Фотосенсибилизатор для солнечных элементов



Фотосенсибилизатор для солнечных элементов
Фотосенсибилизатор для солнечных элементов
Фотосенсибилизатор для солнечных элементов
Фотосенсибилизатор для солнечных элементов
Фотосенсибилизатор для солнечных элементов
Фотосенсибилизатор для солнечных элементов

Владельцы патента RU 2657084:

Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") (RU)

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным синтезом при комнатной температуре взаимодействием диметиламинокоричного альдегида (ДМАК) с эквимолярным количеством 4-аминобензойной кислоты в безводной среде. Использование заявленного фотосенсибилизатора в конструкции металлоксидного солнечного элемента позволяет получить значения эффективности преобразования солнечной энергии в электрическую, близкие к значениям КПД, полученным для солнечных элементов на основе известного дорогостоящего стандартного рутениевого фотосенсибилизатора. 4 ил., 1 табл., 1 пр.

 

Изобретение относится к области солнечной энергетики, конкретно - к фотосенсибилизаторам для металлоксидных солнечных элементов, и может быть использовано для создания солнечных элементов (СЭ), в частности солнечных элементов на основе диоксида титана, с улучшенными потребительскими характеристиками.

Известно, что рабочие характеристики современных солнечных элементов (СЭ) во многом зависят от прочности и эффективности контакта между поверхностью полупроводника, используемого в конструкции СЭ, и красителем, используемым в качестве сенсибилизатора. Химические структуры органических красителей, используемых в качестве сенсибилизаторов в СЭ, кроме фрагмента, выполняющего функцию хромофора, включают электронодонорные группы, участвующие в фотоиндуцированном внутримолекулярном переносе заряда, а также электроноакцепторные группы, играющие роль т.н. «закрепляющей» группы, функция которых состоит в образовании прочных ковалентных связей красителя с поверхностью полупроводника, например мезопористого диоксида титана, используемого в конструкции СЭ. Прочность таких связей уменьшается в ряду функциональных групп -СООН, -SO3H, -РО3Н2, -ВО2Н2, -SH, -ОН.

Наилучшие фотогальванические характеристики СЭ были получены при использовании в качестве фотосенсибилизаторов рутениевых комплексов с полипиридилом, содержащих карбоксильные группы [M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachoppouloc, J. Am. Chem. Soc., 1993, 115, 6382]. К ним относятся красный краситель, представляющий собой цис-бис(изотиоцианато)бис(2,2'-бипиридил-4,4'-дикарбоксилато)-рутений(II) бис-тетрабутил-аммоний, известный под торговыми названиями Рутений 535-бисТВА, N719 или В2, и черный краситель - трис(изотиоцианато)-рутений(II)-2,2':6',2"-терпиридин-4,4',4"-трикарбоновая кислота, трис-тетрабутиламмониевая соль, известный как Рутений 620-1Н1ТВА, Рутений 620 или N-749. Однако комплексная технико-экономическая эффективность использования рутениевых комплексов в конструкции СЭ существенно снижается из-за их высокой стоимости, поэтому продолжаются исследования в области создания фотосенсибилизаторов для использования в фотовольтаических преобразователях, направленные, главным образом, на поиск недорогих, доступных, не содержащих в своем составе редкоземельных или благородных металлов красителей, которые могли бы обеспечить получение СЭ с приемлемыми потребительскими характеристиками.

