Способ управления положением ротора электрической машины на бесконтактных подшипниках (варианты) и электрическая машина для его реализации

Изобретение относится к области энергомашиностроения и может быть использовано в электромеханических преобразователях энергии на бесконтактных подшипниках. Технический результат - повышение точности управления и надежности электрической машины с ротором на бесконтактных подшипниках, возможность применения во всех типах бесконтактных подшипников и измерения перекосов ротора в осевом направлении. В способе управления положением ротора электрической машины в правой и левой формирующих измерительный сигнал обмотках, которые уложены в каждом пазу электрической машины, создают высокочастотное магнитное поле, частота которого больше частоты пятой гармоники электрической машины, при этом в электропроводящих элементах ротора наводят вихревые токи, которые создают вторичное магнитное поле, воздействие которого воспринимается измерительной обмоткой, и по измерению сигнала с измерительной правой и левой обмоток судят о пространственном положении ротора. Сигналы правой и левой обмоток должны быть симметричны, при несимметричности данных сигналов судят об угловых перекосах ротора. Информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов. По второму варианту в способе управления положением ротора измеряют сигнал с обмоток электрической машины, по изменению которого судят о пространственном положении ротора. Информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов. На электропроводящих элементах ротора электрической машины выполняют засечки. В электропроводящих элементах ротора под воздействием поля основной обмотки наводят вихревые токи, которые создают вторичное магнитное поле в силовой обмотке, воздействие которого воспринимается силовой обмоткой. Так как на электропроводящих элементах ротора нанесены засечки, то вторичное поле, воспринимаемое силовой обмоткой, искажено. По измерению искаженного магнитного поля с силовой обмотки судят о пространственном положении ротора. Информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов. В статоре электрической машины выполнена прорезь. В пазах статора дополнительно уложены левая и правая измерительные обмотки, формирующие измерительный сигнал. Система управления содержит фильтры с возможностью фильтрации напряжения, наводимого ротором в измерительной обмотке. 3 н.п. ф-лы, 1 ил.

 

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках.

Известен механизм с магнитным подвесом ротора (а.с. СССР №1569932, Н02К 7/09, 1990 г.), в котором каждый канал системы содержит датчик положения ротора, пропорционально-интегрально-дифференциальный регулятор, силовой преобразователь и два электромагнита.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известна конструкция системы управления магнитным подшипником (патент РФ №2181922 С2, Н02Р 6/16, Н02К 7/09, Н02К 29/06, 2002.04.27), каждый канал управления которой содержит датчик положения ротора, силовой преобразователь, два электромагнита, причем обмотки электромагнитов подключены к силовому преобразователю, каждый канал которого снабжен интегральным регулятором и форсирующим регулятором второго порядка, причем выход интегрального регулятора соединен с прямым входом форсирующего регулятора второго порядка, выход которого соединен со входом силового преобразователя, а выход датчика положения ротора соединен с инверсными входами обоих регуляторов.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора.

Известна конструкция магнитного подшипника (патент РФ №2246644 C1, F16C 32/04, 2005.02.20), в которой модуль управления содержит формирователь вектора радиального перемещения ротора, соединенный выходом через блок динамической обработки сигнала радиального отклонения со входом формирователя управляющих токов в обмотках управления радиальной опоры, который выходами подключен ко входам соответствующих усилителей мощности канала стабилизации радиального положения ротора, выходы которых являются первыми управляющими выходами модуля управления. Блок контроля процесса управления выполнен с возможностью передачи управляющей информации в систему автоматического управления машины. Выпрямитель напряжения соединен через емкостный фильтр с входами регулятора напряжения и источника вторичного электропитания, выполненного с возможностью подключения к выводам электропитания всех блоков модуля управления, причем один из выходов емкостного фильтра и выход регулятора напряжения являются третьими управляющими выходами модуля управления, при этом входы формирователя вектора радиального перемещения ротора являются первыми информационными входами модуля управления, а формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора по осям в радиальных направлениях.

