Конфокальный спектроанализатор флуоресцентных изображений



Конфокальный спектроанализатор флуоресцентных изображений
Конфокальный спектроанализатор флуоресцентных изображений
G01N2021/6417 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2658140:

федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") (RU)

Изобретение относится к устройствам сканирования возбуждаемого лазерным источником излучения спектра флуоресценции поверхности объекта исследований и представления результата в виде изображений в видимом и ИК-диапазонах. В устройстве использован оптоволоконный световод, преобразующий линейные фрагменты двухмерного изображения спектра линии флуоресцентного излучения объекта в одномерное, передаваемое на монохромный линейный видеосенсор. Технический результат – увеличение скорости обработки данных. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к устройствам сканирования возбуждаемого лазерным источником излучения спектра флуоресценции поверхности объекта исследований и представления результата в виде изображений в видимом и ИК-диапазонах.

Изобретение может быть использовано в качестве флуоресцентной сканирующей видеокамеры фотосепаратора или экспресс-анализатора сельскохозяйственной продукции, а также в медицинских целях для флуоресцентной диагностики поверхностных областей различных биологических сред в качестве датчика экспертной системы постановки диагноза. В системах регистрации и машинного зрения фотосепараторов устройство предназначено, прежде всего, для работы в режиме реального времени в качестве быстродействующей сканирующей камеры, регистрирующей флуоресцентные изображения неоднородного потока элементов зерновых смесей или других объектов анализируемого продукта в заданных спектральных интервалах.

Известен сканирующий анализатор фирмы Dilor (Франция), ориентированный на проведение измерений с высоким спектральным разрешением, в котором флуоресцентные изображения объектов реконструируются на основе записанных спектров множества точечных областей (А.В. Феофанов «Спектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях». Успехи биологической химии - т. 47, 2007, с. 371-410, рис. на с. 381). Анализатор содержит лазерное устройство для возбуждения флуоресценции, освещающее исследуемый объект, объектив, передающий изображение линейной освещенной области объекта в сопряженную плоскость, содержащую конфокальную диафрагму, содержащий также коллимирующий объектив, в фокальной плоскости которого находится конфокальная диафрагма, дифракционную решетку, монохромный видеосенсор, процессор, управляющий формированием данных видеосенсора и синтезирующий ряд флуоресцентных изображений поверхности объекта. Недостатками данного устройства являются: во-первых, сложная система формирования линии освещения и регистрации изображения линии. Лазерная линия формируется поворотом зеркала и линия освещения создается движением сфокусированного луча по поверхности объекта. Соответственно, через точечную конфокальную диафрагму передается информация о нульмерном объекте из области точечного освещения, а одномерное изображение, развернутое в спектр по второй координате, регистрируется двухмерной CCD матрицей за счет синхронного поворота второго зеркала. Во-вторых, синтез изображения осуществляется из нульмерных регистрируемых объектов. Этим определяются дополнительные затраты времени на формирование двухмерного изображения в выбранном спектральном интервале.

Наиболее близким по совокупности признаков является «Конфокальный спектроанализатор изображений» (патент RU 2579640 от 14.10.2014, опубл. 10.04.2016, МПК G01J 3/02, G01N 21/01). Спектроанализатор содержит лазерное устройство для возбуждения флуоресценции, освещающее движущийся за предметным стеклом исследуемый объект, объектив, передающий изображение линейной освещенной области объекта в сопряженную плоскость, содержащую конфокальную щелевую диафрагму, содержащий также коллимирующий объектив, в фокальной плоскости которого находится щель диафрагмы, дифракционную решетку, камерный объектив, формирующий в фокальной плоскости двухмерное изображение спектра первого порядка флуоресценции освещенной линейной области объекта, монохромный видеосенсор, процессор, управляющий формированием данных видеосенсора и синтезирующий ряд флуоресцентных изображений поверхности объекта. Недостаток данного устройства состоит в том, что регистрация последовательности линейных участков предметной области в виде ряда двумерных изображений спектров позволяет зарегистрировать максимально возможный объем информации, а при реконструкции изображений в отдельных спектральных интервалах весь объем данных не используется. Затрачиваются большое время и дополнительные вычислительные ресурсы на регистрацию информации и ее обработку. Это ограничивает возможности работы устройства в режиме реального времени, в частности, в системах машинного зрения фотосепараторов.