Описан краситель, предназначенный для использования в солнечных элементах и других оптоэлектронных устройствах, содержащий в своей структуре замещенные карбазольные группы US 2015294797 А1, опубл. 19.06.2015. В заявке WO 2014006544 А2, 09.01.2014 в качестве сенсибилизатора для СО предложено использовать молекулярные структуры на основе гидразина, содержащие в качестве электронодонорного фрагмента N-арилзамещенные группы, в качестве акцептора - по меньшей мере, одну углерод-углерод или углерод-гетероатом двойную связь и/или карбо- или гетероциклическое кольцо, π - конъюгированное с донорной группой. В патенте RU 2490746 С2, опубл. 20.08.2013, описаны варианты красителей, содержащие в молекулярной структуре в качестве закрепляющей группы -СООН, -SO3H, -РО3Н2, и др., а хромофор представляет собой производное скварилиевого красителя или производное крокониевого красителя, которое способно поглощать свет с длиной волны видимого и/или ИК-диапазона. В заявке US 2015294797 А1, опубл. 15.10.2015, предложен фоточувствительный органический краситель для использования в СЭ, молекулярная структура которого включает закрепляющую группу, в том числе карбоксильную или карбоксифенильную, электронодонорную группу, представляющую собой атом азота, замещенный арильными или полиарильными радикалами, а также расположенную между ними ацетиленовую связь, соединенную с ароматическим звеном, содержащим один или несколько замещенных или незамещенных арильных радикалов, и так называемый линкер, который связывает хромофорную структуру с закрепляющей группой.

Общим недостатком перечисленных и большинства других известных решений является сложность предлагаемых структур, многостадийность их химического синтеза, и, как следствие, их дороговизна и малодоступность для широкого использования.

Важной задачей, направленной на снижение стоимости производства СЭ, является поиск доступных и стабильных красителей с интенсивным поглощением в видимой области солнечного спектра. Этим требованиям удовлетворяет большой ряд красителей разных классов, содержащих концевую первичную аминогруппу или альдегидную группу. Недостатком этих групп является неспособность образовывать прочные связи с мезопористым диоксидом титана.

В качестве ближайшего аналога заявляемого изобретения принято техническое решение, описанное в L. Giribabu et al., Ind. J of Chem., March 2006, v. 45A, p. 629-634, в котором в качестве красителя для сенсибилизированных красителями солнечных элементов предложено использовать 2-[3-(4-диметиламино-фенил)-аллилиден]-малоновую кислоту. Соединение устойчиво при температуре до 100°С, характеризуется высоким молярным коэффициентом экстинкции и может быть легко получено и очищено.

Недостатком является низкое значение эффективности преобразования солнечной энергии при его использовании в МО СЭ.

Технической задачей изобретения является разработка органического фотосенсибилизатора для металлоксидного солнечного элемента, получаемого простым химическим синтезом из недорогих доступных реагентов.

Технический результат от реализации заявленного изобретения заключается в обеспечении получения значений эффективности преобразования солнечной энергии в электрическую, близких к значениям КПД, показанным для солнечных элементов на основе дорогостоящего стандартного рутениевого сенсибилизатора, что позволяет получать металлоксидные солнечные элементы с высокими потребительскими характеристиками.

Технический результат достигается тем, что фотосенсибилизатор для металлоксидного солнечного элемента представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту, далее упоминаемую для простоты под названием «краситель SBD» (Schiff Base Dye).

На фиг. 1 показана структурная формула красителя SBD.

На фиг. 2 показан УФ спектр поглощения красителя SBD в безводном этаноле.

На фиг. 3 в качестве примера приведена вольтамперная характеристика образца СЭ на основе диоксида титана, сенсибилизированного красителем SBD.

Как видно из фиг. 1, в качестве закрепляющей группы структура содержит карбоксильную группу, обеспечивающую наиболее прочную ковалентную связь красителя с поверхностью полупроводника, донором электронов является диметиламинная группа, а π-сопряженная система, включающая два фенильных кольца, соединенных сопряженными двойными связями С=С и N=C, играет роль хромофора.

Краситель SBD, представляющий собой основание Шиффа, получают одностадийным синтезом при комнатной температуре взаимодействием диметиламинокоричного альдегида (ДМАК) с эквимолярным количеством 4-аминобензойной кислоты в безводной среде.

Пример получения красителя SBD: 0,5 г ДМАК растворяют в абсолютизированном этиловом спирте и к слабоокрашенному коричневому раствору при комнатной температуре добавляют 0,46 г 4-аминобензойной кислоты. Сразу же после добавления 4-аминобензойной кислоты раствор приобретает интенсивную красно-коричневую окраску. Сухой красно-коричневый порошок красителя SBD получают выпариванием этанола в роторном испарителе.

