Способ обезвреживания нитрата гидроксиламина в сточных водах

Изобретение может быть использовано в топливной промышленности при переработке отработанного ядерного топлива методом жидкостной экстракции. Способ включает обработку сточных вод, содержащих нитрат гидроксиламина, гидроксидом натрия в массовом соотношении (3-4,8):1 соответственно, в присутствии активированного угля и при температуре 80-120°C в течение 1-4 часов. Способ обеспечивает практически полное обезвреживание нитрата гидроксиламина в сточных водах, повышение безопасности, упрощение и удешевление процесса.

 

Изобретение относится к неорганической химии, конкретно к способам обезвреживания нитрата гидроксиламина (НГА) в сточных водах.

Водные растворы НГА используются при переработке отработанного ядерного топлива методом жидкостной экстракции.

Концентрированные (более 60%) водные растворы НГА, являясь энергичными окислителями, составляют основу ряда топлив различного назначения.

В результате технологических процессов, связанных с производством и применением НГА, затруднительно избежать его попадания в сточные воды. Поскольку такие отходы не могут быть обезврежены биологическими методами, они подлежат дополнительной переработке в менее токсичные и агрессивные соединения.

Известен способ [Рафеев В.А., Рубцов Я.И. Кинетика и механизм термического разложения нитрата гидроксиламмония. Известия АН РФ, серия химическая. 1993, №.11. стр. 1897-1991] термического обезвреживания НГА в сточных водах.

Недостатком этого способа является высокая опасность технологического процесса, связанная с тем, что существует возможность взрыва.

Известен [Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды. - М.: Химия, 1989, стр. 396-397] огневой способ обезвреживания НГА в сточных водах.

Недостатком этого способа является его вредное воздействие на персонал и окружающую среду, т.к. образуются токсичные оксиды азота (NO, NO2, N2O3, N2O5).

Известен способ [пат. США 4725360, МПК B01J 39/04, оп. 16.02.1988] обезвреживания НГА в сточных водах пропусканием через сильнокислотную ионообменную смолу (полистиролсульфонат), с последующей ее регенерацией. Однако этот способ сопровождается необходимостью регенерации смолы и, кроме того, невозможно обезвреживание отходов с высоким содержанием НГА.

Известен способ [пат. США 4927542, МПК C02F 1/72, оп. 22.05.1990] обезвреживания НГА в сточных водах оксидом марганца (IV) при pH 1-4 и температуре 10-100°C.

Способ требует создания кислой среды и дальнейшего извлечения соединений марганца из сточных вод перед их окончательной утилизацией.

Известен способ [пат. США 5485722, МПК С06В 21/00, оп. 23.01.1993] обезвреживания НГА в сточных водах путем его каталитического разложения, с использованием в качестве катализаторов платиновых или переходных металлов (рассматриваются только платиновые металлы). Однако применение этого способа включает необходимость использования редких дорогостоящих катализаторов.

Наиболее близким является способ [пат. США 5062966, МПК C02F 9/00, оп. 05.11.1991] обезвреживания НГА в сточных водах гидроксидом натрия и источниками ионов гипохлоритов при pH свыше 8 (авторами способа рекомендовано свыше 12).

Недостатком этого способа является его сложность, заключающаяся в необходимости обеспечить сильнощелочную среду и последующую нейтрализацию сточных вод перед их окончательной утилизацией. Также способ оказывает вредное воздействие на окружающую среду и персонал: образуются токсичные соединения хлора, нитроамины и высшие оксиды азота.

Задачей настоящего изобретения является создание нового способа обезвреживания нитрата гидроксиламина в сточных водах с достижением следующего технического результата: повышение безопасности, упрощение и удешевление по сравнению с ранее известными способами.

Сущность изобретения состоит в том, что разработан способ, включающий обезвреживание НГА в сточных водах гидроксидом натрия, в массовом соотношении (3-4,8):1 соответственно, в присутствии активированного угля при температуре 80-120°C в течение 1-4 часов.

Способ осуществляют следующим образом:

Процесс проводят в две стадии. На первой стадии в реактор, снабженный перемешивающим устройством и термопарой, при постоянном перемешивании вносят порцию сточных вод определенной массы, содержащих определенную концентрацию НГА, и гидроксид натрия, в массовом соотношении (3-4,8):1 соответственно. В результате происходит частичное превращение НГА в гидроксиламин:

На второй стадии после полного растворения гидроксида натрия реакционную смесь нагревают до 80-120°C и вносят активированный уголь. Проведение процесса при температуре ниже 80°C и в отсутствии активированного угля нецелесообразно из-за крайне низкой скорости взаимодействия. Начинается экзотермическая реакция с интенсивным газовыделением. При этом происходит взаимодействие НГА с образовавшимся на первой стадии гидроксиламином по одному из следующих механизмов:

при массовом соотношении НГА к гидроксиду натрия 3:1, или

при массовом соотношении НГА к гидроксиду натрия 4,8:1.

