Месдоза для измерения напряжения в грунтах

Изобретение относится к измерительной технике, предназначено для измерения напряжения в грунтах при динамических нагрузках, в частности при уплотнении грунта, взрывных работах, землетрясении, и может быть использовано в строительстве, горном деле, экспериментальных исследованиях. Месдоза для измерения напряжения в грунтах состоит из корпуса, защитной крышки, расположенной сверху корпуса, воздушного пространства, гидравлической жидкости, рабочей крышки, кольцевой прокладки, при этом рабочая крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде упругой мембраны. Корпус выполнен кольцевым из электроизоляционного материала, защитная крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде жесткой мембраны, защитная крышка расположена сверху кольцевого корпуса, а рабочая крышка расположена снизу кольцевого корпуса. Кольцевая прокладка установлена между рабочей крышкой, низом кольцевого корпуса и защитной крышкой, защитная и рабочая крышки соединены между собой. Во внутренней стенке кольцевого корпуса жестко защемлены по контуру две круглые упругие металлические мембраны, расположенные параллельно друг другу, на внутренние поверхности которых от контуров защемления в кольцевом корпусе к их центрам нанесены на величину половины их радиуса кольцевые эластичные электроизоляционные защитные покрытия. Пространство между упругими металлическими мембранами, выполняющими роль электродов, заполнено жидким электролитом, а гидравлическая жидкость заполняет пространство между рабочей крышкой, нижней упругой металлической мембраной и кольцевым корпусом. Технический результат состоит в повышении надежности и достоверности измерений напряжения. 2 ил.

 

Изобретение относится к измерительной технике, предназначено для измерения напряжения в грунтах при динамических нагрузках, в частности при уплотнении грунта, взрывных работах, землетрясении, и может быть использовано в строительстве, горном деле, экспериментальных исследованиях.

Известно устройство «Месдоза для измерения напряжений в грунте» [Патент RU 2031197], состоящее из корпуса, передающего элемента, крышки, двух упругих мембран с тензорезисторами, жестко закрепленных по концам в корпусе и посередине к передающему элементу при помощи кольца. В передающем элементе и мембране имеются сквозные отверстия для натяжного винта, упругих прокладок.

Недостатками этого устройства являются невозможность измерения напряжений в грунте при быстрых динамических нагрузках, что обусловлено наличием в конструкции массивного передающего элемента и других деталей, а также большая погрешность измерений, обусловленная ее конструкцией:

а) большой относительной высотой, так как известно [Энциклопедия современной техники. Строительство. М., 1964. Изд-во «Советская энциклопедия» (раздел: Давление в грунтах. Измерение); http://bibliotekar.ru/spravochnik-181-enciklopedia-tehniki/281.htm], что величина относительной погрешности для жестких месдоз прямо пропорциональна отношению их высоты к диаметру;

б) влиянием переменного модуля деформации грунта.

Известно устройство «Месдоза» [http://studopedia.su/16_56502_mesdoza.html], принятое за прототип, состоящее из металлического корпуса, нижней (рабочей) и верхней (защитной) крышек, прокладок. Корпус и рабочая крышка выполнены в виде прямых толстостенных круговых цилиндрических стаканов, а их дно в виде упругих мембран. На мембрану корпуса с внутренней стороны стакана наклеены тензодатчики, а сверху корпус закрыт плоской защитной крышкой с круговой прокладкой, образуя воздушное пространство. Между корпусом и расположенной снизу рабочей крышкой установлена кольцевая прокладка. Пространство между рабочей крышкой и корпусом заполнено гидравлической жидкостью.

Недостатком этого устройства является ненадежность его работы при ударных нагрузках, например при уплотнении грунта, во время забивки сваи или взрывных работах. Это обусловлено тем, что наклеенные на мембрану тензодатчики при ударной нагрузке отслаиваются.

Изобретение направлено на измерение напряжения в грунтах при динамических нагрузках, при этом достигается технический результат, заключающийся в повышении надежности и достоверности измерений таких напряжений.

