Способ диагностики опухоли



Способ диагностики опухоли
Способ диагностики опухоли

Владельцы патента RU 2657761:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к области медицины и предназначено для диагностики опухоли. Предварительно наркотизированным животным в инфраорбитальный синус вводят радиофармацевтический препарат (РФП) на основе меченного технецием-99m доксорубицина в дозе 20 МБк внутривенно. Через 30-40 минут выполняют сцинтиграфическое исследование в планарном режиме. Производят запись сцинтиграммы в течение 5 минут. При увеличении накопления РФП в тканях, более чем в 2 раза превышающем его накопление в симметрично расположенных участках, диагностируют опухоль. Изобретение обеспечивает повышение точности и информативности диагностики. 1 ил., 1 табл.

 

Изобретение относится к медицине, радионуклидной диагностике, конкретно, к способам диагностики злокачественных новообразований в эксперименте с использованием туморотропных радиофармацевтических препаратов на основе меченного технецием-99m доксорубицина.

В настоящее время в России и за рубежом для диагностики опухолей и оценки эффективности противоопухолевой терапии применяется, главным образом, метод позитрон-эмиссионной томографии (ПЭТ) с РФП 2-фтор-2-дезокси-D-глюкоза (18F-ФДГ), содержащий позитрон-излучающий радионуклид фтор-18 [Baum R.P., Schmuecking М., Bonnet R. et all. F-18 FDG PET for metabolic 3D-radiation treatment planning of non-small cell lung cancer. // Eur. J. Nucl. Med. and Mol. Imag. - 2002. Vol. 43. - P. 96-99]. Несмотря на высокую диагностическую информативность метода ПЭТ, его широкое применение в России ограничено из-за высокой стоимости, а также малой распространенности ПЭТ-центров. Так стоимость одного обследования с 18F-ФДГ (в зависимости от исследуемой области) колеблется от 20 тыс. рублей и более, а ориентировочная стоимость строительства ПЭТ-центра составляет около 1 миллиарда рублей. В данное время в России реально функционируют около 15 центров позитронно-эмиссионной томографии, половина которых расположены в Москве и Санкт-Петербурге.

Вместе с тем, в стране существует более 250 центров, оснащенных гамма-камерами для проведения однофотонной эмиссионной компьютерной томографии (ОФЭКТ), где диагностика чаще всего осуществляется с использованием РФП на основе наиболее доступного для медицины радионуклида короткоживущего (T1/2=6,02 ч) технеция-99м (99mTc). Как правило, технециевые радофармацевтические препараты (РФП) изготавливают в виде стандартных наборов реагентов к генератору технеция-99м. При их смешивании с элюатом технеция-99м (раствор натрия пертехнетата, 99mTc), выделенного из генератора, получается готовый РФП с заданными свойствами.

В настоящее время несмотря на большое разнообразие способов исследования с применением радиофармацевтических препаратов ведется разработка новых, более точных и информативных диагностических способов за счет использования новых РФП и режимов исследования с их применением.

Применение способов с использованием в качестве диагностического средства наборов для приготовления меченных 99mTc специфичных химиотерапевтических препаратов позволит визуализировать злокачественные опухоли различных локализаций и уже на диагностическом этапе прогнозировать ответ опухоли на противоопухолевую терапию. Однако до настоящего времени такие препараты до практического применения в России и в мире не доведены.