Заявляемое изобретение предназначено, прежде всего, для применения в системах машинного зрения фотосепараторов в качестве быстродействующей сканирующей видеокамеры, формирующей изображение в спектральных интервалах автофлуоресценции движущегося потока сельскохозяйственной продукции. Флуоресцентная диагностика является эффективным инструментом оценки состава и качественных показателей биологических сред. Заявляемое изобретение также может быть использовано для решения задач флуоресцентной диагностики в медицине. Применяя заявленное изобретение, можно существенно увеличить скорость получения и обработки информации, увеличить производительность процесса сепарации сельскохозяйственной продукции по результатам флуоресцентного анализа.

Технический результат в заявленном изобретении достигается тем, что в известном конфокальном сканере, содержащем лазерное устройство для возбуждения флуоресценции, освещающее движущийся за предметным стеклом исследуемый объект, объектив, передающий изображение линейной освещенной области объекта в сопряженную плоскость, содержащую конфокальную щелевую диафрагму, содержащий также коллимирующий объектив, в фокальной плоскости которого находится щель диафрагмы, дифракционную решетку, камерный объектив, формирующий в фокальной плоскости двухмерное изображение спектра первого порядка флуоресценции освещенной линейной области объекта, монохромный видеосенсор, процессор, управляющий формированием данных видеосенсора и синтезирующий ряд флуоресцентных изображений поверхности объекта, согласно изобретению, содержится диодный лазер с коллимирующей цилиндрической линзой, формирующей плоский пучок освещения объекта лазерным излучением, причем оптическая ось объектива, ось цилиндрической линзы и линия освещения объекта лежат в одной плоскости, содержится, как минимум, один оптоволоконный световод, преобразующий линейные фрагменты двухмерного изображения спектра в одномерное, содержится монохромный линейный видеосенсор, причем входные торцы каждого оптического волокна световода расположены в фокальной плоскости камерного объектива на выбранном участке спектрального разложения линии флуоресцентного излучения объекта, а выходные торцы волокон расположены вдоль линии пикселей видеосенсора и ориентированы параллельно его поверхности.

Технический результат, достижимый при использовании данного изобретения, в сравнении с известным техническим решением, основан на оптической выборке необходимых данных двухмерного изображения и их преобразования в одномерный формат, что позволяет исключить неиспользуемую избыточную информацию и существенно увеличить скорость обработки данных.

В устройстве использован оптоволоконный световод, преобразующий линейные фрагменты двухмерного изображения спектра линии флуоресцентного излучения объекта в одномерное, передаваемое на монохромный линейный видеосенсор, обладающий высоким быстродействием в сравнении с матричным видеосенсором. Кроме того, применение микро-цилиндрической линзы - коллиматора быстрой оси диодного лазера, вследствие малой апертуры линзы, позволяет создать плоский пучок с большой глубиной резкости в области предметного стекла и большой плотности мощности по всей апертуре линии освещения. Конфокальная щелевая диафрагма выполняет роль пространственного фильтра, заграждающего внефокусные лучи. Это приводит к повышению контрастности изображения и исключает влияние внешнего освещения на работу устройства.

Расположение двух лазерных источников симметрично относительно оптической оси объективов в одной плоскости с этой осью позволяет повысить плотность мощности в линии освещения объекта. В результате расширяется динамический диапазон регистрируемого флуоресцентного сигнала, сокращается время экспозиции видеосенсора и, соответственно, увеличивается скорость работы системы машинного зрения. Освещение двумя плоскими пучками лазерного излучения, расположенными в одной плоскости под углом друг к другу, позволяет избежать теневых областей в изображении объекта.

Оптоволоконный световод, представляющий собой группу волокон, выполнен в виде плоского шлейфа. С целью минимизации потерь информации, полезное сечение световода должно быть максимальным. Поэтому световод состоит из многомодовых волокон с минимальной толщиной отражающей оболочки.

Количество и ширина спектральных интервалов, передаваемых световодом на линейный видеосенсор, определяется числом волокон в световоде и апертурой волокон по отношению к размерам двухмерного изображения спектра в фокальной плоскости камерного объектива. Оптическая выборка может быть представлена как разложение в спектр флуоресценции локального участка линии освещения, так и выделение выбранной спектральной области или нескольких областей всего объекта.