Полученный краситель может быть без дальнейшей очистки использован в конструкции металлоксидного солнечного элемента.

Как видно из фиг. 2, на которой приведен УФ спектр поглощения красителя SBD в этаноле, краситель характеризуется наличием двух полос поглощения: интенсивное поглощение в диапазоне 300-400 нм и менее интенсивный пик поглощения в диапазоне 400-500 нм.

Образцы МО СЭ на основе диоксида титана, включающие предлагаемый сенсибилизатор, получены, как описанно в работе S. Ito, T.N. Murakami, P. Comte, P. Liska, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Thilms, 2008, 516, p. 4613-4619.

Измерения фотоэлектрических параметров трех полученных лабораторных образцов МО СЭ на основе диоксида титана, сенсибилизированных красителем SBD, проведены с использованием имитатора солнечного излучения Abet Technologies, который позволяет освещать образец спектром солнечного света интенсивностью 1000 Вт/м2 (100 мВт/см2). Измерения вольтамперных характеристик образцов МО СЭ проведены с помощью установки для анализа электрических характеристик полупроводников Keithley 4200-SCS (Keithley, США). Результаты измерений приведены в таблице 1. В качестве параметров, характеризующих полученные фотосенсибилизаторы, приведены значения тока короткого замыкания (ISC), напряжения холостого хода (VOC), фактора заполнения (FF) и КПД преобразования энергии. Для сравнения в табл. 1 приведены характеристики солнечных элементов, содержащих в качестве фотосенсибилизатора краситель по ближайшему аналогу и известный рутениевый краситель N719.

В качестве иллюстрации на фиг. 3 показана вольтамперная характеристика образца №3 МО СЭ, приготовленного, как описано выше, сенсибилизированного красителем SBD. Были получены следующие значения фотоэлектрических параметров: ток короткого замыкания Isc=15,8 мА/см2, напряжение холостого хода Voc=0,750 В, фактор заполнения (FF)=0,69. Эффективность данного образца МО СЭ составила 8,2%.

Полученные результаты свидетельствуют о том, что использование предлагаемого фотосенсибилизатора позволяет получить металлоксидные солнечные элементы, в которых эффективность преобразования энергии может превышать 10%.

Таким образом, использование заявленного фотосенсибилизатора в конструкции металлоксидного солнечного элемента позволяет получить значения эффективности преобразования солнечной энергии в электрическую, близкие к значениям КПД, полученным для солнечных элементов на основе дорогостоящего стандартного рутениевого сенсибилизатора и значительно превосходящие значения КПД для ближайшего аналога.

Пример 1

Синтезированный краситель SBD был исследован методом ИК-спектроскопии для подтверждения химической структуры. Как видно из фиг. 4, на которой приведен ИК-спектр поглощения красителя SBD, в спектре наблюдается полоса поглощения в области 1620 см-1, характерная для азометиновой (C=N) группы. Полученный результат свидетельствуют о том, что краситель SBD действительно является основанием Шиффа. В ИК-спектре также наблюдаются полосы поглощения в диапазоне 1310-1370 см-1, характерные для диметиламиновой группы ((СН3)2-N-), что подтверждает структуру красителя SBD, приведенную на фиг. 4.

Фотосенсибилизатор для металлоксидного солнечного элемента, представляющий собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту формулы:



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано при изготовлении сенсибилизированного красителем солнечного элемента с пористой изоляционной подложкой, выполненной из керамических и органических волокон.

Изобретение относится к электрохимическому способу получения глюкозы и системе для его осуществления, которые могут быть применены в химической промышленности. Предложенный способ включает реагирование воды и растворенного в ней газообразного диоксида углерода в присутствии источника электромагнитной энергии и меланина, удерживаемого на подложке, так что получается глюкоза.

