Способ выбора титанового сплава для ультразвукового волновода

Изобретение относится к методам определения механических и физических свойств титановых сплавов и определение по полученным величинам пригодности данных сплавов в качестве ультразвуковых волноводов. Способ выбора титанового сплава для ультразвукового волновода содержит этапы на которых определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с: пределом прочности на разрыв не менее 1200 МПа, отношением σ0,2В в пределах 0,9-0,95, скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с, мелкодисперсной микроструктурой с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Технический результат – повышение работоспособности ультразвуковых волноводов для ультразвуковой сварки. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к методам определения механических и физических свойств титановых сплавов и определение по полученным величинам пригодности данных сплавов в качестве ультразвуковых волноводов.

Известен интегральный способ оценки структуры материала ("хорошая" - "плохая") с помощью ультразвука. Он заключается в прозвучивании контролируемых изделий эхо-методом на заданной частоте f и сравнении амплитуды донного сигнала на эталонном образце с "хорошей" структурой с амплитудами донных сигналов на испытуемых изделиях. При уменьшении амплитуды донного сигнала в изделии на определенную величину относительно амплитуды донного сигнала на эталонном образце структура считается "плохой" и изделие бракуется (Патент RU 2442154 по заявке 2010149296 от 02.12.2010 г., МПК G01N 29/04).

Недостатком такого способа является невозможность определения структуры титанового сплава и пригодности титанового сплава в качестве ультразвукового волновода.

Известны исследования - Е.Н. Найденкин и др. «Титановый сплав ПТ-3В с ультрадисперсной структурой для волноводов высокоамплитудных акустических систем». Вопросы материаловедения, 2009, №4, стр 15-19. В данной работе исследовался промышленный сплав ПТ-3В (4,66 масс. % Al, 1,92 масс. % V) с исходной крупнозернистой структурой, сплав с данной структурой широко используется для изготовления акустических волноводов ультразвуковых систем различного назначения, и с ультрамелкозернистой (УМЗ) структурой со средним размером элементов субзеренной структуры 0,37 мкм, полученной методом интенсивной пластической деформации - методом всестороннего прессования в интервале температур 1073-773 К. Установлено, что интенсивная пластическая деформация методом всестороннего прессования сплава ПТ-3В существенно повышает механические и акустические свойства исследуемого материала. Так, микротвердость УМЗ сплава увеличивается примерно на 25%, а разрушение волноводов из этого материала происходит при подводимой мощности ультразвука в 1,5-2 раза большей по сравнению с волноводом из крупнозернистого сплава. Формирование в сплаве ПТ-3В УМЗ структуры приводит к незначительному (на 0,64 и 0,46% соответственно) уменьшению резонансной частоты колебаний волновода.

Из представленных данных не ясно, какие титановые сплавы наиболее пригодны для изготовления ультразвуковых волноводов, так как результаты получены только на одном сплаве с УМЗ структурой.

Проведенные исследования показывают, что получение ультрамелкозернистой (УМЗ) структуры со средним размером зерна менее 1 мкм в конструкционных сплавах позволяет, с одной стороны, значительно повысить их характеристики прочности, сопротивление усталости, износостойкость, с другой стороны, практическое применение таких материалов сдерживает ряд недостатков, к которым, в первую очередь, следует отнести пониженную термостабильность, ударную вязкость, циклическую трещиностойкость, повышенную чувствительность к концентраторам напряжений, а также порообразование при циклических нагрузках в зоне наибольших напряжений (приповерхностной зоне) (Малыгин Г.А. Физика твердого тела. 6 (49), стр. 961-982, 2007 г.). Из данных исследований можно сделать заключение, что титановые сплавы с УМЗ-структурой со средним размером зерна менее 1 мкм, не являются оптимальными для изготовления ультразвуковых волноводов. Это обусловлено тем, что титановые сплавы для ультразвуковых волноводов должны иметь высокие параметры трещиностойкости и порообразования при циклических нагрузках.

Известно, что продукты из титана имеют анизотропию механических свойств, а именно: - предел текучести всегда ниже у образцов, ориентированных поперек направления прокатки (ОПП), и максимален у образцов, ориентированных вдоль прокатки (ОВП); - предел прочности максимален у образцов ОПП (П.И. Стоев, И.И. Папиров. «Акустическая эмиссия титана в процессе деформации». Вопросы атомной науки и техники, 2007, №4, серия: вакуум, чистые материалы, сверхпроводники (16), с. 184-191).

Проведенные авторами исследования показали, что данная анизотропия характерна не только для механических свойств, но и для акустических. Скорость звука в двух взаимно перпендикулярных направлениях в титановых сплавах различна.

