Устройство для выращивания монокристаллов



Устройство для выращивания монокристаллов
Устройство для выращивания монокристаллов
Y10T117/1088 -
Y10T117/1088 -
Y10T117/108 -
Y10T117/108 -

Владельцы патента RU 2656331:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") (RU)

Изобретение относится к устройствам для выращивания монокристаллов методом зонной плавки со световым (радиационным) нагревом и может быть использовано в области технической оптики. Устройство содержит источник излучения 1, расположенный в фокусе F1 основного эллипсоидного отражателя 2, дополнительный эллипсоидный отражатель 3 с фокусом F2 и подвижный световой экран 4, выполненный в виде тела вращения, например диска. Световая система образована основным 2 и дополнительным 3 эллипсоидными отражателями и имеет промежуточную точку фокусировки F3. Линия ОЕ, соединяющая точки фокусировки Fl, F2 и F3, является основной оптической осью световой системы. Расходуемый поликристаллический стержень 5 расположен в кварцевой колбе 6, установленной у фокуса F2 дополнительного эллипсоидного отражателя 3. Кроме того, колба 6 содержит формируемый монокристалл 7 и зону переплава 8. Поток энергии от источника излучения 1 собирается путем отражения от основного отражателя 2 и направляется на дополнительный отражатель 3, который концентрирует поток излучения в своем фокусе F2. Расходуемый поликристаллический стержень 5 размещается в кварцевой колбе 6. Чем ближе подвижный световой экран 4 располагается к промежуточной точке фокусировки F3 основного 2 и дополнительного 3 отражателей, тем большая доля энергии не попадает в фокус дополнительного отражателя 3. В начале процесса плавления экран 4 перемещается в положение, соответствующее наименьшей энергии, достигающей фокус F2. После формирования зоны переплава 8 и образования монокристалла 7 экран 4 перемещается от промежуточной точки фокусировки F3. Размер экрана 4 выбран равным 10-25% от величины внешнего диаметра основного эллипсоидного отражателя. Конструкция устройства позволяет обеспечить регулировку режима плавления с обеспечением равномерности нагрева зоны переплава, а следовательно, повышение качества получаемого монокристалла и эффективность работы устройства в целом. 1 ил.

 

Изобретение относится к области выращивания монокристаллов, в частности к устройствам выращивания монокристаллов методом зонной плавки со световым (радиационным) нагревом. Также изобретение может быть использовано в других областях технической оптики.

Известен способ выращивания монокристаллов и конструкция установки для его реализации, описанные в патенте US 2017/0114474 А1, МПК C30B 13/24, C30B 29/66, C30B 13/32, 27.04.2017). Установка содержит четыре эллипсоидных отражателя, в каждом из которых расположена лампа (источник света), цилиндрический световой экран, кварцевую колбу и системы удержания выращиваемого монокристалла и расходуемого поликристаллического стержня. Каждый из четырех отражателей расположен таким образом, что имеется некоторый угол между горизонтом и его оптической осью. Регулировка интенсивности фокусируемого светового потока достигается за счет перемещения цилиндрического светового экрана относительно выращиваемого монокристалла.

Недостатками конструкции является неравномерный (точечный) нагрев зоны переплава и фронта кристаллизации (в азимутальной плоскости) из-за недостаточного перекрытия зон нагрева отдельных ламп, что приводит к модуляции температуры на фронте кристаллизации, отрицательно сказывающегося на качестве получаемого монокристалла. Каждый из пяти вариантов конструкции цилиндрического светового экрана, описанных в патенте US 2017/0114474 А1, не способствует решению этой проблемы, а в отдельных исполнениях, например цилиндрический световой экран с вертикальными прорезями, только обострят отрицательный эффект неравномерного нагрева.

Наиболее близким по технической сущности к изобретению является устройство для выращивания монокристаллов (патент на полезную модель RU №158160, МПК C30B 13/00, опуб. 20.12.2015) с основным эллипсоидным отражателем, в котором находится лампа (источник излучения), расположенным оптической осью вертикально, и дополнительным верхним эллипсоидным отражателем, также расположенным оптической осью вертикально, расходуемый поликристаллический стержень установлен в колбе из кварцевого стекла вблизи фокуса дополнительного верхнего эллипсоидального отражателя. Недостатком конструкции является отсутствие возможности регулировки интенсивности светового потока, фокусируемого основным и дополнительным эллипсоидными отражателями без изменения их положения, положения или тока накала лампы. Это значительно осложняет процесс выращивания монокристалла, особенно в момент начала процесса, что отражается на качестве получаемых монокристаллов и эффективности работы устройства в целом.

Техническая задача изобретения заключается в обеспечении регулировки режима плавления.