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий промежуточный токосъемный контакт, при этом согласно изобретению общий промежуточный токосъемный контакт размещен на стеклянной подложке, расположенной между верхним и нижним по ходу светового потока МО СЭ, на которую со стороны, обращенной к верхнему по ходу светового потока МО СЭ, нанесен проводящий слой платины, являющийся для верхнего МО СЭ противоэлектродом, а с противоположной стороны стеклянной подложки, обращенной к нижнему по ходу светового потока МО СЭ, нанесено проводящее покрытие из оксида олова, допированного фтором или индием, служащее для нижнего МО СЭ проводящим электродом, при этом верхний по ходу светового потока МО СЭ сенсибилизирован органическим красителем, поглощающим солнечный свет в диапазоне длин волн 400-650 нм, а нижний по ходу светового потока МО СЭ сенсибилизирован органическим красителем, поглощающим солнечный свет в диапазоне длин волн 650-1000 нм.

Изобретение относится к сенсибилизированному красителем солнечному элементу, включающему рабочий электрод (1), первый электропроводный слой (3) для вывода произведенных фотоэлектронов из рабочего электрода, пористую изоляционную подложку (4), изготовленную из микроволокон, причем первый электропроводный слой представляет собой пористый электропроводный слой, сформированный на одной стороне пористой изоляционной подложки, противоэлектрод, включающий второй электропроводный слой (2), расположенный на противоположной стороне пористой подложки, и электролит для переноса электронов из противоэлектрода в рабочий электрод.

Настоящее изобретение относится к модулю сенсибилизированных красителем солнечных элементов (1), который включает по меньшей мере два сенсибилизированных красителем солнечных элемента (2a-c), расположенных рядом друг с другом и соединенных последовательно.

Изобретение относится к устройству накопления и хранения энергии, а именно к способу изготовления электрода из пористого порошкового слоя, преимущественно для солнечного элемента, сенсибилизированного красителем, имеющего пористый проводящий порошковый слой, причем данный слой сформирован путем осаждения осадка, содержащего частицы гидрида металла, на подложку с последующим нагревом осадка для разложения частиц гидрида металла до частиц металла; и нагревом для спекания упомянутых частиц металла для формирования пористого проводящего порошкового слоя.

Изобретение относится к электролиту для фотоэлектрических устройств, содержащему полимерную сетку, которая содержит соединение, представленное формулой 2 или продукт его поперечной сшивки, и которая сшита с помощью соединения, представленного формулой 1,где R представляет собой атом водорода или алкильную группу, содержащую от 1 до 4 атомов углерода, А представляет собой алкиленовую группу, содержащую от 1 до 8 атомов углерода, или алкилиденовую группу, содержащую от 1 до 8 атомов углерода, R1 представляет собой водород или алкильную группу, содержащую от 1 до 4 атомов углерода, n представляет собой число от 1 до 17, и m представляет собой число от 2 до 19.

Предложенное изобретение относится к устройству преобразования солнечной энергии в электрическую и основано на поглощающем свет электроде, соединенном с одномерным фотонным кристаллом, выполненным на основе наночастиц.

Изобретение относится к красителю, содержащему закрепляющую группу в своей молекулярной структуре, причем указанная закрепляющая группа обеспечивает ковалентное связывание указанного красителя с поверхностью, и указанная закрепляющая группа представлена формулой 1 , в которой место присоединения указанной закрепляющей группы внутри указанной молекулярной структуры указанного красителя находится при терминальном атоме углерода, помеченном звездочкой в указанной выше формуле.
Изобретение относится к процессам или способам получения альтернативной энергии, в частности к процессам, известным как фотоэлектрохимические, посредством которых получают атомы водорода и кислорода посредством разделения молекулы воды, при котором генерируются атомы водорода и кислорода.

Изобретение относится к способу получения фотохромных оптических изделий. Способ включает (i) нанесение первого органического растворителя на поверхность оптической подложки с образованием смоченной органическим растворителем поверхности оптической подложки, (ii) нанесение отверждаемого фотохромного состава на смоченную органическим растворителем поверхность оптической подложки и (iii) по меньшей мере частичное отверждение вышеупомянутого отверждаемого слоя фотохромного покрытия.