Недостатком данной конструкции также является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления неустойчивостью в гидродинамических подшипниках (патент РФ №2399803, F16C 17/02, 08.06.2005), по которому используют магнитный подшипник в комбинации с гидродинамическим подшипником, причем гидродинамический подшипник используют в качестве подшипника, воспринимающего основную нагрузку, а магнитный подшипник используют в качестве средства управления неустойчивостью в гидродинамическом подшипнике.

Недостатком такого способа является сложность его технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления ротором в активных магнитных подшипниках (Журавлев Ю.Н. «Активные магнитные подшипники: Теория, расчет, применение» - СПб.: Политехника, 2003. - 206 с.: ил., стр. 98), по которому измеряют электрическую величину тока в обмотках электромагнита активного магнитного подшипника, электрически соединенного с регулятором и силовым преобразователем и по величине тока судят о положении ротора и управляют им.

Недостатком данного способа является невозможность контроля положения ротора при всех типах бесконтактных подшипников и сложность технической реализации, связанная со значительным количеством информационных каналов, а также невозможность применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах).

Известен способ бессенсорного управления активными магнитными подшипниками (патент US 5696412 А, Н02К 7/09, 20.10.1993), по которому управляющие электромагниты, электрически соединенные с регулятором и силовым преобразователем, помещают коаксиально в упорядоченном массиве, окружающем ротор, и измеряют электрическую величину на их зажимах, в качестве которой выступает падение напряжения, путем сравнения абсолютной величины падения напряжения двух противоположных электромагнитов судят о величине смещения, исходя из которой рассчитывается величина управляющего тока.

Недостатком данного способа является сложность его технической реализации, связанная со значительным количеством информационных каналов и электромагнитов, а также ограниченные функциональные возможности, обусловленные невозможностью применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах) и отсутствием возможности измерения угловой координаты.

Наиболее близким по технической сущности и достигаемому результату является способ бессенсорного управления положением ротора в бесконтактных подшипниках (патент РФ №2539690, Н02К 7/09, F16C 32/04, 27.01.2014), по которому измеряют электродвижущую силу каждой фазы и выходное напряжение электрической машины и по его изменению судят о пространственном положении ротора, при этом информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

Недостатком данного изобретения является сложность его технической реализации, обусловленная использованием силовой обмотки в качестве измерительной, и связанная с этим низкая точность, также недостатком данного изобретения являются его ограниченные функциональные возможности, обусловленные сложностью измерения угловых перекосов ротора.

Задача изобретения - расширение функциональных возможностей, благодаря возможности контроля угловых и осевых перекосов, а также повышение точности измерения положения ротора, благодаря использованию трех обмоток: силовой, измерительной и формирующей измерительный сигнал.

Техническим результатом является повышение точности управления и надежности электрической машины с ротором на бесконтактных подшипниках, возможность применения предложенного способа во всех типах бесконтактных подшипников, а также появление возможности измерения перекосов ротора в осевом направлении.

Указанный результат по первому варианту достигается тем, что в способе управления положением ротора в бесконтактных подшипниках, заключающемся в измерении сигнала с обмоток электрической машины, по изменению которого судят о пространственном положении ротора, при этом информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов, согласно изобретению в правой и левой формирующих измерительный сигнал обмотках, которые уложены в каждом пазу электрической машины, создают высокочастотное магнитное поле, частота которого больше частоты пятой гармоники электрической машины, при этом в электропроводящих элементах ротора наводят вихревые токи, которые создают вторичное магнитное поле, воздействие которого воспринимается измерительной обмоткой, и по измерению сигнала с измерительной правой и левой обмоток судят о пространственном положении ротора. Сигналы правой и левой обмоток должны быть симметричны, при несимметричности данных сигналов судят об угловых перекосах ротора, при этом информация об изменении пространственного положения ротора и угловой координаты поступает в регулятор и силовой преобразователь, которые регулируют величину, воздействия управляющих элементов.

