Способ согласования линии визирования оптического прибора с продольной осью наземного транспортного средства

Изобретение относится к измерительной технике, а именно к способам коррекции угловых параметров, определяемых системой топопривязки и навигации наземного транспортного средства, для их учета в процессе проведения топогеодезических измерений. Способ согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства заключается в том, что транспортное средство устанавливается на юстировочном участке, горизонтируется визир, выставляются его нулевые отсчеты при наведении его на перекрестие юстировочной мишени, определяется азимут, вычисляются исходные поправок на угловые показания для их ввода в программно-аппаратный комплекс наземного транспортного средства. После установки наземного транспортного средства на юстировочном участке определяют его центры на шасси автомобиля и отмечают их рисками, на которых размещают отвесы так, чтобы нити грузов располагались в одной плоскости с продольной осью наземного транспортного средства, при невыполнении данного условия, используя подъемные устройства, вывешивают шасси до совмещения нитей отвесов с плоскостью, юстировочную мишень устанавливают так, чтобы вертикальная плоскость, проходящая через ось симметрии наземного транспортного средства, совпадала с осью симметрии линий наведения его продольной оси на юстировочной мишени, вертикальное положение юстировочной мишени выставляют по отвесу, ее высота установки определяется заданным размером установки визира на наземном транспортном средстве, установку мишени производят с помощью перископической артиллерийской буссоли, далее выполняют привязку инерциальной навигационной системы к нулевому отсчету визира как определение исходной поправки угла азимута, определенного с помощью оптического визира для ее учета в специальном программном обеспечении программно-аппаратного комплекса. Технический результат заключается в формировании способа согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства, обеспечивающего параллельность нулевой линии визирования оптического прибора при нулевой установке шкал угла относительно продольной оси наземного транспортного средства, оснащенного системой топопривязки и навигации. 6 ил.

 

Изобретение относится к измерительной технике, а именно к способам коррекции угловых параметров, определяемых системой топопривязки и навигации наземного транспортного средства, для их учета в процессе проведения топогеодезических измерений.

Известен способ согласования осей инерциальной навигационной системы с осью наземного транспортного средства и измерительный комплекс для его осуществления (см. патент RU №2436043 С1, опубл. 10.12.11 г., Бюл. №34). Способ согласования осей инерциальной навигационной системы с осью наземного транспортного средства, заключается в том, что на первом этапе производятся регулировочные работы со штатным визиром транспортного средства (ТС), для чего ТС в поле допуска устанавливается на юстировочном участке, вывешивается на домкратах или иных подъемных устройствах, после чего горизонтируется установочная плита, на которой закреплен визир, а затем - собственно сам визир, далее выставляются нулевые отсчеты визира при наведении его на перекрестие юстировочной мишени, установленной таким образом, чтобы ее ось симметрии совпадала с вертикальной плоскостью, проходящей через ось симметрии юстировочного участка, а вертикальное положение было выставлено по отвесу, на втором этапе проводится горизонтирование установочной плиты под инерциальную навигационную систему (ИНС), на третьем этапе производится определение исходных значений «эталонных» углов: азимута Ах (дирекционного угла αх), продольной оси ТС и углов наклона ТС относительно горизонта (углов крена (βк и тангажа γк) после установки ТС на контрольной точке (КТ), его поддомкрачивания с одновременным обеспечением видимости теодолитом удаленного ориентира и зеркала переходной плиты ИНС, с дальнейшим определением с помощью теодолита автоколлимационным способом угла Ат, (αт) между направлением на ориентир и нормалью юстировочного зеркала переходной плиты и вычислением азимута (дирекционного угла) на нормаль зеркала переходной плиты, который в дальнейшем принимается за «эталонное» значение исходного азимута (дирекционного угла) Аээ), определение с помощью приборов для измерения и установки углов наклона к горизонтальной плоскости, размещаемых на площадке переходной плиты, углов крена и тангажа, которые принимаются за «эталонные» значения (βэ и γэ, на четвертом этапе производится включение и перевод ИНС в режим «Навигация», при котором определяются значения углов Агкгк), βгк, γгк, на пятом этапе производится вычисление исходных поправок на угловые показания ИНС для их ввода в бортовой программно - аппаратный комплекс ТС.

