Устройство для осаждения покрытий



Устройство для осаждения покрытий
Устройство для осаждения покрытий

Владельцы патента RU 2656480:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") (RU)

Изобретение относится к машиностроению, в частности к устройствам для осаждения износостойких покрытий на изделиях в вакуумной камере. Устройство для осаждения покрытий на изделиях 3 содержит рабочую вакуумную камеру 1, мишени 4-7 планарных магнетронов на стенках камеры, источники питания 8-11 магнетронных разрядов, отрицательными полюсами соединенные с мишенями, дополнительный изолированный от камеры 1 и установленный внутри нее электрод 12 и источник постоянного тока 13, отрицательным полюсом соединенный с камерой 1, а положительным полюсом соединенный с электродом 12 и с положительными полюсами источников питания магнетронных разрядов. Технический результат - повышение качества синтезируемого покрытия. 1 ил.

 

Изобретение относится к машиностроению, в частности к устройствам для осаждения износостойких покрытий на изделиях в вакуумной камере.

Известно устройство для осаждения покрытий с электродуговыми испарителями металла, в которых мишень из необходимого металла испаряется катодными пятнами вакуумно-дугового разряда между рабочей вакуумной камерой и мишенью (Патент США №5451308, 1995 г.). Свойства покрытия зависят от энергии бомбардирующих его ионов, определяемой отрицательным напряжением на изделии. При давлении азота 0,1-0,5 Па ионы испаряемого металла, например титана, до попадания на изделие многократно сталкиваются с молекулами азота, перезаряжаются, и большинство из них превращается в нейтральные атомы титана. На поверхности изделия они вступают в реакцию с атомами азота, образуя износостойкое покрытие из нитрида титана. Недостатком устройства являются эмитируемые катодными пятнами микроскопические капли металла, наличие которых в осаждаемом покрытии ограничивает область применения покрытия.

Известно устройство для осаждения покрытий с магнетронами, в которых плоская мишень из необходимого металла распыляется ионами из плазмы тлеющего разряда в арочном магнитном поле вблизи поверхности мишени, являющейся катодом разряда (Патент США №3878085, 1975 г.). При бомбардировке мишени ионами она эмитирует электроны, которые ускоряются в слое положительного объемного заряда между плазмой и катодом до энергии eUк, где Uк - падение потенциала между плазмой и катодом. Каждый электрон, влетевший в плазму, движется в ней по отрезку окружности, перпендикулярной магнитному полю, возвращается в слой и отражается в нем обратно в плазму. В результате он проходит по замкнутой ломаной криволинейной траектории вблизи поверхности мишени путь, превышающий размеры мишени в сотни и тысячи раз. Это позволяет поддерживать тлеющий разряд при давлении газа 0,1-1 Па, обеспечивающем транспортировку распыленных атомов до изделий. Свойства покрытия, осаждаемого с использованием планарного магнетрона, сильно зависят от плотности выделяемой на его поверхности энергии. Если эту энергию транспортируют бомбардирующие поверхность ионы из разрядной плазмы, ускоряемые подаваемым на изделия напряжением отрицательной полярности, то плотность энергии пропорциональна концентрации плазмы. Недостатком устройства с магнетронными распылителями является низкий коэффициент использования материала мишени, распыляемого лишь на малой площади ее поверхности в области арочного магнитного поля. Кроме того, концентрация разрядной плазмы снижается за пределами арочного магнитного поля у поверхности изделия в десятки раз. Поэтому свойства покрытий, осаждаемых на различных участках поверхности изделия, зависят от расстояния до поверхности мишени.

Наиболее близким решением по технической сущности к изобретению является устройство для осаждения покрытий, содержащее рабочую вакуумную камеру, устройство планетарного вращения изделий вокруг вертикальной оси камеры, плоские мишени планарных магнетронов на боковых стенках камеры и источники питания магнетронных разрядов (Surface and Coating Technology. 1992. V. 50. P. 169-178). Дополнительно устройство содержит соленоиды, магнитное поле которых изменяет конфигурацию арочного поля у поверхности каждой мишени. Благодаря соленоидам индукция магнитного поля в центре мишени снижается, а на ее периферии - возрастает. В несбалансированном магнетроне возникает утечка быстрых электронов в камеру из центральной области его магнитной ловушки, в результате чего концентрация плазмы в камере повышается. Однако на оси камеры она по-прежнему на порядок меньше, чем вблизи поверхности мишени. Это является причиной неоднородности свойств осаждаемых на изделиях покрытий.

Задачей предложенного решения является создание устройства для осаждения покрытий с равномерным распределением концентрации плазмы в камере, которое обеспечивало бы однородность свойств осаждаемых на изделиях покрытий.

Технический результат - повышение качества осаждаемых покрытий.