Указанный результат по второму варианту достигается тем, что в способе управления положением ротора в бесконтактных подшипниках, заключающемся в измерение сигнала с обмоток электрической машины, по изменению которого судят о пространственном положении ротора, при этом информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов, согласно изобретению на электропроводящих элементах ротора электрической машины выполняют засечки, при этом в электропроводящих элементах ротора под воздействием поля основной обмотки наводят вихревые токи, которые создают вторичное магнитное поле в силовой обмотке, воздействие которого воспринимается силовой обмоткой, за счет нанесенных на электропроводящих элементах ротора засечек вторичное поле, воспринимаемое силовой обмоткой, искажено и по измерению искаженного магнитного поля с силовой обмотки судят об пространственном положении ротора, а информация об изменении пространственного положения ротора и угловой координаты и поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

Кроме того указанный результат достигается тем, что в электрической машине, содержащей ротор, с бесконтактными подшипниками, систему управления в виде пропорционально-интегрально-дифференциального регулятора, силовой преобразователь и статор, в пазах которого уложена силовая обмотка, согласно изобретению в статоре выполнена прорезь, при этом в пазах статора дополнительно уложена левая и правая формирующие измерительный сигнал и измерительные обмотки, а система управления содержит фильтры с возможностью фильтрации напряжения, наводимого ротором в измерительной обмотке.

Существо изобретения поясняется чертежом. На фиг. 1 изображена электрическая машина.

Предложенное устройство содержит (фиг. 1) ротор 1 с установленными на нем бесконтактными подшипниками 2, пропорционально-интегрально-дифференциальный регулятор 3, силовой преобразователь 4, статор 5 с прорезью 6, в пазы которого уложены силовая обмотка 7, правая формирующая измерительный сигнал обмотка 8, левая формирующая измерительный сигнал обмотка 9, правая измерительная обмотка 10 и левая измерительная обмотка 11.

Электрическая машина работает следующим образом. При вращении ротора 1 в силовой обмотке 6 протекает ток, при этом по правой формирующей измерительный сигнал обмотке 8 и левой формирующей измерительный сигнал обмотке 9 пропускается высокочастотный ток, который создает первичное магнитное поле. Оно наводит в электропроводящих частях ротора вихревые токи, которые создают в правой 10 и левой 11 измерительных обмотках ЭДС, по величине данной ЭДС судят об пространственном положении ротора.

Далее сигнал от измерительных обмоток 10, 11 передается на силовой преобразователь 4, который посредством математических, вычислений в пропорционально-интегрально-дифференциальным регуляторе 3 либо усиливает, либо снижает управляющее воздействие на элементы управления бесконтактных подшипниковых опор.

Пример конкретной реализации способа по первому варианту

При смещении ротора 1 на 10% от номинального под действием центробежных сил, например, в высокоскоростном шпиндельном узле шлифовальной группы на магнитных подшипниках с ротором с постоянными магнитами SmCo возникает механическая нестабильность и колебания ротора и, как следствие, нарушение требований к обрабатываемой поверхности. При этом ЭДС в измерительной обмотке, создаваемая вторичным магнитным полем, за счет вихревых токов в электропроводящих частях ротора 1, изменяется с 5 мВ до 7 мВ на стороне уменьшения зазора и с 5 мВ до 3 мВ на стороне увеличения. Это изменение фиксируется и увеличивается посредством силового преобразователя 4 и пропорционально-интегрально-дифференциального регулятора 3, изготовленных, например, на микросхеме КР 140 УД 708, транзисторах КТ 829, КТ 315 Г, КТ 852, при этом напряжение на электромагнитах возрастает на 50%. Как следствие, сила притяжения электромагнитов увеличивается также в два раза и ротор 1 высокоскоростного шпиндельного узла шлифовальной группы под действием силы притяжения электромагнитов возвращается в исходное номинальное положение. Шпиндельный узел продолжает эксплуатироваться в стабильном состоянии, и поверхность обрабатывается в соответствии с необходимыми требованиями.

