Электролизер для получения алюминия

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса. Обеспечивается снижение потерь металла в электролите и возрастание выхода металла по току. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к цветной металлургии и может быть использовано при получении алюминия в электролизерах с самоспекающимися анодами.

Известен электролизер с самообжигающимся электродом, включающий разделенный на две секции анод, размещенный в двух анодных кожухах, между которыми расположены съемная крышка и система охлаждения в виде петель труб подвода охлаждающего воздуха [патент РФ №2121014, опубл. 27.10.1998].

Недостаток известного электролизера заключается в интенсификации потерь теплоты от анодных кожухов вследствие увеличения суммарной площади теплоотдающих поверхностей и применения воздушного охлаждения с помощью тягодутьевых машин.

Известен электролизер для получения алюминия, в котором самоспекающийся анод содержит три анодных блока, каждый из которых снабжен продольной балкой анодной рамы и двумя рядами токоподводящих штырей [патент РФ №2187581, опубл. 20.08.2002].

Недостатком известного электролизера является сложность герметизации двух газоходных каналов, размещенных между тремя анодными блоками.

Задачей заявляемого изобретения является снижение объема газосодержащего слоя электролита и затрат электроэнергии на преодоление его сопротивления за счет уменьшения пути движения анодных газов, образующихся при окислении самоспекающегося анода.

Достигается это тем, что в электролизере для получения алюминия, включающем размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса.

Зазор между анодными ячейками составляет 0,025÷0,03 длины ячейки.

Электролизер содержит 4÷8 токоподводящих штырей на каждый анодный блок.

Целесообразность использования горизонтальной перегородки обосновывается тем, что таким образом происходит разделение зоны коксопековой композиции, в которой загружаемая в электролизер анодная масса находится в расплавленном состоянии, от зоны полукокса самоспекающегося анода, где начинается формирование анодного блока.

Высота размещения горизонтальной перегородки относительно нижней кромки анодного кожуха объясняется следующими соображениями. Высота анодного кожуха современного электролизера с самоспекающимся анодом составляет ~1800 мм, высота зоны коксопековой композиции 400÷500 мм, или 22-28% высоты анодного кожуха. Таким образом, размещение горизонтальной перегородки на высоте h от нижней кромки анодного кожуха менее 0,7 высоты Н анодного кожуха несет риск того, то горизонтальная перегородка окажется в зоне полукокса, что затруднит заполнение вертикальных ячеек расплавленной коксопековой композицией и формирование в них самоспекающегося анода. Размещение горизонтальной перегородки на высоте h от нижней кромки анодного кожуха более 0,8 его высоты Н несет риск выброса в атмосферу корпуса электролиза вредных продуктов коксования самоспекающегося анода, для которых зона жидкой коксопековой композиции является гидравлическим затвором.

Наличие на горизонтальной перегородке вертикальных ячеек обеспечивает возможность формирования самоспекающегося анода отдельными блоками, в зазорах между которыми образующиеся анодные газы свободно движутся в систему газоотсоса корпуса электролиза.

Длина ячейки 1, равная 0,1÷0,2 длины L анодного кожуха, и ее ширина b, равная 0,45÷0,495 ширины В анодного кожуха, обосновываются следующими соображениями. Длина самоспекающегося анода современного алюминиевого электролизера составляет порядка 8 м, ширина - 3 м. Разделение самоспекающегося анода на ячейки заявляемых габаритов позволяет получить анодные блоки длиной 0,8÷1,6 м и шириной 1,3÷1,5 м, что сопоставимо с габаритами обожженных анодов, длина которых колеблется от 1 до 1,5 м, ширина - от 0,6 до 0,9 м, эксплуатируемых на электролизерах, имеющих более высокие показатели энергетической эффективности в сравнении с электролизерами с самоспекающимся анодом.

Превышение габаритов ячеек выше указанных пределов приведет к увеличению объема газосодержащего слоя электролита под анодными блоками и затрат электроэнергии на преодоление его сопротивления. Уменьшение габаритов ячеек ниже указанных пределов несет риск создания проблемы фиксации в ячейке анодного блока, удерживаемого токоподводящими штырями. При заявляемых габаритах ячейки удержание анодного блока осуществляется 4÷8 токоподводящими штырями, и замена одного из них исключает риск отрыва со штырей анодного блока и его падения в расплав. Однако превышение количества штырей более 8 потребует увеличения размера ячейки и, соответственно, анодного блока, что приведет к росту объема газосодержащего слоя электролита.

