Способ диагностики подшипниковых опор турбореактивного двигателя

Предлагаемое изобретение относится к виброакустической диагностике турбомашин, преимущественно подшипниковых опор турбореактивного двигателя (ТРД). Способ включает измерение амплитудных значений сигнала от датчика на режиме холодной прокрутки, установление порогового уровня амплитуды сигнала по их усредненным значениям, сравнение измеряемых амплитудных значений с диагностическим пороговым уровнем и определение характеристики дефекта по результатам сравнения. Измерение амплитудных значений сигнала производят акустическим микрофоном, установленным в представительной точке внутри корпуса двигателя, выход двигателя на режим холодной прокрутки определяют по превышению установленного значения амплитуд сигналов частот вращения лопаток и ротора. Измеряемые амплитудные значения сигнала на режиме холодной прокрутки во всем диапазоне частот отфильтровывают от частот, не связанных с дефектами подшипниковых опор, и разделяют, по меньшей мере, на два диапазона, характеризующих степень развития дефекта. Значения пороговых и измеряемых амплитуд частот аппроксимируют в логарифмических координатах, а определение характеристики дефекта производят по результатам сравнения в каждом диапазоне порогового среднеквадратичного значения вибрации со среднеквадратическим значением измеренной амплитуды на режиме холодной прокрутки. Технический результат заключается в возможности определения дефектов подшипниковых опор на ранних стадиях, высокой помехозащищенности и низкой вероятности ложных срабатываний.

 

Предлагаемое изобретение относится к виброакустической диагностике турбомашин, преимущественно подшипниковых опор турбореактивного двигателя (далее ТРД).

Известен способ диагностики межвальных подшипников качения двухвальных турбомашин, в котором приводят во вращение один из валов двигателя, затем, обеспечив возможность свободного вращения вала, измеряют амплитудные значения виброускорения и усредненное значение, используя последнее для установления диагностического порогового уровня, производят сравнение измеряемых амплитудных значений виброускорения с диагностическим пороговым уровнем, по результатам которого судят о наличии и степени развития дефектов межвальных подшипников (RU 2200942 С2).

Известный способ выбран в качестве прототипа.

Недостатками данного способа являются:

- Используется информация, измеренная на корпусе, что существенно изменяет полезную диагностическую информацию (по частоте, амплитуде и фазе) и затрудняет обнаружение дефекта.

- Существенно снижается время прогнозирования отказа (прогноз максимум на несколько часов вперед).

Использует частоты, не связанные с дефектом (частоты, создаваемые агрегатами и узлами двигателя) и являющиеся помеховыми, при диагностике. Все вышеперечисленные недостатки устраняются предлагаемым изобретением.

Техническим результатом, достигаемом при использовании заявленного изобретения, является определение дефектов подшипниковых опор на ранних стадиях, высокая помехозащищенность и низкая возможность ложных срабатываний.

Указанные технические эффекты достигаются тем, что в способе диагностики подшипниковых опор турбореактивного двигателя, включающем измерение амплитудных значений сигнала от датчика на режиме холодной прокрутки, установление порогового уровня амплитуды сигнала по их усредненным значениям, сравнение измеряемых амплитудных значений с диагностическим пороговым уровнем и определение характеристики дефекта по результатам сравнения, согласно настоящему изобретению измерение амплитудных значений сигнала производят акустическим микрофоном, установленным в представительной точке внутри корпуса двигателя, выход двигателя на режим холодной прокрутки определяют по превышению установленного значения амплитуд сигналов частот вращения лопаток и ротора, измеряемые амплитудные значения сигнала на режиме холодной прокрутки во всем диапазоне частот отфильтровывают от частот, не связанных с дефектами подшипниковых опор, и разделяют, по меньшей мере, на два диапазона, характеризующих степень развития дефекта, значения пороговых и измеряемых амплитуд частот аппроксимируют в логарифмических координатах, а определение характеристики дефекта производят по результатам сравнения в каждом диапазоне порогового среднеквадратичного значения вибрации с среднеквадратическим значением измеренной амплитуды на режиме холодной прокрутки.

Разбиение области измерения на несколько диапазонов, характеризующих степень развития дефекта и использование акустического сигнала, измеренного на близком расстоянии к объекту диагностирования, позволяет определять дефекты подшипниковых опор на ранних стадиях, при этом использование фильтрации сигнала позволяет добиться высокой помехозащищенности и низкой возможности ложных срабатываний.

Наличие минимум двух диапазонов обуславливается возможностью ранней диагностики и связано с процессами выхода из строя подшипниковых опор. Разные стадии дефекта проявляются на разных частотах и несколько поддиапазонов позволяют более точно определить изменение во всем диапазоне частот.

Пример реализации заявленного способа виброакустической диагностики подшипниковых опор турбореактивного двигателя

