельефной, то необходимо брать в качестве оптимального отношения суммарной длины цилиндра экрана и расстояния от экрана до катод-детали к диаметру цилиндра экрана, равного 2,5.

На фиг. 1 изображена схема устройство для обработки изделия из стали в плазме тлеющего разряда. Схема содержит вакуумную камеру 1, катод-деталь 2, анод 3, экран 4, устройство для подачи газа 5, регулируемый источник питания 6.

Пример конкретной реализации устройства

В вакуумной камере устанавливают обрабатываемое изделие (катод-деталь) 2, например, из нержавеющей стали 08Х18Н10Т, и присоединяют к экрану 4, выполненному в виде сетки, ячейки которой представляют собой цилиндры с отношением суммарной длины цилиндра экрана и расстояния от экрана до катод-детали к диаметру цилиндра экрана равным 2,5. При этом каждый из цилиндров сетки экрана 4 вместе с обрабатываемым изделием 2 образует отдельный полый катод, где обрабатываемое изделие можно рассматривать как торец полого катода. После размещения обрабатываемого изделия (катод-детали) 2 вакуумная камера 1 герметизируется и в ней создается высокий вакуум примерно 1.3⋅10-2 Па. Затем в вакуумную камеру 1 напускают чистый азот и создают давление 100 Па, необходимое для зажигания тлеющего разряда. Включают регулируемый источник питания 6 и подают на обрабатываемое изделие (катод-деталь) 2 высокое отрицательное напряжение (400-1000 В), постепенно увеличивая которое добиваются зажигания тлеющего разряда. Далее понижают давление азота до 10 Па. В возникшем стабильном тлеющем разряде высокой плотности, вследствие эффекта полого катода, обрабатываемое изделие (катод-деталь) 2 разогревают до температуры азотирования (570°C для стали 08Х18Н10Т). Затем изменяют напряжение на обрабатываемом изделии 2 до величины, обеспечивающей поддержание оптимальной температуры азотирования (570°C для стали 08Х18Н10Т). При плотности тока порядка 2,25⋅10-2 А/см2 длительность процесса азотирования составляет 2-3 часа.

Конкретные геометрические размеры цилиндров экрана и его расстояние до катод-детали подбираются экспериментально, исходя из формы катод-детали и соотношения . Например, выбираем расстояние от экрана до катод-детали Х=0.01 м, выбираем длину цилиндра экрана (толщину металлического экрана) L=0.01 м, тогда из соотношения находим диаметр цилиндров экрана (отверстий в экране) d=0.008 м.

Предлагаемое устройство для азотирования позволяет:

- увеличить толщину азотированного покрытия за счет повышения азотного потенциала насыщающей атмосферы,

- повысить микротвердость и износостойкость азотированного покрытия, за счет увеличения толщины покрытия,

- повысить равномерность азотированного покрытия.

Устройство для азотирования стальной детали в плазме тлеющего разряда, содержащее вакуумную камеру, источник питания, обрабатываемую деталь в виде катод-детали, экран в виде сетки, установленный на расстоянии от катод-детали и устройство для подачи газа, отличающееся тем, что источник питания выполнен регулируемым, катод-деталь подключена к отрицательному полюсу регулируемого источника питания, а экран подключен к катод-детали и выполнен в виде сетки с цилиндрическими ячейками, при этом длина L упомянутой цилиндрической ячейки экрана, расстояние X от экрана до катод-детали и диаметр d упомянутой цилиндрической ячейки экрана имеют следующее соотношение (L+X)/d=2,5.



 

Похожие патенты:

Изобретение относится к области химико-термической обработки, а именно вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении. Способ локального азотирования стального изделия в тлеющем разряде в магнитном поле включает проведение вакуумного нагрева участка стального изделия, подверженного интенсивному износу в плазме азота повышенной плотности, при этом упомянутый участок стального изделия помещают в центр кольцевой магнитной системы, установленной на катоде, в которой формируют плазму азота повышенной плотности, и осуществляют вакуумный нагрев с формированием на нем нитридного слоя, состоящего из нитрида железа Fe4N и нитрида хрома Cr4N.
Изобретение относится к ионной химико-термической обработке и может быть использовано в машиностроении, двигателестроении, металлургии и изготовлении инструментов.
Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента.

Изобретение относится к способу восстановления частично удаленного упрочненного ионным азотированием слоя стальной детали. Проводят электроэрозионное легирование графитовым электродом (ЦЭЭЛ) с энергией разряда, при которой зона термического влияния при легировании не превышает толщины остатка поверхностного слоя стальной детали, упрочненного упомянутым ионным азотированием.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из стали.

Изобретение относится к линии изготовления азотированного листа из текстурированной электротехнической стали и к способу изготовления листа из указанной стали с использованием данной линии.

Изобретение относится к линии изготовления азотированного листа из текстурированной электротехнической стали и к способу изготовления азотированного листа из текстурированной электротехнической стали с использованием упомянутой линии.

Изобретение относится к электрофизическим и электрохимическим способам обработки деталей, в частности к электроэрозионному легированию графитовым электродом и ионному азотированию поверхностей стальных деталей.
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм.

Изобретение относится к способу получения упрочненного сплава, имеющего металлическую основу, в объеме которой диспергированы наночастицы, из которых по меньшей мере 80% имеют средний размер от 0,5 нм до 50 нм.
Наверх