Наиболее близким к предлагаемому широко используемым в онкологии является способ диагностики опухоли с применением меченного технецием-99m метоксиизобутилизонитрила (99mTc-МИБИ). Используемый в известном способе радиофармпрепарат является неспецифическим препаратом, накапливающимся в опухолевых клетках. 99mTc-МИБИ проникает в клетки опухоли путем пассивной диффузии и аккумулируется в митохондриях. Известно, что количество митохондрий в цитоплазме опухолевых клеток зависит от метаболической активности клетки, соответственно, уровень аккумуляции 99mTc-МИБИ в опухолевых клетках прямо пропорционален количеству жизнеспособных клеток и количеству митохондрий в них. На сегодняшний день представлено большое количество работ, посвященных применению 99mTc-МИБИ для диагностики опухолей мягких тканей, злокачественных новообразований мягких тканей [Куражов А.П., Завадовская В.Д., Килина О.Ю., Зоркальцев М.А., Чойнзонов Е.Л., Чернов В.И., Слонимская Е.М., Богоутдинова А.В., Анисеня И.И., Тицкая А.А., Зельчан Р.В., Фролова И.Г., Сапунова Л.С., Удодов В.Д. Однако при этом ОФЭКТ с 99mTc-МИБИ характеризуется рядом недостатков, основным и самым значимым из которых является невысокая специфичность способа. Так, по данным литературы специфичность ОФЭКТ с 99mTc-МИБИ в диагностике рака молочной железы варьирует от 85 до 94%, при раке легких - от 62,5 до 91% [Breast-specific gamma camera imaging with <sup>99m</sup>Tc-MIBI has better diagnostic performance than magnetic resonance imaging in breast cancer patients: A meta-analysis. Zhang A, Li P, Liu Q, Song S. Hell J Nucl Med. 2017 Jan-Apr; 20(1): 26-35]. Невысокие показатели метода, конечно же, ограничивают его применение, поскольку в большинстве случаев использование данного исследования не позволяет решить главную его задачу - исключить или подтвердить злокачественную природу выявленной патологии.

Новый технический результат - повышение точности и информативности диагностики.

Для достижения нового технического результата в способе диагностики опухоли путем введения радиофармацевтического препарата экспериментальным животным с последующим проведением сцинтиграфического исследования вводят радиофармацевтический препарат на основе меченного технецием-99m доксорубицина в дозе 20 МБк внутривенно предварительно наркотизированным животным в инфраорбитальный синус, далее через 30-40 минут выполняют сцинтиграфическое исследование в планарном режиме, во время исследования животного располагают таким образом, чтобы в поле зрения детекторов гамма-камеры оказывалось все тело животного, производят запись сцинтиграммы в течение 5 минут и при увеличении накопления РФП в тканях, более чем в 2 раза превышающем его накопление в симметрично расположенных участках, диагностируют опухоль.

Способ основан на анализе результатов экспериментальных исследований. Для определения режима проведения сцинтиграфического определения опухолевой ткани и подтверждения эффективности способа были проведены исследования по изучению накопления меченного технецием-99m доксорубицина в опухолевой ткани на модели опухолевого поражения у мышей линии C57B1/6j. В качестве биологической модели опухоли использовались перевиваемые злокачественные новообразования мышей - карциномы легких Льюиса, использовался солидный вариант карциномы Льюиса (Банк клеточных линий РОНЦ им. Н.Н. Блохина РАМН, г. Москва), поддерживаемый in vivo на мышах линий C57B1/6j методом внутримышечной трансплантации. С целью поддержания и перевивания опухолей у мышей животных с достаточным объемом опухолевой ткани забивали методом цервикальной дислокации для получения исследуемого материала (опухолевой ткани). Опухолевую ткань извлекали, используя стерильные инструменты, гомогенизировали и проводили подсчет концентрации клеток в камере Горяева. Трансплантацию клеток производили внутримышечно в заднюю правую лапу (мягкие ткани бедра) в концентрации 1-3 млн клеток на мышь. После трансплантации опухолевых клеток мыши оставались под наблюдением в стандартных условиях содержания. При установлении факта интенсивного экзофитного опухолевого роста у мышей выполняли контрольные измерения опухолевого узла, и при достижении необходимого объема опухолевой ткани животных включали в основную группу для изучения функциональной пригодности РФП.

Средний объем опухолевого узла у мышей составил 2,3±0,7 см3. Количество животных составило 100 особей.

Радиофармацевтический препарат на основе меченного технецием-99m доксорубицина готовили непосредственно перед введением согласно разработанному авторами лабораторному регламенту: 4 мл раствора натрия пертехнетата (Na99mTcO4) из генератора в асептических условиях вводили с помощью шприца во флакон с реагентом путем прокалывания резиновой пробки иглой. При необходимости предварительно проводили разбавление элюата изотоническим раствором натрия хлорида до требуемой величины объемной активности. Содержимое флакона перемешивали встряхиванием и нагревали на водяной бане (50-60°С), затем инкубировали при комнатной температуре в течение 20 минут до полного растворения реагента.