Технический результат достигается месдозой для измерения напряжения в грунтах, состоящей из корпуса, защитной крышки, расположенной сверху корпуса, воздушного пространства, гидравлической жидкости, рабочей крышки, кольцевой прокладки, при этом рабочая крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде упругой мембраны, а корпус выполнен кольцевым из электроизоляционного материала, защитная крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде жесткой мембраны, защитная крышка расположена сверху кольцевого корпуса, а рабочая крышка расположена снизу кольцевого корпуса, а кольцевая прокладка установлена между рабочей крышкой, низом кольцевого корпуса и защитной крышкой, защитная и рабочая крышки соединены между собой, во внутренней стенке кольцевого корпуса жестко защемлены по контуру две круглые упругие металлические мембраны, расположенные параллельно друг другу, на внутренние поверхности которых от контуров защемления в кольцевом корпусе к их центрам нанесены на величину половины их радиуса кольцевые эластичные электроизоляционные защитные покрытия, пространство между упругими металлическими мембранами, выполняющими роль электродов, заполнено жидким электролитом, а гидравлическая жидкость заполняет пространство между рабочей крышкой, нижней упругой металлической мембраной и кольцевым корпусом.

На фиг. 1 показан общий вид устройства месдозы.

На фиг. 2 приведена эпюра деформации круглой защемленной по контуру мембраны под распределенной нагрузкой.

Месдоза для измерения напряжения в грунтах состоит из кольцевого корпуса 1, выполненного из электроизоляционного материала, рабочей 2 и защитной 3 крышек, выполненных в виде прямых толстостенных круговых цилиндрических стаканов. Защитная крышка 3 расположена сверху кольцевого корпуса 1, а рабочая крышка 2 расположена снизу кольцевого корпуса 1, причем дно рабочей крышки 2 выполнено в виде упругой мембраны (на фиг. не показана), а дно защитной крышки 3 выполнено в виде жесткой мембраны (на фиг. не показана). Во внутренней стенке кольцевого корпуса 1 жестко защемлены по контуру две круглые упругие металлические мембраны 4, 5, расположенные параллельно друг другу. На внутренние поверхности упругих металлических мембран 4, 5 от контура защемления в кольцевом корпусе 1 к их центрам нанесены на величину половины их радиуса кольцевые эластичные электроизоляционные защитные покрытия 6. Пространство между упругими металлическими мембранами 4 и 5, выполняющими роль электродов, заполнено жидким электролитом 7, образуя «электрохимическую ячейку». Между рабочей крышкой 2, низом кольцевого корпуса 1 и защитной крышкой 3 установлена кольцевая прокладка 8. Гидравлическая жидкость 9 заполняет пространство между рабочей крышкой 2, нижней упругой металлической мембраной 5 и кольцевым корпусом 1. Узел устройства, стягивающего крышки 2 и 3, например, с помощью болтового или резьбового соединения (на фиг. не показан). Токосъемный узел может быть закреплен на крышке 3 (на фиг. не показан).

Месдоза работает следующим образом. При возникновении динамических напряжений в грунтах они воспринимаются упругой мембраной рабочей крышки 2, при этом гидравлическая жидкость 9 деформирует упругую металлическую мембрану 4, а жидкий электролит 7 деформирует упругую металлическую мембрану 5 электрохимической ячейки.

Известно [А.Я. Гохштейн. Поверхностное натяжение твердых тел и адсорбция. Под ред. А.Н.Фрумкина. М., Наука, 1976, с. 33], что если при деформации электрода, находящегося в контакте с электролитом, изменяется его площадь, то возникает «эффект упругого заряжения». При этом если заряд электрода поддерживается постоянным, например, путем введения демпфирующего сопротивления в цепь электрода, то меняется потенциал самого электрода относительно раствора. Сопротивление выбирается настолько большим, чтобы межфазный слой не успевал разрядиться за период динамической деформации (постоянная времени разряда равна произведению емкости электрода на указанное сопротивление), что повышает надежность и достоверность измерений.