Изобретения относятся к области светоослабляющих устройств, обеспечивающих изменение цвета под воздействием напряжения электрического тока, а именно к устройствам на основе электрохромных составов и технологии их изготовления.

Изобретение относится к новым соединениям в ряду индолиновых спиропиранов, а именно к 1',3',3',6-тетраметил-8-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 1 и 8-метокси-1',3',3',-триметил-6-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 2. Новые солевые производные 1,3,3-триметилспиро[хромен-2,2'-индолина] 1 и 2 проявляют фотохромные свойства в длинноволновой области спектра с λ=728 нм и λ=466 и 668 нм соответственно и имеют время жизни открытой формы 8.4 с для соединения 1 и 118.6 и 80.5 с для соединения 2.

Изобретение относится к применению 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I) для удаленного обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе.

Изобретение относится к электрохромному модулю, содержащему: первую подложку, вторую подложку, где первая и/или вторая подложки обладают электропроводностью или приобретают электропроводность благодаря соответственно первому электропроводящему покрытию или второму электропроводящему покрытию, покрытие на основе электрохромного полимера, нанесенное на первую подложку или первое проводящее покрытие, слой накопления ионов, размещенный на второй подложке или втором проводящем покрытии, и электрически последовательно соединенный электролит, размещенный между электрохромным покрытием и слоем накопления ионов.

Настоящее изобретение относится к сопряженным полимерам. Описан сопряженный полимер, содержащий полностью сопряженную полимерную последовательность по меньшей мере двух чередующихся триад, содержащих первое повторяющееся звено, представляющее собой одно или более звеньев алкилендиокситиофена, и второе повторяющееся звено, выбранное из одного или более ароматических звеньев, причем сопряженный полимер является желтым в нейтральном состоянии и демонстрирует максимум поглощения между 300 и 500 нм, а при окислении является пропускающим между 400-750 нм, при этом полимерная последовательность имеет структуру где А представляет собой ароматическое звено, х представляет собой 0 или 1, у представляет собой 0 или 1, n составляет от 2 до 200 000; X представляет собой S, a R1, R2, R3, R4, R5, R6, R7 и R8 независимо представляют собой Н, С2-С30 алкенилокси, где кислород находится в любом положении, и где А выбран из: или , где X представляет собой CR2, и R независимо представляет собой Н или C1-С30 алкил.

Изобретение относится к донорно-акцепторным (DA) полимерам с чередованием донорных D и акцепторных А звеньев, которые могут быть использованы в качестве электрохромного полимера.
Изобретение относится к прикладной электрохимии, а конкретно к электрохромному устройству с литиевым полимерным электролитом и способу изготовления электрохромного устройства.

Изобретение относится к полимерному электрохромному устройству, способному контролируемо изменять величину светопоглощения при приложении электрического напряжения.

Изобретение относится к донорно-акцепторному конъюгированному полимеру (DA-CP) и способу его получения. .

Изобретение относится к способу получения пара-аминобензойной кислоты. Способ осуществляют путем нейтрализации пара-нитробензойной кислоты неорганическим основанием с последующим восстановлением нейтрализованной пара-нитробензойной кислоты гидразингидратом в присутствии катализатора при температуре 95-100°С с дальнейшей фильтрацией реакционной массы и выделением пара-аминобензойной кислоты.

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[-[-3-[4-фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным синтезом при комнатной температуре взаимодействием диметиламинокоричного альдегида с эквимолярным количеством 4-аминобензойной кислоты в безводной среде. Использование заявленного фотосенсибилизатора в конструкции металлоксидного солнечного элемента позволяет получить значения эффективности преобразования солнечной энергии в электрическую, близкие к значениям КПД, полученным для солнечных элементов на основе известного дорогостоящего стандартного рутениевого фотосенсибилизатора. 4 ил., 1 табл., 1 пр.

Наверх