Техническим результатом изобретения является повышение качества получаемого монокристалла и повышение эффективности работы устройства в целом.

Это достигается тем, что известное устройство для выращивания монокристаллов, содержащее основной и дополнительный эллипсоидные отражатели, источник излучения, помещенный в фокусе основного эллипсоидного отражателя, и расходуемый поликристаллический стержень, установленный в колбе из кварцевого стекла вблизи фокуса дополнительного верхнего эллипсоидального отражателя, снабжено подвижным световым экраном, расположенным на главной вертикальной оптической оси и выполненным в виде тела вращения, причем размер подвижного экрана находится в пределах 10-25% внешнего диаметра основного эллипсоидного отражателя.

Сущность изобретения поясняется чертежом, на котором представлено устройство для выращивания монокристаллов.

Устройство для выращивания монокристаллов содержит источник излучения 1, расположенный в фокусе F1 основного эллипсоидного отражателя 2, дополнительный эллипсоидный отражатель 3 с фокусом F2 и подвижный световой экран 4, выполненный в виде тела вращения, например диска. Световая система образована основным 2 и дополнительным 3 эллипсоидными отражателями и имеет промежуточную точку фокусировки F3. Линия ОЕ, соединяющая точки фокусировки F1, F2 и F3, является основной оптической осью световой системы. Расходуемый поликристаллический стержень 5 расположен в кварцевой колбе 6, установленной у фокуса F2 дополнительного эллипсоидного отражателя 3. Кроме того, колба 6 содержит формируемый монокристалл 7 и зону переплава 8.

Устройство для выращивания монокристаллов работает следующим образом.

Поток энергии от источника излучения 1 собирается путем отражения от основного эллиптического отражателя 2 и направляется на дополнительный эллипсоидный отражатель 3, который концентрирует поток излучения в своем фокусе F2. Расходуемый поликристаллический стержень 5 размещается в кварцевой колбе 6. Чем ближе подвижный световой экран 4 располагается к промежуточной точке фокусировки F3 основного и дополнительного отражателей, соответственно 2 и 3, тем большая доля энергии не попадает в фокус дополнительного эллипсоидного отражателя 3. В начале процесса плавления подвижный световой экран 4 перемещается в положение, соответствующее наименьшей энергии, достигающей фокус F2. После формирования зоны переплава 8 и образования монокристалла 7 подвижный световой экран 4 перемещается от промежуточной точки фокусировки F3.

Перемещение подвижного светового экрана 4 вдоль основной оптической оси ОЕ обеспечивает регулировку режима плавления за счет изменения потока излучения, достигающего фокус F2 дополнительного эллипсоидного отражателя 3. При этом распределение энергии излучения, падающего на незатененную поверхность дополнительного эллипсоидного отражателя 3, не изменяется и остается однородным, чем обеспечивается равномерный нагрев зоны переплава 8, а следовательно, повышается качество получаемого монокристалла 7.

Экспериментально установлено, что для плавной регулировки светового потока диаметр подвижного светового экрана 4 должен находиться в пределах 10-25% от величины внешнего диаметра основного эллипсоидного отражателя 2. При диаметре менее 10% световой экран 4 не дает возможности к значительному подавлению энергии в начальный момент плавления, при диаметрах больших 25% световой экран 4, находясь в любом из положений, поглощает значительную часть энергии, что делает установку для выращивания монокристаллов неэффективной.

Использование изобретения позволяет повысить качество получаемого монокристалла и эффективность работы устройства в целом.

Устройство для выращивания монокристаллов, содержащее основной и дополнительный эллипсоидные отражатели, источник излучения, помещенный в фокусе основного эллипсоидного отражателя, и расходуемый поликристаллический стержень, установленный в колбе из кварцевого стекла у фокуса дополнительного верхнего эллипсоидального отражателя, отличающееся тем, что снабжено подвижным световым экраном, расположенным на основной оптической оси и выполненным в виде тела вращения, причем размер подвижного светового экрана выбран равным 10-25% от величины внешнего диаметра основного эллипсоидного отражателя.



 

Похожие патенты:

Изобретение относится к металлургии высокочистых металлов и может быть использовано при выращивании монокристаллических дисков из тугоплавких металлов и сплавов на их основе методом бестигельной зонной плавки (БЗП) с электронно-лучевым нагревом.

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из расплавленной зоны в градиенте температуры, в процессе которого осуществляют контроль величины диаметра центральной симметричной части расплавленной зоны, при этом величину диаметра фронта кристаллизации выбирают с заданной поправкой, учитывающей допустимое отклонение диаметра выращиваемого монокристалла от заданного, и поддерживают эту величину постоянной в течение всего процесса выращивания путем регулирования величины диаметра центральной симметричной части расплавленной зоны, в частности, за счет изменения скорости перемещения верхнего штока ростовой камеры.