Измерительный комплекс содержит визир и навигационную аппаратуру контролируемого транспортного средства, контрольную точку маршрута (испытательной трассы) с известными координатами и азимутом (дирекционным углом) на удаленный на расстояние ориентир. Согласование осей ИНС с осью наземного ТС проводят на измерительном комплексе, включающем в себя следующие сооружения, измерительные и вспомогательные средства: котировочный участок, оборудованный площадкой для ТС в закрытом помещении с твердым напольным покрытием, оснащенным разметкой, для установки ТС, выносной юстировочной мишенью с разметкой на ее поле, внешним источником электропитания для подключения аппаратуры ТС, домкратами или иными подъемными устройствами соответствующей грузоподъемности, приборами для измерения и установки углов наклона к горизонтальной плоскости, отвесом, угломерным измерительным прибором, испытательную трассу для оценки точности определения геодезических данных, оборудованную контрольными точками (КТ) с известным азимутом (дирекционным углом) на удаленный предмет (ориентир), представляющую собой физический предмет (металлический костыль, кол, камень и т.п.) или специальную метку на площадке, обеспечивающую прямую видимость на ориентир.

Недостатками способа, принятого за прототип, являются:

- методологическая сложность согласования линии визирования оптики навигационной аппаратуры и продольной оси наземного транспортного средства;

- высокая трудоемкость и большие временные затраты на проведение котировочных работ.

Предлагаемым изобретением решается задача по повышению эффективности и точности, снижению трудоемкости котировочных работ, проводимых на наземном транспортном средстве, оснащенном системой топопривязки и навигации и оптическим прибором визирования.

Технический результат, получаемый при осуществлении изобретения, заключается в формировании способа согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства, обеспечивающего параллельность нулевой линии визирования оптического прибора при нулевой установке шкал угла относительно продольной оси наземного транспортного средства, оснащенного системой топопривязки и навигации.

Указанный технический результат достигается тем, что в предлагаемом способе согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства, заключающемся в том, что транспортное средство устанавливается на юстировочном участке, горизонтируется визир, выставляются его нулевые отсчеты при наведении его на перекрестие котировочной мишени, определяется азимут, вычисляются исходные поправок на угловые показания для их ввода в программно-аппаратный комплекс наземного транспортного средства, новым является то, что после установки наземного транспортного средства на юстировочном участке, определяют его центры на шасси автомобиля и отмечают их рисками, на которых размещают отвесы так, чтобы нити грузов располагались в одной плоскости с продольной осью наземного транспортного средства, при невыполнении данного условия, используя подъемные устройства, вывешивают шасси до совмещения нитей отвесов с плоскостью, юстировочную мишень устанавливают так, чтобы вертикальная плоскость, проходящая через ось симметрии наземного транспортного средства, совпадала с осью симметрии линий наведения его продольной оси на котировочной мишени, вертикальное положение юстировочной мишени выставляют по отвесу, ее высота установки определяется заданным размером установки визира на наземном транспортном средстве, установку мишени производят с помощью перископической артиллерийской буссоли следующим образом: устанавливают буссоль на расстоянии не менее 25 метров между наземным транспортным средством и мишенью, добиваются грубого совмещения линий отвесов с вертикальной линией перекрестия буссоли перемещением треноги, после совмещения фиксируют и горизонтируют положение буссоли, совмещают вертикальную линию перекрестия со створом двух отвесов, устанавливают нулевое положение угломерного механизма буссоли, повертывают буссоль на 180°, наблюдая в окуляр буссоли, устанавливают юстировочную мишень так, чтоб совпадали вертикальные линии перекрестия буссоли и перекрестия линии наведения продольной оси наземного транспортного средства мишени, горизонтируют визир за счет механизма горизонтирования, совмещают перекрестие сетки прибора с перекрестием линий наведения визира на юстировочной мишени, далее выполняют привязку инерциальной навигационной системы к нулевому отсчету визира, как определение исходной поправки угла азимута, определенного с помощью оптического визира для ее учета в специальном программном обеспечении программно-аппаратного комплекса, для этого выбирают задачу «Определение поправки визира», при этом выводится рабочее окно, в котором вводится количество замеров данных, вводится формулярное значение дирекционного угла ориентирного направления АОР и угол ориентирного направления β, определенный с помощью визира, после завершения выставки инерциальной навигационной системы отобразится дирекционный угол, определенный с ее помощью, после проведения расчета, заложенного в алгоритме специального программного обеспечения, на экране появится значения дирекционного угла линии визирования АВИЗ и поправки визира ΔАВ.