Готовый радиофармпрепарат вводили внутривенно предварительно наркотизированным животным в инфраорбитальный синус в дозе 20 МБк. Учитывая изученную авторами фармакокинетику меченного технецием-99m доксорубицина (Т1/2=30 мин), через 30-40 минут после внутривенного введения животным выполняли сцинтиграфическое исследование на двухдетекторной гамма-камере Е.САМ фирмы SIEMENS в планарном режиме. Во время исследования животные располагались таким образом, что в поле зрения детекторов гамма-камеры оказывалось все тело животного. При сцинтиграфическом исследовании производили запись в течение 5 минут с набором не менее 500 тыс. импульсов в матрицу 256 на 256 пикселей. Окно дифференциального дискриминатора настроено на 20%, аппаратное увеличение не использовалось. При исследовании использовали низкоэнергетические коллиматоры для энергии 140 КэВ. Полученные при исследовании изображения (сцинтиграммы) животных подвергали постпроцессинговой обработке с использованием фирменного пакета программ E.Soft (SIEMENS, Германия) и при получении аккумуляции меченного технецием-99m доксорубицина в ткани более чем в два раза, чем в симметричном участке окружающих тканей, определяли пораженную опухолью ткань. При этом Индекс опухоль/фон составил 1,97±0,46 (Фиг. 1 Сцинтиграмма исследуемого животного). При обработке полученных изображений также была рассчитана интенсивность накопления препарата в опухоли и симметричном участке. Проведенные расчеты показали, что включение меченного технецием-99m доксорубицина в опухолевую ткань в среднем на 261% превышает его накопление в здоровых нормальных тканях (Табл. 1).

Таким образом, предлагаемый способ диагностики опухоли с применением радиофармацевтического препарата на основе меченного технецием-99m доксорубицина позволяет отчетливо диагностировать опухоль на метаболическом уровне, степень аккумуляции представленного радиофармпрепарата в опухоли дает возможность получать сцинтиграфические изображения надлежащего качества, что делает его перспективным для повышения эффективности и специфичности радионуклидной диагностики злокачественных новообразований.

Способ диагностики опухоли путем введения радиофармацевтического препарата экспериментальным животным с последующим проведением сцинтиграфического исследования, отличающийся тем, что вводят радиофармацевтический препарат на основе меченного технецием-99m доксорубицина в дозе 20 МБк внутривенно предварительно наркотизированным животным в инфраорбитальный синус, далее через 30-40 минут выполняют сцинтиграфическое исследование в планарном режиме, во время исследования животного располагают таким образом, чтобы в поле зрения детекторов гамма-камеры оказывалось все тело животного, производят запись сцинтиграммы в течение 5 минут и при увеличении накопления РФП в тканях, более чем в 2 раза превышающем его накопление в симметрично расположенных участках, диагностируют опухоль.



 

Похожие патенты:
Изобретение относится к медицине и может быть использовано для количественной оценки степени окислительного стресса в клетках. Для этого на первом этапе проводят инкубацию 0,25 мл лизированных 1% раствором тритона Х-100 клеток с 0,5 мл 10 мМ раствора 2,4-динитрофенилгидразина в 2 М НСl, связывающегося с карбонильными группами белков.
Изобретение относится к области медицины, в частности к онкологии. Предложен способ интраоперационного забора биоптата глиомы и морфологически неизмененной ткани головного мозга для молекулярно-генетических исследований.
Изобретение относится к области медицины, в частности к онкологии. Предложен способ интраоперационного забора биоптата глиомы и морфологически неизмененной ткани головного мозга для молекулярно-генетических исследований.

Изобретение относится к области биохимии, в частности к антителу, специфически связывающемуся с независимой от лиганда активированной формой cMet, нуклеиновой кислоте, его кодирующей, набору, его содержащему, применению вышеуказанного антитела для идентификации cMet, для диагностики in vitro онкогенного расстройства, а также к способу генерации вышеуказанного антитела.