Поставленная задача решается, а заявленный технический результат достигается тем, что устройство для осаждения покрытий на изделиях, содержащее рабочую вакуумную камеру, мишени планарных магнетронов на стенках камеры, источники питания магнетронных разрядов, отрицательными полюсами соединенные с мишенями, дополнительно содержит изолированный от камеры и установленный внутри нее электрод и источник постоянного тока, отрицательным полюсом соединенный с камерой, а положительным полюсом соединенный с электродом и с положительными полюсами источников питания магнетронных разрядов.

Изобретение поясняется чертежом, на котором изображена схема устройства для осаждения покрытий.

Устройство для осаждения покрытий на изделиях содержит рабочую камеру 1, устройство планетарного вращения 2 изделий 3, изолированные от камеры 1 плоские мишени 4, 5, 6 и 7 магнетронов с магнитными системами и источники питания 8, 9, 10 и 11, соединенные отрицательными полюсами с мишенями. Внутри камеры 1 расположен изолированный от нее электрод 12. Источник постоянного тока 13 соединен отрицательным полюсом с камерой 1, а положительным полюсом - с электродом 12 и с положительными полюсами источников питания 8, 9, 10 и 11.

Устройство работает следующим образом.

Рабочую вакуумную камеру 1 с обрабатываемыми изделиями 3 внутри нее откачивают до давления 1 мПа, затем подают в камеру 1 рабочий газ, например смесь аргона с азотом (15%), и увеличивают давление в камере 1 до 0,2-0,5 Па. Включением источников 8, 9, 10 и 11 прикладывают между электродом 12 и мишенями 4, 5, 6 и 7 напряжение в несколько сотен вольт. В результате зажигаются магнетронные разряды с заданными стабилизированными токами. Концентрация разрядной плазмы 14 максимальна у поверхности мишени и снижается на порядок в центре камеры 1. Ионы из плазмы 14 ускоряются в слоях положительного объемного заряда между плазмой 14 и мишенями до энергии в несколько сотен электронвольт и бомбардируют мишени. Распыленные ионами атомы материала мишеней вступают на поверхности изделий 3 в реакцию с атомами азота, и в результате осаждаются покрытия из нитрида титана. В процессе осаждения покрытие бомбардируют ионы из плазмы 14, ускоряемые напряжением отрицательной полярности, подаваемым на изделия от источника опорного напряжения (на Фиг. 1 не показан). Из-за резкой неоднородности плазмы 14 плотность ионного тока на поверхности осаждаемых покрытий и их свойства также неоднородны.

При включении источника 13 и росте напряжения между электродом 12 и камерой 1 до ΔU потенциал плазмы 14 повышается также на ΔU, а между плазмой 14 и стенками камеры 1 возникает слой положительного объемного заряда 15. Потенциал каждой мишени со стабилизированным током в ее цепи повышается также на ΔU, но разность потенциалов между плазмой 14 и мишенью, а также скорость ее распыления не изменяются. Электроны, эмитируемые стенками камеры 1 в результате их бомбардировки ионами из плазмы 14, ускоряются в слое 15 до энергии eΔU, где е - заряд электрона, пролетают через центр камеры 1 и отражаются в слое 15 у противоположной стенки камеры 1. Затем они снова пролетают через центр камеры и отражаются в слое. До попадания на электрод 12 эти электроны проходят путь, длина которого значительно превышает их ионизационный пробег в рассматриваемом диапазоне давления 0,1-0,5 Па. Поэтому ускоренные электроны расходуют на ионизацию и возбуждение газа в камере всю свою энергию. Большой вклад в ионизацию вносят также быстрые электроны, образованные в слое 15 многократно возвращающимися в него электронами, эмитированными стенками камеры 1. Так как все ускоренные электроны многократно проходят через центр камеры, концентрация плазмы здесь возрастает на порядок, и заметно выравнивается ее радиальное распределение. В результате повышается однородность плотности тока ионов, бомбардирующих покрытия во время их осаждения, и однородность свойств покрытий на всей поверхности изделий.

Использование изолированного от камеры электрода и источника постоянного тока, отрицательным полюсом соединенного с камерой, а положительным полюсом соединенного с электродом и с положительными полюсами источников питания магнетронных разрядов, позволяет при постоянных токах в цепях мишеней и неизменных величинах концентрации плазмы вблизи поверхностей мишеней за счет несамостоятельного тлеющего разряда между электродом и камерой многократно увеличить концентрацию плазмы в ее центре, повысив таким образом однородность распределения плазмы внутри камеры, что обеспечивает повышение однородности плотности тока ионов на поверхности осаждаемых покрытий и, как следствие, повышение качества последних.

По сравнению с прототипом предлагаемое устройство для осаждения покрытий позволяет осаждать на изделиях покрытия с высокой однородностью. Это в свою очередь обеспечивает более высокую адгезию и износостойкость покрытий.