Определение центров на шасси автомобиля, на которых размещают отвесы в одной плоскости с продольной осью наземного транспортного средства, позволяет:

- построить воображаемую плоскость, проходящую по оси симметрии наземного транспортного средства;

- облегчить согласование линии визирования оптического прибора с продольной осью шасси.

Проведение установки мишени с помощью перископической артиллерийской буссоли позволяет:

- обеспечить точность проведения котировочных работ;

- повысить в дальнейшем точность определения углового положения наземного транспортного средства.

- использовать буссоль в качестве контрольно-наблюдательного прибора.

Выполнение привязки инерциальной навигационной системы к нулевому отсчету визира, как определение исходной поправки угла азимута, определенного с помощью оптического визира, позволяет:

- обеспечить привязку отсчета инерциальной навигационной системы к нулевому отсчету визира;

- учитывать данную поправку при определении дирекционного угла продольной оси наземного транспортного средства;

- выполнять данную процедуру, как один из этапов калибровки системы топопривязки и навигации, после размещения ее на объекте или после замены, монтажа / демонтажа инерциальной навигационной системы ли визира.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показана схема юстировочного участка; на фиг. 2 - схема юстировочной мишени; на фиг. 3 - схема совмещения перекрестия сетки оптического визира с линиями наведения юстировочной мишени; на фиг. 4, фиг. 5, фиг. 6 - рабочие окна задачи «Определение поправки визира» в программно-аппаратном комплексе.

Способ согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства реализуется следующим образом. Способ устанавливает алгоритм юстировки, регулировки и согласования нулевой линии визирования оптического визира (ОВ) 1 с продольной осью наземного транспортного средства (НТС) 2, оснащенного системой топопривязки и навигации, на котором размещен пункт управления беспилотными летательными аппаратами малой дальности. Нулевая линия визирования (НЛВ) 3 определяется центром перекрестия сетки в поле зрения ОВ 1. В результате юстировки и регулировки обеспечивается параллельность НЛВ 3 ОВ 1 при нулевой установке шкал угла относительно продольной оси (ПО) 4 НТС 2 с погрешностью не более 10 угл. мин. Юстировку и регулировку проводят на юстировочном участке (ЮУ) 5, включающем в себя ровную горизонтальную поверхность по всей длине (не менее 50 м) от места установки НТС 2 до установленной юстировочной мишени (ЮМ) 6. Дополнительно оборудована контрольная точка с известным азимутом (дирекционным углом) на удаленный до 1,5-2 км предмет (ориентир) с допустимой погрешностью не более 1 угл. мин. Контрольная точка представляет собой физический предмет (штырь, кол, камень и т.п.) или специальную метку на площадке с известными координатами, обеспечивающую прямую видимость на ориентир (строение).

НТС 2 устанавливается на ЮУ 5. Путем измерений определяются центры НТС 2 по шасси автомобиля (передний бампер и задняя скалка прицепного крюка) и отмечают их рисками, как места крепления отвесов (МКО) 7. На отмеченных рисках размещают отвесы таким образом, чтоб нити грузов располагались в одной плоскости с продольной осью ПО 4 НТС 2 и были видны в окуляр установленной технологической буссоли (ТБ) 8. Если подвесные нити отвесов находятся не в плоскости НТС 2, то используя штатные аутригеры, входящие в состав НТС 2, транспортное средство вывешивается до совмещения нити отвесов в одну плоскость, исключив при этом его качание за счет амортизаторов и рессор. Устанавливают ЮМ 6 таким образом, чтобы вертикальная плоскость, проходящая через ось симметрии НТС 2, совпадала с осью симметрии линий наведения (ЛН) 9 ПО 4 НТС 2 на ЮМ 6. Вертикальное положение ЮМ 6 выставляется по отвесу. Высота установки ЮМ 6 определяется заданным размером установки ОВ 1 на НТС 2. Установку мишени производится с помощью ТБ 8. ТБ 8 устанавливается на расстоянии не менее 25 метров между НТС 2 и ЮМ 6. Добиваются грубого совмещения линий отвесов с вертикальной линией перекрестия ТБ 8 перемещением треноги вправо или влево, после совмещения положение ТБ 9 фиксируется. Далее ТБ 8 горизонтируется. Используя механизмы вертикальной и горизонтальной наводки ТБ 8, совмещают вертикальную линию перекрестия со створом двух отвесов. Вращением подвижных шкал грубой и точной наводки ТБ 8 устанавливают нулевое положение и удостоверяются, что наводка ТБ 8 при этом не сбилась. Потом отжав стопор точной настройки, ТБ 8 поворачивают на 180°. Наблюдая в окуляр ТБ 8, устанавливают ЮМ 6 таким образом, чтобы совпадали вертикальные линии перекрестия буссоли и перекрестия ЛН 9 ПО 4 НТС 2 мишени. Проводится контроль выставки ЮМ 6.