Изобретение относится к области биохимии, в частности к антителу, специфически связывающемуся с независимой от лиганда активированной формой cMet, нуклеиновой кислоте, его кодирующей, набору, его содержащему, применению вышеуказанного антитела для идентификации cMet, для диагностики in vitro онкогенного расстройства, а также к способу генерации вышеуказанного антитела.

Изобретение относится к области биохимии, в частности к антителу, которое специфично связывает конформационно-зависимый эпитоп в аминокислотной последовательности домена N-WFDC полипептида НЕ4а, а также к набору, его содержащему.

Настоящее изобретение относится к области биотехнологии, конкретно к эпитопам рецептора эпидермального фактора роста (EGFR), и может быть использовано в медицине для лечения злокачественного новообразования, связанного с активацией EGFR.

Настоящая группа объектов изобретения относится к области иммунологии. Предложено антитело, которое специфически связывает B7-H7CR человека, и его антигенсвязывающий фрагмент.

Изобретение относится к области медицины, в частности к онкологии, и предназначено для диагностики метастазов рака толстой кишки. Из тканевых проб толстой кишки выделяют тотальную ДНК.

Изобретение относится к области медицины, в частности к онкологии, и предназначено для диагностики метастазов рака толстой кишки. Из тканевых проб толстой кишки выделяют тотальную ДНК.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул солей лантаноидов в оболочке из каррагинана.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул спирулина в оболочке из конжаковой камеди.

Группа изобретений относится к области медицины, а именно к офтальмологии, и предназначена для облегчения, уменьшения или лечения пресбиопии. Офтальмологический состав для облегчения, уменьшения или лечения пресбиопии содержит эффективное количество пилокарпина или его фармацевтически приемлемой соли, фенилэфрина или его фармацевтически приемлемой соли и нафазолина или его фармацевтически приемлемой соли.

Настоящее изобретение относится к интраназальной фармацевтической дозированной форме, включающей единицу дозирования, содержащую налоксон или его фармацевтически приемлемую соль в концентрации, эквивалентной конечной концентрации налоксона HCl в указанной единице дозирования, в диапазоне между 18 мг налоксона HCl на 1 мл жидкости и 66 мг налоксона HCl на 1 мл жидкости для нанесения.

Изобретение относится к фармацевтической промышленности и может быть использовано в технологии производства таблеток. Способ производства таблеток включает смешивание порошков с разным гранулометрическим составом, а именно активной фармацевтической субстанции и вспомогательных веществ, таких как связующие, наполняющие, разрыхляющие.
Фармацевтическая композиция для назального применения содержит комплекс действующих компонентов на основе дифенгидрамин гидрохлорида, сульфата цинка и водорастворимого сосудосуживающего средства и комплекс вспомогательных компонентов, включающий изотонический агент, агент, регулирующий pH, фармацевтически пригодный гелеобразующий агент, консервант на основе соединения четвертичного аммония и воду дистиллированную в указанных в формуле изобретения количествах.
Изобретение относится к области нанотехнологии и ветеринарной медицины, в частности к способу получения нанокапсул ветеринарного препарата биопага-Д в оболочке из каррагинана.

Изобретение относится к фармацевтической промышленности и представляет собой композицию, эффективную для усиления энергетического обмена, содержащую по меньшей мере 0,05 мг ингибитора фосфодиэстеразы 5 (PDE 5) и по меньшей мере 500 мг лейцина и/или по меньшей мере 200 мг метаболита лейцина, где ингибитор PDE 5 содержит силденафил и где указанный метаболит лейцина выбран из группы, состоящей из бета-гидроксиметилбутирата (HMB), кето-изокапроновой кислоты (KIC) и α-гидроксиизокапроновой кислоты.

Изобретение относится к области фармакологии, косметологии и дерматологии и представляет собой антиоксидантную композицию, содержащую по меньшей мере одно подходящее для местного применения силиконовое масло в комбинации с эффективным количеством витамина С, витамина Е и одним или более полифенольными антиоксидантами, причем указанная композиция содержит креатин и по меньшей мере одно производное хромана или хромена с низкой молекулярной массой, обладающее антиоксидантными свойствами, и где один или более полифенольные антиоксиданты выбраны из катехинов.