Температуру продолжают поддерживать в интервале 80-120°C до прекращения газовыделения (1-4 часа). Окончание процесса определяют визуально по отсутствию выделения NO2 (имеет красно-бурый цвет) при добавлении реакционной смеси (0,1-0,5 мл) в горячую концентрированную азотную кислоту:

pH полученного в результате обезвреживания раствора равно 6-7.

При обработке сточных вод предлагаемым способом содержание НГА в них резко сокращается либо он практически отсутствует.

ПРИМЕРЫ ПРОВЕДЕНИЯ СПОСОБА

Пример 1

В реактор, снабженный термопарой и перемешивающим устройством, при постоянном перемешивании вносят 132,33 г сточных вод с концентрацией НГА 66,40%. Таким образом, масса НГА составляет 87,86 г. Затем при перемешивании вносят 18,30 г гидроксида натрия (массовое соотношение НГА к гидроксиду натрия 4,8:1). После полного растворения гидроксида натрия в реакционную смесь вносят 0,50 г активированного угля. Начинается газовыделение, которое ускоряется до состояния энергичного кипения. Температуру доводят до 120°C и поддерживают до прекращения газовыделения. Если при добавлении пробы смеси в горячую концентрированную азотную кислоту выделение NO2 не заканчивается, нагрев продолжают. Длительность процесса составляет 1 час. Анализ методом окислительно-восстановительного титрования показал остаточное содержание НГА 0,024%, то есть он практически обезврежен.

Пример 2

В реактор при перемешивании вносят 71,40 г сточных вод с концентрацией НГА 70,00%. Рассчитанная масса НГА составляет 50,00 г. Затем вносят 16,60 г гидроксида натрия (массовое соотношение НГА к гидроксиду натрия 3:1). После полного растворения гидроксида натрия в реакционную смесь вносят 0,25 г активированного угля. Начинается газовыделение. Температуру доводят до 80°C и поддерживают в течение 1,5 часов. Анализ методом окислительно-восстановительного титрования показал остаточное содержание НГА 0,160%, то есть в основном его масса обезврежена.

Пример 3

В реактор при перемешивании вносят 127,00 г сточных вод с концентрацией НГА 66,40%. Рассчитано, что масса НГА - 84,26 г. Затем вносят 20,02 г гидроксида натрия (массовое соотношение НГА к гидроксиду натрия 4,2:1). После полного растворения гидроксида натрия в реакционную смесь вносят 0,38 г активированного угля. Начинается газовыделение. Температуру доводят до 100°C и поддерживают в течение 2 часов. Анализ методом окислительно-восстановительного титрования не показал присутствия НГА. Таким образом, весь НГА обезврежен.

Пример 4

В реактор при перемешивании вносят 100,00 г сточных вод с концентрацией НГА 66,40%. Рассчитанная масса НГА составляет 66,40 г. Затем вносят 13,83 г гидроксида натрия (массовое соотношение НГА к гидроксиду натрия 4,8:1). После полного растворения гидроксида натрия в реакционную смесь вносят 0,25 г активированного угля. Начинается газовыделение. Температуру доводят до 80°C и поддерживают в течение 4 часов. Анализ методом окислительно-восстановительного титрования не показал присутствия НГА.

Технический результат, достигаемый изобретением, заключается в повышении безопасности, упрощении и удешевлении обезвреживания НГА в сточных водах.

Предлагаемый способ прост в осуществлении и может быть реализован на стандартном оборудовании.

Способ обезвреживания нитрата гидроксиламина в сточных водах гидроксидом натрия, включающий взаимодействие нитрата гидроксиламина с гидроксидом натрия в массовом соотношении (3-4,8) : 1 соответственно в присутствии активированного угля при температуре 80-120°С в течение 1-4 часов.



 

Похожие патенты:

Изобретение относится к охране окружающей среды и может быть использовано для очистки сточных вод от органических красителей. Деструкцию органических красителей в сточных водах проводят методом окисления пероксидом водорода в присутствии катализатора.

Изобретение может быть использовано при получении коагулянта для очистки воды, в медицинской и парфюмерной промышленности. Основный хлорид алюминия получают путем взаимодействия водного раствора соляной кислоты со слитками металлического алюминия при повышенной температуре с периодическим охлаждением водой.