Разрушение волноводов при ультразвуковой сварке происходит в результате усталостного разрушения. Во время процесса сварки на поверхности материала от волновода остаются вмятины, что говорит о цикличности пиковых нагрузок. В отдельных точках материал изделия приваривается к инструменту. Это приводит к износу устройства. Ремонт оборудования для ультразвуковой сварки сопровождается рядом сложностей. Они связаны с тем, что сам волновод выступает как элемент неразборной единой конструкции узла, конфигурация и размеры которого рассчитаны точно на рабочую частоту. Из этого следует, что титановый сплав волновода должен иметь не только высокие механические свойства, но и стабильные акустические свойства, при этом акустические свойства должны удовлетворять определенным требованиям.

Известны исследования, когда для определения возможности использования титанового сплава в тех или иных условиях определяют механические и физические свойства в сочетании с металлографическими методами исследования (В.И. Бетехтин, и др. «Упругопластические свойства низкомодульного β-сплава на основе титана». Журнал технической физики, 2013, т. 83, вып. 10, стр. 38-42). Данное решение принято в качестве прототипа.

В данном случае сплав должен обладать высокой прочностью, небольшой плотностью, низким модулем упругости, чтобы обеспечить биомеханическую совместимостью с костной тканью, которая определяет функциональную надежность имплантатов. Данные свойства неприемлемы для титанового сплава, предназначенного для ультразвукового волновода.

Задачей заявляемого решения является определение и обоснование выбора рационального сочетания физико-механических свойств титанового сплава и его структуры для ультразвуковых волноводов.

В процессе решения поставленной задачи достигается технический результат, заключающийся в повышении работоспособности ультразвуковых волноводов для ультразвуковой сварки.

Технический результат достигается способом выбора титанового сплава для ультразвукового волновода, характеризующегося тем, что определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с:

пределом прочности на разрыв не менее 1200 МПа,

отношением σ0,2В в пределах 0,9-0,95,

скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с,

мелкодисперсной микроструктурой с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Кроме этого, одно направление, в котором определяется скорость звука, совпадает с направлением прокатки титанового сплава.

Авторами данного технического решения были проведены исследования различных сплавов, а также проведен анализ имеющихся литературных данных, было установлено, что соотношение параметра σ0,2В в пределах 0,9-0,95 при значении предела прочности σВ не ниже 1200 МПа может служить оценочной характеристикой упругих свойств и энергоемкости сплава на основе титана при выборе сплава для изготовления ультразвуковых волноводов. Дополнительно предлагается оценивать материал для ультразвукового волновода по скорости распространения звука в двух взаимно перпендикулярных направлениях, при этом параметры скорости звука и максимальное различие в скоростях определены опытным путем. Такие параметры позволяют более качественно подходить в выбору материала. В данном техническом решении предлагается оценивать структуру титанового сплава и ее пригодность к использованию в качестве материала для изготовления волноводов. Предлагаемая структура с размером зерна (0,5-5,0) мкм, имеет максимальное сопротивление зарождению и развитию микротрещин в сплаве в условиях циклического нагружения. Предлагаемая комплексная оценка свойств материала позволяет более корректно оценить характеристику материала для ультразвукового волновода.

Были проведены испытания по определению предельного времени работы волновода до разрушения. Были подготовлены пять заготовок с составом, представленным в таблице 1.