Пример конкретной реализации способа по второму варианту

При смещении ротора 1 на 10% от номинального под действием центробежных сил, например, в высокоскоростном шпиндельном узле шлифовальной группы на магнитных подшипниках с ротором 1 с постоянными магнитами SmCo возникает механическая нестабильность и колебание ротора и, как следствие, нарушение требований к обрабатываемой поверхности. При этом ЭДС в силовой обмотке, создаваемая вторичным магнитным полем, из-за вихревых токов в электропроводящих частях ротора 1 изменяется с 5 мВ до 7 мВ на стороне уменьшения зазора и с 5 мВ до 3 мВ на стороне увеличения. Это изменение фиксируется и увеличивается посредством силового преобразователя 4 и пропорционально-интегрально-дифференциального регулятора 3, изготовленных, например, на микросхеме КР 140 УД 708, транзисторах КТ 829, КТ 315 Г, КТ 852, при этом напряжение на электромагнитах возрастает на 50%. Как следствие, сила притяжения электромагнитов увеличивается также в два раза и ротор 1 высокоскоростного шпиндельного узла шлифовальной группы под действием силы притяжения электромагнитов возвращается в исходное номинальное положение. Шпиндельный узел продолжает эксплуатироваться в стабильном состоянии, и поверхность обрабатывается в соответствии с необходимыми требованиями.

Таким образом, осуществляется определение и управление положением ротора в бесконтактных подшипниках.

Итак, заявляемое изобретение позволяет повысить точность управления и надежность электрической машины с ротором на бесконтактных подшипниках, а также позволяет осуществить возможность применения во всех типах бесконтактных подшипников и расширить функциональные возможности за счет измерения положения ротора в осевом направлении.

В результате заявляемое изобретение обеспечивает расширение функциональных возможностей, благодаря возможности контроля угловых и осевых перекосов, а также повышение точности измерения положения ротора, благодаря использованию трех обмоток: силовой, измерительной и формирующей измерительный сигнал.

1. Способ управления положением ротора электрической машины на бесконтактных подшипниках, заключающийся в измерении сигнала с обмоток электрической машины, по изменению которого судят о пространственном положении ротора, при этом информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов, отличающийся тем, что в правой и левой формирующих измерительный сигнал обмотках, которые уложены в каждом пазу электрической машины, создают высокочастотное магнитное поле, частота которого больше частоты пятой гармоники электрической машины, при этом в электропроводящих элементах ротора наводят вихревые токи, которые создают вторичное магнитное поле, воздействие которого воспринимается измерительной обмоткой, и по результату измерения сигнала с измерительной правой и левой обмоток судят о пространственном положении ротора, причем сигналы правой и левой обмоток обеспечивают симметричность, при несимметричности данных сигналов судят об угловых перекосах ротора, при этом информация об изменении пространственного положения ротора и угловой координаты поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

2. Способ управления положением ротора электрической машины на бесконтактных подшипниках, заключающийся в измерении сигнала с обмоток электрической машины, по изменению которого судят о пространственном положении ротора, при этом информация об изменении пространственного положения ротора поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов, отличающийся тем, что на электропроводящих элементах ротора электрической машины выполняют засечки, при этом в электропроводящих элементах ротора под воздействием поля основной обмотки наводят вихревые токи, создающие вторичное магнитное поле в силовой обмотке, воздействие которого воспринимается силовой обмоткой, за счет нанесенных на электропроводящих элементах ротора засечек вторичное поле, воспринимаемое силовой обмоткой, искажено и по измерению искаженного магнитного поля с силовой обмотки судят о пространственном положении ротора, а информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

3. Электрическая машина, содержащая ротор с установленными на нем бесконтактными подшипниками, систему управления в виде пропорционально-интегрально-дифференциального регулятора, силовой преобразователь и статор, в пазах которого уложена силовая обмотка, отличающаяся тем, что в статоре выполнена прорезь, при этом в пазах статора дополнительно уложены левая и правая формирующие измерительный сигнал измерительные обмотки, а система управления содержит фильтры с возможностью фильтрации напряжения, наводимого ротором в измерительной обмотке.



 

Похожие патенты:

Изобретение: относится к электротехнике и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Технический результат состоит в повышении надежности и энергоэффективности системы измерения и управления, а также снижении массогабаритных показателей за счет объединения генератора с магнитным подвесом.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности.