Для увеличения объема регистрируемой информации при сохранении скорости работы устройства может быть применен принцип распараллеливания данных. Для этого, согласно изобретению, выходные торцы регулярной последовательности волокон нескольких световодов смонтированы вдоль линии пикселей одного видеосенсора или нескольких линейных видеосенсоров, объединенных в единую систему формирования флуоресцентных изображений поверхности объекта.

На Фиг. 1 изображена схема конфокального спектроанализатора флуоресцентных изображений.

Устройство содержит диодный лазер 1, цилиндрическую линзу 2, формирующую плоский пучок 3, проходящий через предметное стекло 4 и сфокусированный в виде линии 5 на объекте. Объектив 6 изображение линии передает в сопряженную плоскость, содержащую щелевую диафрагму 7. Устройство также содержит коллимирующий объектив 8, дифракционную решетку 9, камерный объектив 10, формирующий изображение спектра в фокальной плоскости 11, оптическая ось которого расположена под «углом блеска» 12 к ортогонали решетки. Содержит один или несколько световодов 13 процессор 14, управляющий линейным видеосенсором 15.

Работа конфокального спектроанализатора флуоресцентных изображений осуществляется следующим образом. Излучение диодного лазера 1 в направлении «быстрой оси» - направлении максимальной дифракционной расходимости оптического пучка - сжимается коллимирующей цилиндрической линзой 2 с малой апертурой. Плоский пучок 3 лазера, возбуждающего флуоресценцию, проходит через предметное стекло 4 и фокусируется на контактирующем с противоположной стороной стекла объекте исследований в виде линии 5. Освещенная область объекта излучает широкополосный спектр флуоресцентного отклика и изображение рассеянного флуоресцентного излучения линейной области объективом 6 передается в сопряженную плоскость, в которой расположена конфокальная щелевая диафрагма 7, через которую проходит только угловой спектр освещенного участка предметной области. Фокальная плоскость объектива 8 расположена в плоскости диафрагмы 7 и этот объектив преобразует излучение щели в параллельный световой пучок, падающий ортогонально на пропускающую дифракционную решетку 9. Дифракция на решетке в направлении «угла блеска» 12 формирует первый порядок спектрального разложения с максимальной дифракционной эффективностью. Дифракция Фраунгофера в параллельных лучах преобразуется в изображение объективом 10. Это изображение формируется в фокальной плоскости 11 объектива 10, в которой располагаются входные торцы волокон световодов 13. В зависимости от решаемой задачи торцы волокон могут располагаться по направлению разложения в спектр локального участка или локальных участков движения сепарируемого продукта поперек линии зрения (показано на фиг. 1) или в ортогональном направлении (функция цветной камеры потока в целом). Выходные торцы волокон световодов располагаются по направлению линии пикселей линейного видеосенсора 15 и передают излучение соответствующим группам пикселей. Процессор 14 в режиме реального времени управляет работой видеосенсора и реализует обработку данных по соответствующей программе.

1. Конфокальный спектроанализатор флуоресцентных изображений, содержащий лазерное устройство для возбуждения флуоресценции, освещающее движущийся за предметным стеклом исследуемый объект, объектив, передающий изображение линейной освещенной области объекта в сопряженную плоскость, содержащую конфокальную щелевую диафрагму, содержащий также коллимирующий объектив, в фокальной плоскости которого находится щель диафрагмы, дифракционную решетку, камерный объектив, формирующий в фокальной плоскости двухмерное изображение спектра первого порядка флуоресценции освещенной линейной области объекта, монохромный видеосенсор, процессор, управляющий формированием данных видеосенсора и синтезирующий ряд флуоресцентных изображений поверхности объекта, отличающийся тем, что содержит диодный лазер с коллимирующей цилиндрической линзой, формирующей плоский пучок освещения объекта лазерным излучением, причем оптическая ось объектива, ось цилиндрической линзы и линия освещения объекта лежат в одной плоскости, содержит как минимум один оптоволоконный световод, преобразующий линейные фрагменты двухмерного изображения спектра в одномерное, содержит монохромный линейный видеосенсор, причем входные торцы каждого оптического волокна световода расположены в фокальной плоскости камерного объектива на выбранном участке спектрального разложения линии флуоресцентного излучения объекта, а выходные торцы волокон расположены вдоль линии пикселей видеосенсора и ориентированы параллельно его поверхности.