Изобретение относится к выращиванию монокристаллов из расплава зонной плавкой при температурном градиенте с использованием нагревательного элемента, находящегося в контакте с расплавленной зоной, форма которой управляется, а подпитка осуществляется с помощью механизма для перемещения загрузки.

Изобретение относится к технике очистки веществ и обеспечивает повышение эффективности очистки за счет стабилизации ширины зоны. .

Изобретение относится к способам лазерной наплавки и может быть использовано при наплавке различных материалов лазерным излучением и при выращивании монокристаллов или осуществлении направленной кристаллизации в образцах путем лазерного спекания порошковых материалов газопорошковой смеси.
Изобретение относится к области полупроводниковой электроники. .

Изобретение относится к получению тонких монокристаллических пленок, может быть использовано в микроэлектронике для получения твердотельных радиоэлектронных устройств и обеспечивает получение пленок оксидов совершенной структуры и заданной ориентации.

Изобретение относится к области полупроводниковых материалов с модифицированными электрическими свойствами. Способ получения низкотемпературного термоэлетрика на основе сплава Bi88Sb12 с добавками гадолиния включает помещение навески сплава Bi88Sb12 и металлического гадолиния в количестве 0,01-0,1 ат.% в стеклянную ампулу, из которой откачивают воздух до 10-3 мм рт.

Изобретение относится к способам лазерной наплавки и может быть использовано при наплавке различных материалов лазерным излучением и при выращивании монокристаллов или осуществлении направленной кристаллизации в образцах путем лазерного спекания порошковых материалов газопорошковой смеси.

Изобретение относится к устройствам, используемым при выращивании кристаллов путем направленной кристаллизации из расплава в вакуумированной ампуле для отвода тепла от затравки, выделяемого в процессе кристаллизации.

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из расплавленной зоны в градиенте температуры, в процессе которого осуществляют контроль величины диаметра центральной симметричной части расплавленной зоны, при этом величину диаметра фронта кристаллизации выбирают с заданной поправкой, учитывающей допустимое отклонение диаметра выращиваемого монокристалла от заданного, и поддерживают эту величину постоянной в течение всего процесса выращивания путем регулирования величины диаметра центральной симметричной части расплавленной зоны, в частности, за счет изменения скорости перемещения верхнего штока ростовой камеры.

Изобретение относится к материаловедению и может быть использовано в физике конденсированного состояния, приборостроении, микроэлектронике, термоэлектричестве для получения тонкопленочных образцов твердого раствора висмут-сурьма с совершенной монокристаллической структурой.

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов.

Изобретение относится к химическому машиностроению и позволяет проводить непрерывный процесс очистки или разделения веществ совмещенными в одном аппарате процессами направленной кристаллизации на охлаждаемой поверхности и зонной плавки.

Изобретение относится к устройствам для выращивания монокристаллов методом зонной плавки со световым нагревом и может быть использовано в области технической оптики. Устройство содержит источник излучения 1, расположенный в фокусе F1 основного эллипсоидного отражателя 2, дополнительный эллипсоидный отражатель 3 с фокусом F2 и подвижный световой экран 4, выполненный в виде тела вращения, например диска. Световая система образована основным 2 и дополнительным 3 эллипсоидными отражателями и имеет промежуточную точку фокусировки F3. Линия ОЕ, соединяющая точки фокусировки Fl, F2 и F3, является основной оптической осью световой системы. Расходуемый поликристаллический стержень 5 расположен в кварцевой колбе 6, установленной у фокуса F2 дополнительного эллипсоидного отражателя 3. Кроме того, колба 6 содержит формируемый монокристалл 7 и зону переплава 8. Поток энергии от источника излучения 1 собирается путем отражения от основного отражателя 2 и направляется на дополнительный отражатель 3, который концентрирует поток излучения в своем фокусе F2. Расходуемый поликристаллический стержень 5 размещается в кварцевой колбе 6. Чем ближе подвижный световой экран 4 располагается к промежуточной точке фокусировки F3 основного 2 и дополнительного 3 отражателей, тем большая доля энергии не попадает в фокус дополнительного отражателя 3. В начале процесса плавления экран 4 перемещается в положение, соответствующее наименьшей энергии, достигающей фокус F2. После формирования зоны переплава 8 и образования монокристалла 7 экран 4 перемещается от промежуточной точки фокусировки F3. Размер экрана 4 выбран равным 10-25 от величины внешнего диаметра основного эллипсоидного отражателя. Конструкция устройства позволяет обеспечить регулировку режима плавления с обеспечением равномерности нагрева зоны переплава, а следовательно, повышение качества получаемого монокристалла и эффективность работы устройства в целом. 1 ил.

Наверх