В случае круглых защемленных по контуру упругих мембран при их деформации эпюра растяжения-сжатия представлена на фиг. 2, из которой видно, что в разных частях мембраны происходит растяжение-сжатие от деформации, близкое по величине, но противоположное по знаку и не приводящее к изменению величины исходной площади.

При контакте упругих металлических мембран 4 и 5 с жидким электролитом 7 изменение их потенциалов при их деформации не произойдет, поэтому в месдозе (предлагаемом устройстве) применены кольцевые эластичные электроизоляционные защитные покрытия 6, защищающие часть упругих металлических мембран 4 и 5 от соприкосновения с жидким электролитом 7, а кольцевой корпус 1 выполнен из электроизоляционного материала. Это позволяет выделить центральную часть упругих металлических мембран 4 и 5, одна из которых будет испытывать растяжение, а другая - сжатие, что и приведет к появлению электрического сигнала между деформируемыми упругими металлическими мембранами 4 и 5 (электродами электрохимической ячейки), т.е. происходит прямое преобразование деформации упругих металлических мембран 4 и 5 в электрический сигнал. Установленная между рабочей крышкой 2, низом кольцевого корпуса 1 и защитной крышкой 3 кольцевая прокладка 8 изолирует их друг от друга и одновременно служит для герметизации пространства между кольцевым корпусом 1 и рабочей крышкой 2, а также герметизирует стык между рабочей 2 и защитной 3 крышками.

Для уменьшения погрешности необходимо стремиться к применению месдоз с минимально возможной относительной высотой, а также применять месдозы, модуль деформации которых в 5-10 раз больше модуля деформации грунта. Жесткость месдозы повышают с помощью гидравлической жидкости 9, а дно стакана защитной крышки 3 выполняют в виде жесткой мембраны (на фиг. не показана).

Таким образом, решается проблема измерения напряжения в грунтах при динамических нагрузках, при этом технический результат, заключающийся в повышении надежности и достоверности измерения напряжения в грунтах, обеспечивается за счет прямого преобразования напряжений, возникающих в грунте, и последующих деформаций упругих металлических мембран электрохимической ячейки в электрический сигнал.

Месдоза для измерения напряжения в грунтах, состоящая из корпуса, защитной крышки, расположенной сверху корпуса, воздушного пространства, гидравлической жидкости, рабочей крышки, кольцевой прокладки, при этом рабочая крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде упругой мембраны, отличающаяся тем, что корпус выполнен кольцевым из электроизоляционного материала, защитная крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде жесткой мембраны, защитная крышка расположена сверху кольцевого корпуса, а рабочая крышка расположена снизу кольцевого корпуса, а кольцевая прокладка установлена между рабочей крышкой, низом кольцевого корпуса и защитной крышкой, защитная и рабочая крышки соединены между собой, во внутренней стенке кольцевого корпуса жестко защемлены по контуру две круглые упругие металлические мембраны, расположенные параллельно друг другу, на внутренние поверхности которых от контуров защемления в кольцевом корпусе к их центрам нанесены на величину половины их радиуса кольцевые эластичные электроизоляционные защитные покрытия, пространство между упругими металлическими мембранами, выполняющими роль электродов, заполнено жидким электролитом, а гидравлическая жидкость заполняет пространство между рабочей крышкой, нижней упругой металлической мембраной и кольцевым корпусом.



 

Похожие патенты:

Изобретение относится к техническим устройствам для измерения давления в пластичных и сыпучих средах, в т.ч. грунтах.

Изобретение относится к способу исследования скважин и может быть использовано для определения физико-механических свойств горных пород в их естественном залегании.

Изобретение относится к области строительства, а именно к способам проведения геомеханических изысканий для определения механических свойств грунтов. Способ определения параметров прочности грунта методом вращательного среза включает задавливание в забой скважины лопастной крыльчатки, приложение к ней возрастающего момента, фиксацию максимального крутящего момента, приводящего к повороту крыльчатки за счет среза грунта по образовавшейся цилиндрической поверхности, и определение по величине крутящего момента параметра прочности грунта.