Заявляемый электролизер для получения алюминия поясняется графически. На фиг. 1 изображен продольный разрез электролизера, на фиг. 2 - сечение по А-А на фиг. 1, где: 1 - анодный кожух; 2 - горизонтальная перегородка; 3 - токоподводящие анодные штыри; 4 - ячейки анода; 5 - слой коксопековой композиции; 6 - спекшиеся анодные блоки; 7 - катодный узел электролизера; 8 - криолитглиноземная корка; 9 - газоотводящий патрубок.

Заявляемый электролизер для получения алюминия работает следующим образом. Анодная масса, загружаемая в анодный кожух 1, по мере нагревания до температуры 80÷120°С плавится. Образующийся жидкий слой коксопековой композиции 5 удерживается от попадания в расплав горизонтальной перегородкой 2. С перегородки коксопековая композиция равномерно распределяется по ячейкам 4. В ячейках коксопековая композиция спекается, образуя таким образом, отдельные анодные блоки 6 самоспекающегося анода. Подвод тока к анодным блокам, а также их удержание в ячейках от падения в расплав осуществляют с помощью токоподводящих штырей 3, в количестве от 4 до 8 на каждый анодный блок. Анодные газы, образующиеся при коксовании и окислении самоспекающегося анода, по зазорам между ячейками 4 движутся к газоотводящему патрубку 9, откуда они направляются в систему газоотсоса. Выбиванию анодных газов в атмосферу корпуса препятствует криолитглиноземная корка 8, укрывающая поверхность между анодным кожухом 1 и катодным узлом 7 электролиза. Таким образом, уменьшение пути движения анодных газов под анодными блоками снижает объем газосодержащего слоя электролита.

Технический результат заявляемого электролизера заключаются в снижении удельного расхода электроэнергии на 1000-1200 кВт⋅ч/т Аl, в результате сокращения пути газового потока в электролите под анодом снижаются потери металла и возрастает выход его по току.

1. Электролизер для получения алюминия, включающий размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, отличающийся тем, что самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса.

2. Электролизер по п. 1, отличающийся тем, что зазор между анодными ячейками составляет 0,025÷0,03 длины ячейки.

3. Электролизер по п. 1, отличающийся тем, что он содержит 4÷8 токоподводящих штырей на каждый анодный блок.



 

Похожие патенты:

Изобретение относится к устройству для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом для производства алюминия. Устройство содержит горелку со щелями, соединенную вертикальным участком газохода с подкорпусным газоходом, и цилиндрический теплообменник, установленный на вертикальном участке газохода, с охватом газохода по длине, равной 0,7÷0,9 общей длины участка газохода, и с зазором между теплообменником и газоходом, составляющим 30÷100 мм, при этом в нижней торцевой части теплообменника выполнены отверстия для подачи воздуха в теплообменник, а в верхней торцевой части - отверстие для подачи воздуха к воздухозаборным щелям горелки.

Изобретение относится к устройству для очистки трубопроводов системы газоудаления алюминиевого электролизера, в частности с самообжигающимся анодом и верхним токоподводом через лючки для обслуживания.

Изобретение относится к устройству для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами для получения алюминия. Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами через газосборные окна посредством газоотводящих каналов балки-коллектора содержит направляющую поток конструкцию.

Изобретение относится к анодному устройству алюминиевого электролизера с обожженными анодами и может быть применено с целью оптимизации ширины корпуса электролиза при поперечном расположении электролизеров.

Изобретение относится к способу удаления анодных газов от алюминиевого электролизера с самообжигающимися анодами в газоочистную установку. Способ включает сжигание анодных газов в щелевом горелочном устройстве, установленном на газосборном колоколе электролизера, и их дожигание, при этом дожигание горючих компонентов осуществляют путем подачи воздуха в объеме V1 через воздухозаборные щели горелочного устройства с последующим направлением продуктов горения через вертикальный участок газохода в виде газоходного спуска в патрубок газоходного спуска, куда подают воздух в объеме V2, при этом отношение объема V1 воздуха, подсасываемого через воздухозаборные щели, к объему воздуха V2, подсасываемого через патрубок газоходного спуска, составляет V1:V2=0,2÷0,25:1.

Изобретение относится к машине для очистки газоходов для отходящих газов от электролизеров для получения алюминия. Машина содержит раму с ходовыми колесами, очистной орган с рабочим инструментом, размещенный на барабане, привод поступательного перемещения очистного органа, привод вращения очистного органа вокруг своей оси.

Изобретение относится к способу защиты обожженного анода алюминиевого электролизера при производстве алюминия электролитическим способом в электролизерах с обожженным анодом.

Изобретение относится к устройству для сбора и удаления отходящих газов алюминиевых электролизеров Содерберга. Устройство содержит газосборный колокол, на продольных сторонах и в угловой части которого установлены патрубки, соединенные трубопроводами между собой и через коллектор с корпусной системой газоочистки посредством газоходных спусков электролизера, отверстия для подачи воздуха, при этом отношение высоты патрубков, расположенных на продольных сторонах газосборного колокола, к высоте патрубков, расположенных в угловой части газосборного колокола, составляет 1:(2-5).