Изобретение относится к борсодержащему соединению формулы (I) или его фармацевтически приемлемой соли или стереоизомеру: В формуле (I) L представляет собой связь, -CR1R2-, >С=O, или =CR1-; М представляет собой связь или -N(R4)-; m равно 0 или 1; n равно 0 или 1; при условии, что, когда n равно 0, то М представляет собой связь; p равно 1 или 2; X1 представляет собой -OH; Z представляет собой >С=O; СусА представляет собой циклобутан, циклопентан или циклогексан; Ra, Rb и Rc представляют собой атом водорода; каждый R1 и R2 независимо выбраны из группы, состоящей из атома водорода, C1-С6-алкила и -NR4R5, R3 представляет собой атом водорода; Rd выбран из группы, состоящей из атома водорода и C1-C6 алкила; каждый R4 и R5 независимо выбран из группы, состоящей из атома водорода, C1-С6-алкила, 3-6-членного циклоалкила, 3-6-членного гетероциклила, 5-6-членного гетероарила, C1-С6 алкил(3-6-членного циклоалкила) и C1-С6 алкил(5-6-членного гетероарила); или R4 и R5, взятые вместе, образуют 3-6-членный гетероцикл с атомом азота, к которому они присоединены; каждый R6 и R7 независимо выбраны из группы, состоящей из атома водорода, C1-С6 алкила, -ОН, -SR10, -NR4R5, -NR4C(O)OR5, -C(O)OR5 и -NR4SO2R5; каждый R10 независимо представляет собой C1-С6-алкил; и каждый Y независимо выбран из группы, состоящей из -ОН, -NR4R5, -(CR6R7)vNR4R5, -NR4(CR6R7)vNR4R5, -N(R4)C(O)(CR6R7)vNR4R5, -(CR6R7)vN(R4)C(O)(CR6R7)vNR4R5, -NR5C(O)NR4(CR6R7)vNR4R5, -N(R4)C(=NR5)R6, -(CR6R7)vN(R4)C(=NR5)NR4R5, -NR4(CR6R7)vN(R4)C(=NR5)NR4R5, -NR4C(=NR5)NR4R5, -(CR6R7)vNR4(CR6R7)vNR4R5, -NR4(CR6R7)vR6, -NR4(CR6R7)vNR4(CR6R7)vNR4R5, --(3-6-членный гетероциклил)NR4R5, -(3-6-членный гетероциклил)N(R4)C(=NR5)NR4R5, -NR4(CR6R7)v(5-6-членный гетероарил), -NR4(CR6R7)v-(3-6-членный гетероциклил), -NR4(CR6R7)vNR5-(5-6-членный гетероарил) и -NR4(CR6R7)v-(3-6-членный гетероциклил)-C(=NR5)NR4R5; и v равно 1, 2 или 3.

Изобретение относится к медицине. Описан способ приготовления радиоактивных повязок с радоном и дочерними продуктами распада радона (ДПР) на основе марлевых салфеток, состоящий в том, что марлевые салфетки 40 мм на 60 мм помещают на 24 часа в герметически закрываемую емкость, объемом 0,5 л, наполненную искусственно приготовленным и поставляемым в радонолечебницу концентратом радона для ванн активностью от 3 МБк до 18 МБк для повязок активностью от 1 МБк до 6 МБк соответственно, которую встряхивают на шюттель-аппарате в течение 15 минут с периодичностью в 3 часа для равномерного распределения в марле ДПР радона.

Изобретение относится к области медицины и предназначено для диагностики опухоли. Предварительно наркотизированным животным в инфраорбитальный синус вводят радиофармацевтический препарат на основе меченного технецием-99m доксорубицина в дозе 20 МБк внутривенно. Через 30-40 минут выполняют сцинтиграфическое исследование в планарном режиме. Производят запись сцинтиграммы в течение 5 минут. При увеличении накопления РФП в тканях, более чем в 2 раза превышающем его накопление в симметрично расположенных участках, диагностируют опухоль. Изобретение обеспечивает повышение точности и информативности диагностики. 1 ил., 1 табл.

Наверх