Изобретение относится к способам контроля целостности железобетонных гидротехнических резервуаров с помощью волоконно-оптической контрольно-измерительной аппаратуры и предназначено для определения местоположения повреждений в днище бассейнов суточного регулирования и контроля протечек через них.

Изобретение относится к строительству мелкозаглубленных фундаментов на естественном основании, малозаглубленных ростверков свайных фундаментов и подземных сооружений нормального уровня ответственности на набухающих грунтовых основаниях.

Изобретение относится к области инженерно-геологических изысканий для строительства зданий и сооружений на многолетнемерзлых грунтах, основания которых используются для строительства зданий в оттаянном или оттаивающем состоянии.

Изобретение относится к области инженерных изысканий. В способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Iр, при степени влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания, образец грунта помещают в цилиндрическую камеру диаметром не менее 60 мм и высотой не менее 45 мм и размещают соосно вершине конуса индентора, а погружение конусного индентора производят с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм и с регистрацией величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н, при этом в полученном массиве значений сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора из заданного соотношения, а определение влажности грунта на границе текучести и на границе раскатывания производят на основании заданных расчетных зависимостей.

Изобретение относится к области строительства и предназначено для определения количества выработок, осадок и кренов зданий при проведении инженерно-геологических изысканий.

Изобретение относится к исследованию деформационных и прочностных свойств грунтов при инженерно-геологических изысканиях в строительстве. Способ включает деформирование образца грунта природного или нарушенного сложения в условиях трехосного осесимметричного гидростатического и последующего девиаторного нагружения, дающих возможность ограниченного бокового расширения образца грунта, близкого к реальным условиям, затем после установления условной стабилизации при статическом режиме достижением скорости деформирования образца, соответствующей условной стабилизации деформации образца на данной ступени деформирования, переходят поочередно на следующие ступени испытания, а по окончании испытаний, по конечным результатам, полученным на каждой из ступеней испытания, строят график зависимости относительной осевой деформации от осевых напряжений и определяют искомые характеристики грунта, причем после стабилизации деформаций гидростатического нагружения выполняют контролируемое девиаторное нагружение, первая часть которого - дозированное кинематическое нагружение с управляемой скоростью деформации и ограничением по приращению осевых напряжений, а вторая часть - стабилизация напряженно-деформированного состояния образца в режиме ползучести - релаксации напряжений по условной стабилизации модуля общей деформации, многократно повторяя нагружения и стабилизацию до достижения предельного напряженного состояния, а далее продолжают (при необходимости) только кинематическое нагружение до величины предельной относительной осевой деформации.

Изобретение относится к области «Физики материального контактного взаимодействия», конкретно к способу определения несущей способности и устойчивости связной среды, предельно нагруженной давлением перед разрушением.

Изобретение относится к устройствам для отбора почвы с нарушенной структурой и может быть использовано для отбора различных почвенных образцов в полевых условиях как для научных целей, так и для оценки земель сельскохозяйственного назначения. Почвенный бур-пробоотборник содержит цилиндрическую штангу, на верхнем конце которой закреплен кривошип с рукояткой, а на нижнем - стакан с резцами и опорная площадка со штырями. На цилиндрической штанге установлены с возможностью вращения удерживающая втулка, с возможностью перемещения и фиксации труба с отверстиями заданного шага и ограничительный узел. На опорной площадке дополнительно закреплены направляющая гильза, фиксаторы для штырей, уровень и кронштейн с подковообразным упором, причем расстояние между опорной площадкой и подковообразным упором превышает высоту стакана, меньшего направляющей гильзы. Технический результат состоит в снижении трудоемкости отбора проб почвы из разных слоев по глубине с возможностью оценки плотности сложения почвы, обеспечении простоты конструкции. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области механики грунтов и служит, в частности, для определения нижней границы сжимаемого слоя после загружения фундамента (штампа) с целью уточнения расчета осадки фундамента. Устройство для измерения перемещений слоев грунта включает грунтовые марки с винтовыми лопастями, направляющую трубу и измерительные приборы. Направляющая труба выполнена составной из звеньев переменного многоугольного поперечного сечения, на каждом звене свободно закреплена соответствующая марка с возможностью движения вдоль оси звена трубы и возможностью фиксации в стационарном положении с помощью шплинта, упираясь в верхнее звено большего сечения. Диаметр марок также выполнен переменным, уменьшающимся сверху вниз. Измерительные приборы установлены в реперной системе, к которой с помощью кондуктора верхним концом прикреплена направляющая труба с расположенными внутри струнами, соединяющими измерительные приборы и марки. Технический результат состоит в увеличении точности определения величины сжимаемости толщи грунта, упрощении конструкции устройства. 2 ил.