Впоследствии каждая заготовка подвергалась ковке, включающем этапы ковки при температуре выше температуры полного полиморфного превращения, и при температуре ниже полиморфного превращения, охлаждение заготовки после этапа ковки, при этом на первом этапе нагревают заготовку из титанового сплава до температуры выше температуры полного полиморфного превращения T1=Tβ+(40÷130)°C, где Tβ - температура фазового альфа-бета перехода, проводят ковку с деформацией при вращении заготовки вокруг своей оси последовательно по схеме 90°-45°-22°, проводят закалку заготовки в воду, на втором этапе нагревают заготовку из титанового сплава до температуры ниже полиморфного превращения T2=Tβ-(0÷60)°C, проводят ковку с деформацией при вращении заготовки вокруг своей оси последовательно по схеме 90°-45°-22°, проводят быстрое охлождение заготовки в воду, на третьем этапе нагревают заготовку из титанового сплава до температуры T1=Tβ+(40÷130)°C, проводят ковку с деформацией при вращении заготовки вокруг своей оси последовательно по схеме 90°-45°-22°, проводят закалку заготовки в воду, после третьего этапа ковки проводят разделение заготовки на две равные части по длине, на четвертом этапе проводят нагрев заготовки до температуры T2=Tβ-(0÷60)°C, проводят ковку с деформацией, при повороте заготовки вокруг своей оси каждый раз на 90° и чередуя усилия ковки при каждом повороте, большие усилия на большей площади, меньшие усилия на меньшей площади, формируя из круглой заготовки прямоугольную заготовку, на пятом, на шестом, на седьмом, восьмом и девятом этапах нагревают заготовки до температуры T2=Tβ-(0÷60)°C, проводят ковку с деформацией при повороте заготовки вокруг своей оси каждый раз на 90° и чередуя усилия ковки при каждом повороте, большие усилия на большей площади, меньшие усилия на меньшей площади. Полученный прямоугольный пруток подвергают обкатке поверхности - проводят ковку при повороте заготовки на 22°, чтобы в итоге получить округлую поверхность. На последнем этапе заготовку подвергают отжигу при температуре 850 C в течение часа. Все заготовки обрабатывались по единому процессу. После этого определялись механические свойства, скорость звука и структура сплава. Были изготовлены волноводы и проводились испытания в производственных условиях на ультразвуковом сварочном аппарате USP750. Использовались следующие режимы: сила прижатия 750 Н, частота 35 kHz, мощность 1 кВт. Таким образом были определены оптимальные свойства титанового сплава для волноводов. Результаты испытаний представлены в таблице 2.

Сваривали пластмассу, материал отлично сваривается. После 9 месяцев работы сварочного оборудования, провели ультрозвуковой контроль волновода по стандарту AMS 2631 класс АА. Дефекты не обнаружены, что подтверждает высокий ресурс работы волновода. Предлагаемый титановый сплав химического состава при сохранении мелкодисперсной микроструктуры позволяет значительно увеличить ресурс работы волновода.

1. Способ выбора титанового сплава для изготовления ультразвукового волновода, характеризующийся тем, что определяют механические, физические свойства и структуру сплава, отличающийся тем, что определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях, и выбирают сплав с:

пределом прочности на разрыв не менее 1200 МПа,

отношением σ0,2В в пределах 0,9-0,95,

скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с,

мелкодисперсной микроструктурой с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80) % в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен.

2. Способ оценки по п. 1, отличающийся тем, что одно направление, в котором определяется скорость звука, совпадает с направлением прокатки титанового сплава.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении волноводных трактов. В процессе индукционного нагрева проводят дистанционное измерение температуры, по меньшей мере, в одной из точек поверхности трубы волновода и, по меньшей мере, в одной из точек фланца волновода с использованием пирометрических датчиков.

Изобретение относится к антенной технике, в частности к СВЧ волноводам. Антенно-фидерное СВЧ-устройство содержит волноводный элемент, полностью выполненный из графеносодержащего углекомпозитного материала с высокой электропроводимостью.

Изобретение относится к радиолокационной технике и может быть использовано в радиотехнической и авиационной промышленности. Технический результат - повышение надежности работы СВЧ передатчика восьми миллиметрового диапазона длин волн с импульсной лампой бегущей волны (ЛБВ).

Изобретение относится к технологии изготовления оптических волноводов, то есть светопроводящих и светоуправляющих структур, расположенных в объеме стекла. Техническим результатом изобретения является увеличение различия в показателях преломления сердцевина-оболочка и уменьшение потерь, передаваемых по волноводу, оптического сигнала.
Изобретение относится к области нанесения на подложки металлических покрытий, а именно к нанесению электропроводящего слоя на полимерную или бумажную подложку при изготовлении антенн, работающих в диапазоне ультравысокой частоты.

Использование: для определения внутренних напряжений в рельсах бесстыкового пути. Сущность изобретения заключается в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы одним прямым раздельно-совмещенным преобразователем и тремя наклонными приемными преобразователями, размещенными на одной оси.

Использование: для обнаружения дефектов изоляционного покрытия технологических или магистральных трубопроводов или иных изделий, расположенных в труднодоступных местах.

Использование: для неразрушающего контроля целостности резервуаров нефти и других изделий методом направленных акустических волн. Сущность изобретения заключается в том, что одновременно или последовательно в днище и боковые стенки резервуара направляют поперечные и продольные ультразвуковые волны, которые несут информацию о наличии дефектов в исследуемом изделии.

Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль окружности трубопровода, и поперечные, распространяющиеся вдоль образующих трубопровода, при этом акустический прибор обеспечивает сухой точечный акустический контакт с поверхностью трубопровода высокого качества и генерацию двух видов ультразвуковых волн, распространяющихся вдоль образующей и окружности трубопровода.