Горизонтируется ОВ 1 за счет механизмов горизонтирования. Поворотом угломерного механизма и механизма отражателя ОВ 1 совмещается перекрестие сетки прибора с перекрестием ЛН 10 ОВ 1 на ЮМ 6. По окончании согласования отсчеты по шкалам угломерного механизма и механизма отражателя должны иметь нулевые установки 0-00. Если этого нет, то необходимо произвести дополнительную настройку ОВ 1.

Далее выполняют привязку инерциальной навигационной системы к нулевому отсчету ОВ 1, как определение исходной поправки угла азимута, определенного с помощью ОВ 1 для ее учета в специальном программном обеспечении программно-аппаратного комплекса НТС 2. Данная задача выполняется как один из этапов калибровки системы топопривязки и навигации после размещения ее на объекте или после замены, монтажа/демонтажа инерциальной навигационной системы или ОВ 1. При выполнении задачи «Определение поправки визира» выводится рабочее окно, в котором вводится количество замеров данных (не менее четырех) для определения поправки и нажимается кнопка «Принять». В появившемся окне вводится формулярное значение дирекционного угла ориентированного направления АОР, и угол ориентированного направления β, определенный с помощью ОВ 1. Нажимается кнопка «Выставка», начинается обратный отсчет времени, по истечении которого отобразится дирекционный угол А, определенный с помощью инерциальной навигационной системы. После нажатия кнопки «Расчет», на экране появятся значения дирекционного угла линии визирования АВИЗ и поправки визира ΔАВ. Далее нажимается кнопка «Следующий замер», повторяется описанное выше для других ориентированных направлений. При нажатии кнопки «Предыдущий» происходит возврат к предыдущему замеру для возможности проверки правильности ввода данных и, при необходимости, их коррекции с проведением повторного замера. При нажатии кнопки «Начать сначала» происходит возврат в начало задачи «Определение поправки визира». Для вычисления поправки визира в окне последнего замера нажимается кнопка «Завершить», переходят в окно «Поправки». Для установки определенной поправки АВИЗ в качестве формулярного значения необходимо нажать кнопку «Принять».

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в формировании способа согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства, обеспечивающего параллельность нулевой линии визирования оптического прибора при нулевой установке шкал угла относительно продольной оси наземного транспортного средства, оснащенного системой топопривязки и навигации.

Способ согласования осей линии визирования оптического прибора с продольной осью наземного транспортного средства, заключающийся в том, что транспортное средство устанавливается на юстировочном участке, горизонтируется визир, выставляются его нулевые отсчеты при наведении его на перекрестие юстировочной мишени, определяется азимут, вычисляются исходные поправок на угловые показания для их ввода в программно-аппаратный комплекс наземного транспортного средства, отличающийся тем, что после установки наземного транспортного средства на юстировочном участке определяют его центры на шасси автомобиля и отмечают их рисками, на которых размещают отвесы так, чтобы нити грузов располагались в одной плоскости с продольной осью наземного транспортного средства, при невыполнении данного условия, используя подъемные устройства, вывешивают шасси до совмещения нитей отвесов с плоскостью, юстировочную мишень устанавливают так, чтобы вертикальная плоскость, проходящая через ось симметрии наземного транспортного средства, совпадала с осью симметрии линий наведения его продольной оси на юстировочной мишени, вертикальное положение юстировочной мишени выставляют по отвесу, ее высота установки определяется заданным размером установки визира на наземном транспортном средстве, установку мишени производят с помощью перископической артиллерийской буссоли следующим образом: устанавливают буссоль на расстоянии не менее 25 метров между наземным транспортным средством и мишенью, добиваются грубого совмещения линий отвесов с вертикальной линией перекрестия буссоли перемещением треноги, после совмещения фиксируют и горизонтируют положение буссоли, совмещают вертикальную линию перекрестия со створом двух отвесов, устанавливают нулевое положение угломерного механизма буссоли, повертывают буссоль на 180°, наблюдая в окуляр буссоли, устанавливают юстировочную мишень так, чтоб совпадали вертикальные линии перекрестия буссоли и перекрестия линии наведения продольной оси наземного транспортного средства мишени, горизонтируют визир за счет механизма горизонтирования, совмещают перекрестие сетки прибора с перекрестием линий наведения визира на юстировочной мишени, далее выполняют привязку инерциальной навигационной системы к нулевому отсчету визира как определение исходной поправки угла азимута, определенного с помощью оптического визира для ее учета в специальном программном обеспечении программно-аппаратного комплекса, для этого выбирают задачу «Определение поправки визира», при этом выводится рабочее окно, в котором вводится количество замеров данных, вводится формулярное значение дирекционного угла ориентирного направления АОР и угол ориентирного направления β, определенный с помощью визира, после завершения выставки инерциальной навигационной системы отобразится дирекционный угол, определенный с ее помощью, после проведения расчета, заложенного в алгоритме специального программного обеспечения, на экране появятся значения дирекционного угла линии визирования АВИЗ и поправки визира ΔАВ.