Изобретение относится к области физики материального контактного взаимодействия. Способ определения несущей способности торфяной залежи заключается в определении физико-механических характеристик деформируемой штампом торфяной залежи верхового или низинного типа в структурированном состоянии: угла ϕ° внутреннего трения, С - удельного сцепления, γ - объемного веса, в расчете средней величины начального (первого) критического давления для торфяной залежи, соответствующего пределу длительной несущей способности торфяной залежи по схеме А. Хаузейля - С.С. Корчунова, где рА=AA+BA⋅(П/F), П - периметр штампа площадью F, АА - быстродействующее упругое сопротивление торфа, ВА - предел длительной несущей способности торфяной залежи, и в расчете средней величины предельного давления , соответствующего моменту предельного фазового перехода деформируемой штампом торфяной залежи с характерными процессами резкого роста осадок, снижения прочности и возможной потерей устойчивости, рассмотрении схемы работы торфяной залижи как модели Фусса-Винклера «местных упругих деформаций», когда внешнему среднему предельному давлению где АВ - предел упругой несущей способности, а ВВ - предел временной несущей способности торфяной залежи, противодействует сопротивление волокон торфа растяжению и срезу Т по периметру П штампа, причем для торфяной залежи верхового или низинного типа величину начального (первого) критического давления и величину предельного давления рассчитывают из заданных соотношений. Достигается возможность определения физико-механических характеристик деформируемой штампом торфяной залежи верховного или низинного типа в структурированном состоянии. 3 ил., 3 пр.

Изобретение относится к измерительной технике, предназначено для измерения напряжения в грунтах при динамических нагрузках, в частности при уплотнении грунта, взрывных работах, землетрясении, и может быть использовано в строительстве, горном деле, экспериментальных исследованиях. Месдоза для измерения напряжения в грунтах состоит из корпуса, защитной крышки, расположенной сверху корпуса, воздушного пространства, гидравлической жидкости, рабочей крышки, кольцевой прокладки, при этом рабочая крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде упругой мембраны. Корпус выполнен кольцевым из электроизоляционного материала, защитная крышка выполнена в виде прямого толстостенного кругового цилиндрического стакана, дно которого выполнено в виде жесткой мембраны, защитная крышка расположена сверху кольцевого корпуса, а рабочая крышка расположена снизу кольцевого корпуса. Кольцевая прокладка установлена между рабочей крышкой, низом кольцевого корпуса и защитной крышкой, защитная и рабочая крышки соединены между собой. Во внутренней стенке кольцевого корпуса жестко защемлены по контуру две круглые упругие металлические мембраны, расположенные параллельно друг другу, на внутренние поверхности которых от контуров защемления в кольцевом корпусе к их центрам нанесены на величину половины их радиуса кольцевые эластичные электроизоляционные защитные покрытия. Пространство между упругими металлическими мембранами, выполняющими роль электродов, заполнено жидким электролитом, а гидравлическая жидкость заполняет пространство между рабочей крышкой, нижней упругой металлической мембраной и кольцевым корпусом. Технический результат состоит в повышении надежности и достоверности измерений напряжения. 2 ил.

Наверх