Изобретение относится к машине с улавливающим подшипником гибридной конструкции. Машина содержит статор (1) и ротор (2).

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного дисбаланса за счет формирования в каждом радиальном ЭМП гибкого ротора двух дополнительных ортогональных управляющих сил, повышающих эффективность корректировки положения оси гибкого ротора в переходных режимах и определяемых с помощью предлагаемых системы и порядка управления работой гибкого ротора.

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе магнитное устройство, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству.

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат – уменьшение массы и габаритов электромашины, повышение её надежности и эффективности охлаждения обмотки и сердечника статора.

Изобретение относится к электротехнике, а именно к высокоскоростным электромеханическим преобразователям энергии на гибридных магнитных подшипниках. Определяют скорость вращения ротора электромеханического преобразователя энергии, измеряют напряжения на обмотках статора, сравнивают со значениями, заложенными в программу блока управления электромагнитными подшипниками, и при приближении к значению напряжения, соответствующему диапазону критической частоты вращения ротора, импульсно повышают ток на обмотках электромагнитных подшипников, смещая диапазон критических частот для данного ротора.

Изобретение относится к области электротехники, в частности к генераторам электрической энергии. Технический результат - повышение эффективности генерирования электрической энергии.

Изобретение относится к области энергетики. Технический результат - повышение энергоэффективности и энергосбережения накопителя энергии.

Изобретение относится к магнитному подшипнику (1), предназначенному для ротационной установки, содержащей ротор (4). Магнитный подшипник (1), предназначенный для ротационной установки, имеющей ротор (4), и содержащий статорный магнитопровод (5), прикрепленный к неподвижному опорному компоненту (9) и содержащий по меньшей мере одну обмотку (6) и ферромагнитное тело (7), размещенные в защитной кольцеобразной опоре (8), которая прикреплена к неподвижному опорному компоненту (9) и оставляет незакрытой поверхность ферромагнитного тела (7) и поверхность указанной по меньшей мере одной обмотки (6), при этом указанная защитная кольцеобразная опора (8) имеет U-образное сечение с радиальной перемычкой (10) и внутренним и наружным осевыми выступами (11, 12).

Изобретение относится к магнитному подшипнику (1), заключенному в кожух и предназначенному для ротационной установки, содержащей ротор (4). Магнитный подшипник (1) сдержит статорный магнитопровод (5), прикрепленный к неподвижному опорному компоненту (2), причем статорный магнитопровод (5) содержит по меньшей мере одну обмотку (6) и ферромагнитное тело (7), размещенные в металлическом защитном ограждении.

Изобретение относится к машиностроению, преимущественно к магнитным опорам быстровращающихся роторов, например роторов газовых центрифуг, накопителей энергии, генераторов, гироскопов и подобных устройств.

Изобретение касается способа компенсации по меньшей мере одного низкочастотного механического возмущающего колебания, которое создается в роторе (11) активного магнитного подшипника (1) вследствие действия на ротор (1) возмущающей силы (103).

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Варианты выполнения изобретения, в целом, относятся к изолированным магнитным узлам, способам продувки зазора между изолирующей обоймой магнитного узла и частью машины, к роторным машинам и установкам по переработке нефти и газа.

Изобретение относится к устройствам бесконтактного электромагнитного подвеса вертикального вала ротора, более конкретно - к электромагнитным подшипникам, предназначенным для использования в различных электрических машинах с вертикальным расположением вала ротора, таких как электромеханические накопители энергии, ветрогенераторы и т.п.

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности.

Изобретение относится к машине с улавливающим подшипником гибридной конструкции. Машина содержит статор (1) и ротор (2).

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного дисбаланса за счет формирования в каждом радиальном ЭМП гибкого ротора двух дополнительных ортогональных управляющих сил, повышающих эффективность корректировки положения оси гибкого ротора в переходных режимах и определяемых с помощью предлагаемых системы и порядка управления работой гибкого ротора.
Наверх