2. Конфокальный спектроанализатор флуоресцентных изображений по п. 1, отличающийся тем, что цилиндрическая линза является коллиматором быстрой оси диодного лазера, а область фокусировки излучения диодного лазера находится на пересечении оптического пучка с предметным стеклом.

3. Конфокальный спектроанализатор флуоресцентных изображений по п. 1, отличающийся тем, что содержит два устройства лазерного освещения, расположенных симметрично относительно оптической оси объективов.

4. Конфокальный спектроанализатор флуоресцентных изображений по п. 1, отличающийся тем, что оптоволоконный световод выполнен из многомодовых волокон с минимальной толщиной отражающей оболочки, выходные торцы которых смонтированы вдоль линии пикселей видеосенсора в виде регулярной последовательности.

5. Конфокальный спектроанализатор флуоресцентных изображений по п. 1, отличающийся тем, что монохромный линейный видеосенсор имеет пиксели, размер которых поперек линии пикселей совпадает с апертурой оптических волокон световода.

6. Конфокальный спектроанализатор флуоресцентных изображений по п. 1, отличающийся тем, что выходные торцы регулярной последовательности волокон нескольких световодов смонтированы вдоль линии пикселей одного видеосенсора или нескольких линейных видеосенсоров, объединенных в единую систему формирования флуоресцентных изображений поверхности объекта.



 

Похожие патенты:

Изобретение относится к нагревательному устройству для прибора для измерения методом спектрометрии. Данное нагревательное устройство отличается тем, что оно выполнено в виде мягкого оптического элемента (1), который включает в себя мягкую гибкую опору (10) с верхней стороной (10a) и нижней стороной (10b).

Изобретение относится к экологии, лимнологии, океанологии и может быть использовано в качестве устройства для проведения in situ исследований антропогенной загрязненности природных акваторий с морской и пресной водой.
Изобретение относится к области медицины, а именно к лучевой диагностике, и может быть использовано для дифференциальной диагностики образований молочной железы. Осуществляют пульсомоторографию с оптометрией объемных образований молочной железы с оценкой показателей кровотока.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета.

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом. Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, представляющий собой изотропную прозрачную пластину диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света, и фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)⋅λ/4.

Группа изобретений относится к сортировке сперматозоидов в микрожидкостном чипе. Система сортировки спермы включает источник образца, субстрат, по меньшей мере один канал потока, образованный в субстрате, по меньшей мере один отклоняющий механизм, сообщающийся с каждым из по меньшей мере одного канала потока для выборочного отклонения спермы по меньшей мере в одном канале потока от первого выпускного канала, источник электромагнитного излучения для освещения спермы в области проверки, детектор, выровненный таким образом, чтобы измерять характеристики спермы в области проверки по меньшей мере одного канала потока, анализатор, сообщающийся с детектором для определения характеристик спермы, контроллер, сообщающийся с анализатором для избирательного приведения в действие отклоняющего механизма на основании измеренных характеристик спермы, и резервуар для сбора, сообщающийся со вторым выпускным каналом.

Предложенное изобретение относится к устройствам для определения концентрации соединений в твердой фазе. Устройство для определения концентрации манганитов редкоземельных элементов (МРЭ) состоит из источника света - ртутной лампы, блока питания источника света, фотоприемника излучения видимой области спектра, блока питания фотоприемника, микровольтметра для измерения тока фотоприемника.

Изобретение относится к области медицины, а именно производственной и клинической трансфузиологии, и раскрывает способ морфофункционального анализа тромбоцитов, пригодных для криоконсервирования.

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности.

Изобретение относится к области геологии, а именно к средствам определения угла наклона и направления падения трещин в керновом материале, в частности к способу для определения элементов залегания трещин и границ пластов в керне.