Акустическое устройство (акустический микрофон) подсоединяем к компьютеру, состоящему из расчетного блока и анализатора, помещаем в газовоздушный тракт ТРД, после чего выполняется «холодная прокрутка» (ХП) двигателя (стандартная процедура), выход на этот режим определяется по превышению установленного значения амплитуд сигналов частот вращения лопаток и ротора, при этом анализатор измеряет сигнал во всем диапазоне частот, преобразует в децибелы, вычисляет среднеквадратическое значение (СКЗ) (22 дБ) и сравнивает с заранее экспериментально установленным уровнем в 20 дБ, в результате этого автоматически распознает начало ХП по превышению данного значения. Затем выполняется определение необходимых оборотов ротора, путем отфильтровывания всех частот, кроме двух шириной в 10 Гц (значение дано на погрешность регулирования САУ и колебания оборот ротора), равных частотам вращения ротора определенным расчетным путем в 45 Гц и лопаток турбины ротора высокого давления в 4000 Гц. В данных диапазонах измеряется СКЗ каждого (для ротора 5 мм/с, для лопаток турбины 7 мм/с) и сравнивается с установленным в процессе набора статистики и измерения парка авиадвигателей пределом (для ротора 2 мм/с, для лопаток турбины 3 мм/с). При превышении двух ранее установленных диапазонов анализатором дается команда на выполнение измерений. После этого выполняется измерение, которое состоит из: отфильтровывания частот 1100 Гц, 2520 Гц, 2250 Гц, 2900 Гц, 3290 Гц, 3450 Гц, 4100 Гц, 4250 Гц, 4380 Гц, 4890 Гц, 5220 Гц, 5400 Гц, 5550 Гц, 5690 Гц, 6340 Гц, 7200 Гц, 7560 Гц 7890 Гц, 8000 Гц, 8960 Гц 9430 Гц, не связанных с дефектом подшипниковых опор, выделения 3 частотных диапазонов, характеризующих степень развития дефекта: от 1-5 кГц; от 5-10 кГц и от 10-20 кГц. Определение характеристики дефекта производят по результатам сравнения в каждом диапазоне порогового значения СКЗ вибрации с среднеквадратическим значением измеренной амплитуды на режиме холодной прокрутки путем логарифмирования данных диапазонов (каждого по отдельности) и измерение их СКЗ. Сравнение СКЗ диапазона 1-5 кГц в 27 мм/с с установленным в процессе набора статистики отказов и измерений исправных и неисправных двигателей в 30 мм/с; 5-10 кГц в 33 мм/с с установленным в процессе набора статистики отказов и измерений исправных и неисправных двигателей в 30 мм/с и 10-20 кГц в 19 мм/с с установленным в процессе набора статистики отказов и измерений исправных и неисправных двигателей в 25 мм/с значением. В результате анализатором идентифицируется превышение в одном из диапазонов и выдается команда на экран индикации «дефект». При этом делается вывод о дефекте подшипниковой опоры и двигатель отстраняется от эксплуатации.

Способ диагностики подшипниковых опор турбореактивного двигателя, включающий измерение амплитудных значений сигнала от датчика на режиме холодной прокрутки, установление порогового уровня амплитуды сигнала по их усредненным значениям, сравнение измеряемых амплитудных значений с диагностическим пороговым уровнем и определение характеристики дефекта по результатам сравнения, отличающийся тем, что измерение амплитудных значений сигнала производят акустическим микрофоном, установленным в представительной точке внутри корпуса двигателя, выход двигателя на режим холодной прокрутки определяют по превышению установленного значения амплитуд сигналов частот вращения лопаток и ротора, измеряемые амплитудные значения сигнала на режиме холодной прокрутки во всем диапазоне частот отфильтровывают от частот, не связанных с дефектами подшипниковых опор, и разделяют, по меньшей мере, на два диапазона, характеризующих степень развития дефекта, значения пороговых и измеряемых амплитуд частот аппроксимируют в логарифмических координатах, а определение характеристики дефекта производят по результатам сравнения в каждом диапазоне порогового среднеквадратичного значения вибрации с среднеквадратическим значением измеренной амплитуды на режиме холодной прокрутки.



 

Похожие патенты:

Изобретение относится к области учебного лабораторного оборудования и может быть использована в учебном процессе, при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях.
Изобретение относится к области эксплуатации машин и может быть использовано для диагностики подшипников кривошипно-шатунного механизма дизельных автотракторных двигателей.

Изобретение относится к испытательной технике и может быть использовано в автомобильной, авиационной, тракторной промышленности. Сущность изобретения в подаче в двигатель внутреннего сгорания от постороннего источника штатного моторного масла с температурой и под давлением, которые обеспечивают гидродинамическую смазку в подшипниках коленчатого вала с уменьшенной шириной рабочей поверхности.

Изобретение относится к средствам вибродиагностики, а именно к постовым системам вибродиагностики на железнодорожном транспорте. Годность вагонов определяется по механическому состоянию букс колесных пар вагонов.

Изобретение относится к устройствам для измерения толщины граничных слоев смазочных материалов и может найти применение в нефтегазовой отрасли. Сущность: устройство включает стол-основание (1), закрепленную на нем вертикально цилиндрическую трубку (3), крышку (4) и микрометр (8).

Изобретение относится к машиностроению, а именно к накатке поверхностей дорожек качения колец упорно-радиальных шариковых подшипников в собранном виде с целью их упрочнения.

Изобретение относится к разрушающему контролю и может быть использовано для определения точек контакта шарика с дорожками качения колец шарикоподшипника и последующему вычислению угла контакта шарикоподшипника.

Изобретение относится к метрологии, в частности к устройствам контроля вибрации. Аппаратура контроля вибрации содержит не менее двух датчиков вибрации, каждый из которых содержит пьезоэлемент, не менее двух преобразователей и двух, обладающих повышенной жесткостью, кабелей, каждый из которых соединяет один из датчиков вибрации с соответствующим преобразователем.

Изобретение относится к подшипниковой промышленности и может быть использовано преимущественно для определения долговечности подшипниковых узлов сухого трения с антифрикционным твердосмазочным заполнителем.

Изобретение относится к области метрологии, в частности к методам контроля подшипников. Способ контроля технического состояния подшипников качения заключается в обнаружении дефекта и места повреждения путем измерения и анализа параметров вибрации работающего двигателя, анализа параметров вибрации и сравнении получаемых данных с данными в исходном состоянии, за которое принимаются данные, полученные для полностью исправного двигателя.
Наверх