 

Похожие патенты:

Интегрированная система резервных приборов выполнена в виде отдельного блока, содержит датчики полного и статического давления, устройство обработки и преобразования сигналов, вычислитель, модуль пространственной ориентации, устройство управления режимами работы, магнитный зонд, жидкокристаллический индикатор, креноскоп, фотодатчик, устройство компенсации систематической составляющей смещения нуля инерциальных датчиков модуля пространственной ориентации, устройство списания девиационной погрешности с памятью, встроенную систему контроля, устройство анализа, устройство формирования изображения графика девиационных поправок, соединенных определенным образом.

Изобретение относится к навигационному приборостроению и может найти применение в автоматизированных системах управления (АСУ) войсками для определения районов радиоконтроля (РРК), в которых должны обеспечиваться наилучшие условия функционирования рационально расположенных мобильных радиоприемных комплексов (МРПК) и определения оптимальных маршрутов перемещения МРПК в выбранном РРК или при смене РРК.

Изобретение относится к области измерительной техники и приборостроения, а именно к приборам для определения навигационных параметров управляемых подвижных объектов.

Изобретение относится к способу автономной ориентации подвижного объекта. Для автономной ориентации подвижного объекта измеряют проекции векторов напряженности результирующего магнитного поля трехосным блоком акселерометров, кажущееся ускорение объекта трехосным блоком акселерометров, абсолютную угловую скорость вращения объекта трехосным блоком гироскопов, выполняют предварительную метрологическую калибровку магнитометров, акселерометров и гироскопов, идентификацию и учет параметров внутренних и внешних помех объекта, алгоритмическую обработку сигналов магнитометров, акселерометров и гироскопов, коррекцию, учет относительных угловых скоростей вращения и редукцию показаний магнитометров, акселерометров и гироскопов, формируют информацию о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках, вычисляют оценки направляющих косинусов и углов ориентации объекта в условиях функциональной избыточности информации, оценки угловых скоростей вращения объекта.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении эффективности автомобильных грузоперевозок за счет балансируемого динамического ценообразования грузоперевозок.

Изобретение относится к экспериментальной гидромеханике, к испытаниям в опытовых бассейнах моделей плавучих инженерных сооружений со сложными пространственными колебаниями под действием поверхностных волн.

Изобретение относится к области ориентирования в замкнутом пространстве. Техническим результатом является повышение точности определения местоположения пользователя.

Группа изобретений относится к измерительной технике и может быть использована в области транспортного машиностроения. Бортовое устройство начисления платы за использование автомобильных дорог, выполненное в корпусе, включает модуль интерфейса пользователя со световодами сигнальных светодиодов на лицевой панели, модуль электропитания с дросселем, конденсаторами, ключом коммутационного напряжения и размещенным в отсеке питания аккумулятором, коммуникационный модуль с GSM-модемом и внутренней антенной GSM, модуль позиционирования с навигационным приемником и внутренней антенной ГЛОНАСС, модуль контроля целостности корпуса с датчиком вскрытия, SIM-карту, установленную в держателе, блок криптографической защиты и блок управления с детектором движения.

Изобретение относится к способу управления движением летательного аппарата (ЛА). Для управления движением ЛА проводят предполетную подготовку с использованием математической модели ЛА, формируют в памяти бортовой системы управления исходные данные о динамических параметрах ЛА и опорных точек в виде матриц, формируют программную траекторию движения ЛА по опорным точкам, в процессе полета восстанавливают траекторию движения ЛА плавным переходом между опорными точками, управление движением ЛА осуществляют при помощи метода пропорционального сближения и динамической коррекции программной траектории определенным образом.