Изобретение относится к конструкции аппарата получения особо чистой дистиллированной воды, используемой в медицинской, фармацевтической, биотехнической, электронной, химической и других отраслях промышленности.

Изобретение относится к области водоподготовки и может быть использовано для очистки природных вод из подземных источников от соединений лития при получении воды хозяйственно-питьевого назначения.

Изобретение относится к способу переработки нефелинового сырья и подовой золы с получением низкоконцентрированного композиционного коагулянта-флокулянта. Способ получения предусматривает смешение в массовых процентах нефелинового сырья 1-99 мас.% и зольных продуктов 1-99 мас.%, последующее растворение сухой дисперсии в 5-10% серной кислоте при массовом соотношении сухой дисперсии к растворителю (2-5):(95-98) в течение 2-8 часов.

Изобретение может быть использовано при получении хлористого натрия. Технологическая линия получения садочной поваренной соли из рапы с использованием солнечной энергии включает систему солнечных коллекторов 1, выход которой соединен со входом оборудованного системой сброса паров излишне нагретой воды и насосом 3 расширительно-накопительного бака 2.

Изобретение относится к производству пара на основе испарения с нулевым выпуском жидкости для процессов повышения нефтедобычи (EOR) с использованием прямоточных парогенераторов (OTSG).

Группа изобретений может быть использована для нейтрализации закисления обрабатываемых природных вод – пресных, морских, океанических. Способы регулирования закисления воды включают приведение по меньшей мере одного меланинового материала в контакт с водой и катализ реакции между водой, СО2 и/или бикарбонатом, в результате чего образуется глюкоза и повышается рН обрабатываемой воды.

Изобретение относится к системам очистки сточных вод и может быть использовано для очистки от СПАВ, органических загрязнений, взвешенных веществ и соединений азота.

Изобретение относится к технологиям обработки воды для предотвращения образования накипных и солевых отложений. Способ получения средства для стабилизационной обработки воды включает обработку смолы анионита в хлор-форме водным раствором карбоната или гидрокарбоната натрия с концентрацией 4 мас.%.

Изобретение относится к области синтеза солей гидроксиламина, в частности нитрата гидроксиламина, концентрированные водные растворы которого являются энергичными окислителями и составляют основу ряда топлив.

Изобретение относится к катализаторам для получения сульфата гидроксиламина путем селективного гидрирования оксида азота в сернокислой среде. Данный катализатор содержит платину в количестве 0,3-1 мас.%, нанесенную на непористый или пористый углеродный носитель.

Изобретение относится к аппаратам для проведения физико-химических процессов при наличии газа, жидкости и катализатора, а более конкретно - к реакторам для синтеза гидроксиламинсульфата - одного из исходных компонентов производства пластмасс полиамидной группы.

Изобретение относится к аппаратам для проведения физико-химических процессов при наличии газа, жидкости и частиц мелкодисперсного катализатора и может быть использовано, в частности, для синтеза гидроксиламинсульфата.

Изобретение относится к способу производства гидроксиламинсульфата (ГАС) методом восстановления моноокиси азота (NO) водородом (Н 2) на катализаторе в среде серной кислоты.

Изобретение относится к химической промышленности, а именно - к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама. .

Изобретение относится к химической промышленности, а именно - к способу управления процессом получения гидроксиламинсульфата, применяемого в синтезе капролактама.

Изобретение относится к аппаратам для проведения гетерогенных процессов и может быть использовано при проведении синтеза гидроксиламинсульфата в производстве капролактама в химической промышленности.

Изобретение относится к способу нагрева жидкости, в частности воды, к нагревающему устройству с применением такого способа, а также к электронному прибору, содержащему такое нагревающее устройство. Способ нагрева жидкости в нагревателе, содержащем нагревательный элемент и противоэлектрод, при этом способ включает нагрев жидкости в нагревателе посредством нагрева нагревательного элемента до температуры в диапазоне 120-250°C и приложение разности потенциалов переменного тока между нагревательным элементом и противоэлектродом, при этом разность потенциалов переменного тока изменяется с частотой переменного тока в диапазоне 200-2500 Гц и имеет амплитуду в диапазоне 1-5 В и при этом жидкость протекает в нагревателе между нагревательным элементом и противоэлектродом. Это позволяет предотвратить или уменьшить образование накипи на нагревательных элементах, таких как способная нагревать стенка или погружной нагреватель и/или обеспечить декальцинирование кальцинированных поверхностей нагревательных элементов. 4 н. и 11 з.п. ф-лы,62 ил.
Наверх