Изобретение относится к системе сухой очистки отходящего газа электролитического производства алюминия с нижним газоподводом. Система содержит пылеочиститель, дно которого сообщено с передним коллектором пылеочистителя через газоподводящую трубу пылеочистителя, реактор многоточечного типа, расположенный в газоподводящей трубе пылеочистителя, средство распределения глинозема, расположенное между реактором многоточечного типа и накопительным бункером свежего глинозема и соединенное с упомянутым реактором распределительным желобом, средство подачи глинозема, расположенное между средством распределения глинозема и накопительным бункером свежего глинозема, накопительный бункер фторсодержащего глинозема, возвратный желоб, средство подъема материала по возвратному желобу, выходной коллектор, выпускную трубу, воздуходувку и вытяжную трубу, причем верхняя часть пылеочистителя сообщена с выходным коллектором пылеочистителя через выпускную трубу пылеочистителя, а выходной коллектор пылеочистителя соединен с вытяжной трубой через воздуходувку, трубопровод расположен ниже пылеочистителя, предусмотрен подводящий возвратный трубопровод, соединенный со средством подъема глинозема по возвратному желобу и с накопительным бункером фторсодержащего глинозема.

Изобретение относится к устройству для сбора и удаления газов из алюминиевого электролизера. В устройстве в газоходных каналах установлены пластины, разделяющие газоходные каналы на четыре зоны забора анодных газов - две с торца балки-коллектора, соединенного с системой газоочистки, и две с торца, противоположного торцу балки-коллектора, соединенному с системой газоочистки.
Изобретение относится к способу подготовки обожженных анодов для электролиза алюминия. Способ включает нагрев анода перед помещением его в расплав электролита.

Предлагаемое изобретение относится к электролитическому производству алюминия в электролизерах с предварительно обожженными анодами и может быть использовано в период ввода электролизера в эксплуатацию и при выводе электролизера из эксплуатации.

Изобретение относится к способу производства углеродных электродов в виде анодов для производства алюминия. Способ включает смешивание высокоплавкого пека с температурой размягчения по Меттлеру (SPM) выше 150°C с углеродистыми твердыми веществами при температуре на 50-120°С выше SPM пека, прессование или уплотнение посредством вибрации или экструзии без преднамеренного охлаждения при температуре, близкой к температуре смешивания, передачу сырых электродов в печь для карбонизации без преднамеренного охлаждения, карбонизацию сырых электродов.

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в которой анодная ошиновка последующего электролизера соединена с катодными шинами предыдущего электролизера посредством стояков, при этом каждый из пакетов катодных шин, огибающих торцы электролизера, передает 35-50% тока входной стороны.

Изобретение относится к способу и системе для определения дозировки связующего вещества для объединения с дисперсным материалом с получением электрода. Способ включает получение от необожженного электрода партии N двух показателей, а именно, смоделированную плотность в обожженном состоянии и характеристику изображения.

Изобретение относится к анодному блоку электролизера с обожженными анодами для производства алюминия. Анодный блок содержит на нижней рабочей поверхности пазы и вертикальные газоотводящие трубки.

Изобретение относится к способу замены анодов при электролизе расплава алюминия в алюминиевом электролизере с предварительно обожженными анодами с регенерацией тепла за счет предварительного подогрева анода.

Изобретение относится к электролизеру для производства алюминия с биполярными электродами. Электролизер содержит корпус с боковой и подовой футеровкой, концевые аноды и катоды, размещенные на противоположных сторонах корпуса электролизера, и вертикально установленные между ними нерасходуемые биполярные электроды, при этом нерасходуемые биполярные электроды, образующие модули электролиза, установлены вдоль оси электролизера рядами, между которыми расположены модули питания глиноземом и сбора алюминия.

Изобретение относится к способу оптимизации токоподвода к аноду электролизера при электролитическом получении алюминия в электролизерах с самообжигающимся анодом и верхним токоподводом.

Изобретение относится к электролитическому производству алюминия, а именно к способу формирования самообжигающегося анода алюминиевого электролизера с верхним токоподводом.

Изобретение относится к цветной металлургии, в частности к процессу пиления пазов в обожженных углеродных анодах, используемых при электролитическом получении алюминия, а именно к устройству с режущими сегментами и способу обработки обожженных углеродных анодов Режущие сегменты поочередно с левым и правым исполнением располагаются на дисках пилы на одинаковом расстоянии между собой.

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса. Обеспечивается снижение потерь металла в электролите и возрастание выхода металла по току. 2 з.п. ф-лы, 2 ил.

Наверх