Изобретение относится к способу управления движением летательного аппарата (ЛА), при котором производят предполетную подготовку ЛА с использованием математической модели ЛА, в ходе которой формируют исходные данные о динамических параметрах ЛА и опорных точках траектории определенным образом, формируют программную траекторию движения ЛА по опорным точкам, в процессе полета восстанавливают траекторию плавным переходом между опорными точками, осуществляют управление движением ЛА при помощи метода пропорционального сближения с учетом динамической коррекции программной траектории движения ЛА определенным образом при необходимости.

Изобретение относится к области навигации и топопривязки, в частности к способам спутниковой навигации и контроля качества навигационных полей космических навигационных систем ГЛОНАСС и GPS, формирования корректирующей информации и анализа ее качества. Технический результат – расширение функциональных возможностей. Для этого способ приема и передачи топопривязчиком дифференциальных поправок включает контроль работоспособности, прием аппаратурой сигналов спутниковых навигационных систем ГЛОНАСС и GPS, получение и формирование корректирующей информации, непрерывный анализ качества рассчитанной и передаваемой корректирующей информации, выдачу корректирующей информации в устройство для передачи дифференциальных поправок. Передача и прием топопривязчиком дифференциальных поправок происходит следующим образом: топопривязчик выставляется на точке с известными координатами X, Y и высотой H, запускаются программно-аппаратный комплекс и устройство приема и обработки информации базовой контрольно-корректирующей станции, включается и настраивается на необходимую частоту радиостанция, проводится настройка базовой контрольно-корректирующей станции, для чего последовательно на элементах опорной станции и станции интегрального контроля выбирается пункт меню «Инициализация», во вкладке «Координаты» в рабочем поле «Общее и координаты GPS» вводятся координаты текущего местоположения и нажимается кнопка «Пересчитать для ГЛОНАСС», а в поле «Используемые параметры пересчета координат» нажимается кнопка «Заполнить», после загрузки бортового компьютера программно-аппаратного комплекса в меню выбирается режим «Настройка АПД», где поля адреса аппаратуры передачи данных, адреса и подписи должны быть заполнены, в окне «Навигация» вводятся координаты и высота нахождения топопривязчика, далее необходимо перейти в окно «Связь» и контролировать информацию от базовой контрольно-корректирующей станции - количество поправок от спутниковых навигационных систем ГЛОНАСС и GPS, а выдача поправок потребителям происходит автоматически по их запросу, для потребителя необходимо ввести адрес запроса ХХХХХХ, где последние две цифры в поле адреса запроса соответствуют порядковому номеру топопривязчика, с которого происходит передача дифференциальных поправок, нажать кнопку «Запросить», проконтролировать в окне режима «Состояние», что аппаратура спутниковой навигации перешла в режим работы с коррекцией. Технический результат, получаемый при осуществлении изобретения, заключается в формировании способа приема и передачи топопривязчиком дифференциальных поправок, обеспечивающего реализацию алгоритма приема и передачи дифференциальных поправок всем возможным потребителям, находящимся в единой информационной сети с топопривязчиком, по их запросу через единый закрытый канал связи, что позволяет повысить точность средств космической навигации, используемых всеми потребителями сигналов космической навигационной системы ГЛОНАСС и GPS в позиционном районе. 5 ил.

Данное техническое решение относится, в общем, к вычислительным системам и способам, а в частности к системам и способам навигации подвижных объектов с использованием трехмерных датчиков. Способ навигации подвижного объекта с использованием трехмерных датчиков характеризуется тем, что получают данные трехмерной сцены складского помещения от по меньшей мере одного трехмерного датчика, установленного на подвижном объекте, и заранее известные истинные координаты точек стеллажей; формируют набор гипотетических координат точек стеллажей на основании данных трехмерной сцены складского помещения; определяют гипотетические координаты местоположения подвижного объекта; выполняют уточнение координат местоположения подвижного объекта на основании сопоставления гипотетических координат точек стеллажей и заранее заданных координат точек стеллажей, полученных выше. Технический результат изобретений заключается в повышении точности навигации подвижного объекта внутри складского помещения. 2 н. и 9 з.п. ф-лы, 6 ил.
Наверх