Изложенное позволяет сделать вывод о том, что поставленная задача - создание устройства для осаждения покрытий, которое обеспечивало бы равномерное распределение концентрации плазмы в камере и однородность свойств осаждаемых на изделиях покрытий, - решена, а технический результат - повышение качества осаждаемого покрытия - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники, необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для осаждения на изделиях покрытий с повышенной однородностью свойств покрытия на всей поверхности изделия;

- для заявленного объекта в том виде, как он охарактеризован в нижеизложенной формуле, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует требованиям условий патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Устройство для осаждения покрытий на изделиях, содержащее рабочую вакуумную камеру, мишени планарных магнетронов на стенках камеры, источники питания магнетронных разрядов, отрицательными полюсами соединенные с мишенями, отличающееся тем, что оно дополнительно содержит изолированный от камеры и установленный внутри нее электрод и источник постоянного тока, отрицательным полюсом соединенный с камерой, а положительным полюсом соединенный с электродом и с положительными полюсами источников питания магнетронных разрядов.



 

Похожие патенты:

Изобретение относится к вакуумно-плазменной технике, а именно к источникам атомов металла преимущественно для осаждения тонких металлических пленок на диэлектрические подложки в вакуумной камере, и к источникам быстрых атомов и молекул газа.

Изобретение относится к вакуумно-плазменной технике. .

Изобретение относится к плазменной технике, а именно генерации ионных пучков с большим поперечным сечением. .

Изобретение относится к газонаполненным нейтронным трубкам для каротажных работ на нефтяных, газовых и рудных месторождениях. .

Изобретение относится к способам изготовления газонаполненных нейтронных трубок и формированию нейтронного потока. .

Изобретение относится к ускорительной технике и может быть использовано в научной деятельности и технологических процессах, в которых используются пучки водородных ионов со средней интенсивностью тока в несколько миллиампер.

Изобретение относится к технике получения плазмы и генерации ионных пучков с большим током. .

Изобретение относится к технике получения плазмы и генерации ленточных ионных пучков. .

Изобретение относится к плазменной эмиссионной электронике, в частности к конструкции источника электронов с плазменным эмиттером, генерирующего радиально сходящиеся ленточные пучки, и может быть использовано в электронно-ионной вакуумной технологии термообработки наружных поверхностей деталей и изделий цилиндрической формы ускоренным пучком электронов.

Заслонка // 2651838
Изобретение относится к заслонке устройства для напыления пленок металла, которое содержит резистивный испаритель и два электронных испарителя. Заслонка содержит две створки (1) и (2) сегментной формы, закрепленные на рычагах (3) и (4 ) винтами (5) и сидящие на общей оси (6) для их синхронного поворота в разные стороны, и механизм сведения и разведения створок.

Изобретение относится к плазменно- дуговому устройству для формирования покрытий и может быть эффективно использовано при формировании защитных и биосовместимых слоев дентальных и ортопедических имплантатов, при изготовлении технологических слоев электролитических ячеек тонкопленочных интегральных аккумуляторов и в химических реакторах, которые работают в агрессивных средах и в условиях высоких температур.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях.

Изобретение относится к линии изготовления азотированного листа из текстурированной электротехнической стали и к способу изготовления листа из указанной стали с использованием данной линии.

Изобретение относится к способу магнетронного напыления многослойного равнотолщинного покрытия и установке для его осуществления и может быть использовано для получения оптических покрытий на поверхности оптических подложек.

Изобретение относится к установке для нанесения покрытий на поверхности деталей. Внутри корпуса вакуумной камеры установлен, по меньшей мере, один источник распыляемого материала, выполненный в виде N магнетронов, где N - целое число и N>1, и ионный источник.

Изобретение относится к микроэлектронике, в частности к установке для напыления в вакууме топологического тонкоплёночного рисунка гибридной микросхемы на подложку.

Изобретение относится к способу напыления в вакууме топологического тонкопленочного рисунка гибридной микросхемы на подложку и может быть использовано в микроэлектронике.

Изобретение относится к порошковой металлургии, в частности к устройствам для нанесения покрытий на абразивные зерна, и может быть применено в инструментальном производстве.

Изобретение относится к установке для непрерывного вакуумного осаждения металлического покрытия на движущуюся подложку и к способу подготовки к непрерывному вакуумному осаждению металлического покрытия на движущуюся подложку в указанной установке.

Изобретение относится к получению металлосодержащего органозоля, применяемого для послойной 3D печати изделия. В разреженной среде инертного газа распыляют мишень из металлического материала путем плазменного разряда магнетрона, обеспечивают осаждение распыленных металлических частиц в композицию на основе органического растворителя и стабилизатора на основе катионактивных термостабильных полимеров алкиламмониевых солей с образованием металлосодержащего органозоля.
Наверх