Использование: для неразрушающего контроля технического состояния трубопроводов акустическим способом. Сущность изобретения заключается в том, что аппаратура для обнаружения дефектов трубопроводов содержит кольцевую приемо-передающую акустическую систему, выполненную в виде антенных решеток пьезоэлектрических преобразователей, прикрепляемую к открытому участку трубопровода с помощью прижимного устройства, и программно-аппаратный комплекс для коммутации и интерпретации данных, при этом аппаратура дополнительно содержит устройство позиционирования, выполненное в виде пояса с пазами, направленными вдоль образующих трубопровода, а антенные решетки выполнены в виде съемных модулей пьезоэлектрических приемо-передающих преобразователей, устанавливаемых в пазы устройства позиционирования, причем прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях антенных решеток.

Использование: для ультразвукового контроля круглого проката и труб. Сущность изобретения заключается в том, что устройство для ультразвукового контроля круглого проката и труб содержит статор, ротор и ультразвуковые преобразователи, при этом оно дополнительно содержит по крайней мере одно акустическое зеркало, размещенное на роторе, причем как минимум один ультразвуковой преобразователь закреплен на статоре, по крайней мере один ультразвуковой преобразователь, размещенный на статоре, направлен таким образом, что направление его излучения/приема почти параллельно оси объекта контроля, зеркало выполнено в виде по крайней мере одного отражающего элемента, геометрическая форма которого соответствует конкретной измерительной или дефектоскопической задаче, ультразвуковые преобразователи образуют по крайней мере одно кольцо, ось излучения/приема которого почти параллельна оси объекта контроля.

Использование: для автоматизированного неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта по крайней мере одним информационным датчиком физического поля, измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале КI, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах ΔКI=КI+1-КI по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля, при этом измеряют величину сигнала в начале сканирования изделия на эталонном дефекте Un, измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта U0 в точке i=1, где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия, измеряют изменение сигнала на эталонном дефекте ΔUn=|Un-U0|, измеряют шаг дискретности измерения сигналов по траектории сканирования: Δxi=xi+1-xi, измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui), измеряют разность сигналов между соседними точками: ΔUi=Ui+1-Ui, регистрируют начало j-го дефекта по градиентному признаку, регистрируют координату (xнj) начала j-го дефекта по градиентному признаку, измеряют величину наибольшего сигнала в области j-го дефекта: Ujmax=Uji, если Ui+1>Ui и Ui+2>Ui+1, измеряют величину наибольшего изменения сигнала (ΔUmax∂j) на j-м дефекте, регистрируют окончание j-го дефекта по градиентному признаку, регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку: xкj=Δxixр, где p - целочисленная координата окончания j-го дефекта, измеряют протяженность j-го дефекта по градиентному признаку: Δхдj=хкj-хнj, регистрируют наличие j-го дефекта на изделии заданным образом.

Изобретение относится к области неразрушающего контроля при реализации ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов в рельсах на значительных скоростях сканирования.

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и сдвиговых волн в приповерхностном слое исследуемого материала, прием отраженных сигналов приемником, выполненным в виде решетки, собранной из локальных пьезоэлементов, обработку принятых сигналов в реальном масштабе времени в цифровой форме с сохранением их фаз, при этом генерацию серии оптических импульсов осуществляют в диапазоне от 10 Гц до 100 кГц, а сканирование производят через решетку из оптически прозрачных пьезоэлементов, акустический импеданс которых согласован с акустическим импедансом оптико-акустического генератора.

Изобретение относится к области ультразвукового контроля изделий, имеющих плоскую или цилиндрическую поверхность. Для расширения области применения на нижней поверхности корпуса устройства имеется продольный паз, стенки которого являются опорами и боковыми стенками локальной ванны, торцевыми стенками которой являются сменные планки.

Изобретение относится к методам определения механических и физических свойств титановых сплавов и определение по полученным величинам пригодности данных сплавов в качестве ультразвуковых волноводов. Способ выбора титанового сплава для ультразвукового волновода содержит этапы на которых определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с: пределом прочности на разрыв не менее 1200 МПа, отношением σ0,2σВ в пределах 0,9-0,95, скоростью звука не менее 6150 мс в обоих направлениях и различием скоростей не более чем на 50 мс, мелкодисперсной микроструктурой с размером зерна мкм, содержащей равноосную α-фазу в количестве в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Технический результат – повышение работоспособности ультразвуковых волноводов для ультразвуковой сварки. 1 з.п. ф-лы, 2 табл.

Наверх