Группа изобретений относится к области биотехнологии, в частности к области биосенсоров с металлическими наночастицами в качестве системы передачи сигнала. Биосенсор для визуального детектирования аналита включает распознающую молекулу, способную распознавать целевой аналит, иммобилизованную на теплочувствительной поверхности, и металлическую наночастицу, характеризующуюся полосой поверхностного плазмонного резонанса, функционализированную второй распознающей молекулой, способной распознавать целевой аналит или другие распознающие молекулы.

Изобретение относится к специальному оборудованию, предназначенному для обучения студентов вузов и колледжей техническим дисциплинам. Лабораторная установка обратного осмоса и химического обессоливания включает стол с горизонтальной и вертикальной установочными поверхностями, на которых размещены питательный насос 1 с водонапорной магистралью, накопительный бак 5, механический фильтр 2, соединительные патрубки, задвижки отбора пробы и запорную арматуру.
Изобретение относится к области медицины и предназначено для диагностики миелодиспластического синдрома. В мононуклеарных фракциях клеток пациентов определяют экспрессию VEGF-A, VEGFR1 и VEGFR2.

Группа изобретений относится к области медицины, а также к аналитической и органической химии. Тест-система для экспрессного определения аутоиммунных антител к тиреоглобулину человека содержит фосфатный буфер и суспензионную композицию полимерных микросфер со средним размером от 1,0 до 5,0 мкм из поли(2-метил-5-винилпиридина), у которых к карбоксиметильным группам, связанным с поверхностью микросфер через атом азота пиридина, ковалентно присоединены молекулы тиреоглобулина.

Изобретение относится к области медицины и представляет собой способ прогнозирования частоты обострений при хронической обструктивной болезни легких (ХОБЛ). Используют результаты теста с оценкой расстояния, пройденного пациентом за 6 минут, проводят оценку по шкалам влияния, симптомов и активности, рассчитывают количество выкуриваемых пачек сигарет в год, устанавливают факт курения на момент обследования, осуществляют орофарингеальный мазок с задней стенки глотки с выделением ДНК и секвенированием по V3-V4 участкам бактериального гена 16S рРНК определяют количество операционных таксономических единиц семейства Propionibacteriaceae, семейства Acidaminobacteraceae, рода Bradyrhizobium, рода Treponema, рода Ruminococcus, вида Rothia mucilaginosa, вида Brevundimonas diminuta, вида Pseudomonas viridiflava, вида Acinetobacter schindleri, рода Sphingopyxis alaskensis.

Изобретение относится к нейробиологии и медицине и может быть использовано при изучении парасимпатической и симпатической иннервации разных органов и тканей в норме и при патологии.

Изобретение относится к области медицины и предназначено для прогнозирования наличия хромосомных аномалий в эмбрионах удовлетворительного и плохого качества в программе экстракорпорального оплодотворения (ЭКО).

Лабораторная автоматизированная система содержит пару конвейерных лент (4), вмещающих устройства (5) для транспортировки биологических образцов и приводимых в действие моторизованным тяговым устройством (100), которое включает в себя первый и второй двигатели (111а, 111b).

Изобретение относится к области биотехнологии и предназначено для определения индекса фрагментации ДНК сперматозоидов у животных-производителей. Осуществляют подготовку мазка спермопробы к окрашиванию и приготовление красителя смешиванием раствора лимонной кислоты, гидрофосфата натрия и 1%-го акридин оранжевого.

Изобретение может быть использовано океанологических и инженерно-гидрогеологических исследованиях в придонном слое моря в зоне интенсивного волнения и обрушения волн.

Изобретение может быть использовано в устройствах, обладающих высокой разрешающей способностью, для спектрального анализа, модуляции и монохроматизации света. Интерференционный светофильтр содержит две подложки с зеркальным покрытием с регулированием положения подложек при помощи основного пьезоэлемента, подключенного к источнику переменного напряжения.

Изобретение относится к устройствам сканирования возбуждаемого лазерным источником излучения спектра флуоресценции поверхности объекта исследований и представления результата в виде изображений в видимом и ИК-диапазонах. В устройстве использован оптоволоконный световод, преобразующий линейные фрагменты двухмерного изображения спектра линии флуоресцентного излучения объекта в одномерное, передаваемое на монохромный линейный видеосенсор. Технический результат – увеличение скорости обработки данных. 5 з.п. ф-лы, 1 ил.

Наверх