Вещество для иммобилизации бериллия, содержащегося в высокоактивных растворах

Изобретение относится к области переработки жидких радиоактивных растворов, в частности к отверждению высокоактивных растворов, содержащих бериллий и другие стабильные и радиоактивные элементы. В качестве вещества для иммобилизации бериллия из высокоактивных растворов используют натрий алюмофосфатное стекло, имеющее общую формулу: Na2O-Me(I)2O-BeO-Al2O3-MeXOY-P2O5-BX1OY1-ElX2OY2, где: Me(I) – одновалентные металлы, за исключением натрия; Me – многовалентные металлы, за исключением бериллия и алюминия; El – неметаллы, за исключением фосфора и бора; Х, Х1, Х2, Y, Y1, Y2 – стехиометрические коэффициенты (1, 2, 3, 4, 5, 6, 7); при содержании, мас.%: Na2O + Me(I)2O – от 20 до 27; BeO – от 0,1 до 5; Al2O3 + MeXOY - от 15 до 23; P2O5 + B2O3 - от 50 до 57 (в том числе B2O3 от 0 до 6); ElX2OY2 – от 0 до 10. Изобретение позволяет получить химически стойкое и не пылящее вещество, способное включать бериллий. 4 табл.

 

Изобретение относится к области переработки жидких радиоактивных растворов, содержащих бериллий, и может быть использовано в радиохимической промышленности.

Известно вещество - смесь нитратов солей элементов, которое получают при упаривании азотнокислых растворов. Недостатками этого вещества является хорошая растворимость в воде нитрата бериллия и высокое пылеобразование [Химическая энциклопедия. Том 1 / Главный редактор И.Л. Кнунянц. - М.: «Советская энциклопедия», 1988, С. 280-281].

Известно вещество - смесь оксидов элементов (Na, Cs, Al, Fe, Cr, Ni, Mo, Zr, Sr и др.), которое получают при кальцинации азотнокислых высокоактивных растворов [Никифоров А.С., Куличенко В.В., Жихарев М.И. Обезвреживание жидких радиоактивных отходов. М.: Атомиздат, 1985. - 184 с.], выбранное в качестве прототипа. Недостатками этого вещества являются нетехнологичность получения, хорошая растворимость в воде оксидов отдельных элементов и высокое пылеобразование.

Техническая задача, на решение которой направлено заявляемое изобретение, состоит в получении химически стойкого и непылящего вещества, способного включать бериллий, а также другие элементы и радионуклиды, которые могут содержаться в высокоактивных растворах, и одновременно технологичного вещества, в процессе получения которого отсутствует пыление бериллия.

Решение поставленной задачи достигается тем, что в качестве вещества для иммобилизации бериллия из высокоактивных растворов предлагается использовать натрийалюмофосфатное стекло, имеющее общую формулу:

Na2O-Me(I)2O-ВеО-Al2O3-MeXOY-P2O52О3-ElX2OY2, где:

Ме(I) - одновалентные металлы, за исключением натрия;

Me - многовалентные металлы, за исключением бериллия и алюминия;

El - неметаллы, за исключением фосфора и бора;

X, X1, Х2, Y, Y1, Y2 - стехиометрические коэффициенты (1, 2, 3, 4, 5, 6, 7);

содержание, мас.%:

Na2O+Ме(I)2O - от 20 до 27;

ВеО - от 0,1 до 5;

Al2O3+MeXOY - от 15 до 23;

P2O5+B2O3 - от 50 до 57 (в том числе B2O3 от 0 до 6);

ElX2OY2 - от 0 до 10;

и которое получают путем одностадийного процесса варки стекла. Заявляемое вещество позволяет:

- получать стекломатериал с содержанием оксида бериллия до 5% при высокой химической стойкости (скорость выщелачивания 137Cs, 90Sr и Be не более 10-6÷10-7 г/(см2⋅сут);

- одновременно включать в матрицу любые элементы, содержащиеся в высокоактивных растворах;

- технологично изготовлять вещество без образования пылящих порошков солей.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый состав вещества отличается от известного введением новых компонентов (фосфор, бор) и вещество отличается структурой (у стекла - аморфная, у оксидов - кристаллическая).

Сравнение заявляемого решения с другими техническими решениями показывает, что иммобилизация отдельных и суммы элементов в разные типы стекол известна, однако совместная иммобилизация бериллия и других элементов и радионуклидов с получением натрийалюмофосфатного стекла, по нашим сведениям, неизвестна.

Примеры получения вещества.

Пример 1.

Вещество получали по следующей методике одностадийного процесса варки стекла: удаление влаги, денитрация, кальцинация сухого остатка и последующее плавление с получением фосфатного стекла в одной реакционной емкости. Из подаваемого в реакционную емкость исходного солевого раствора с содержанием элементов в необходимых стехиометрических количествах, указанных в таблице 1, при температуре 100-120°С идет удаление свободной воды, частичное разложение азотной кислоты и образование на поверхности расплава солей. При температуре до 200°С разлагаются нитраты алюминия. При температурах до 600°С происходит обезвоживание и кальцинация нитратов кальция, железа, хрома, других многовалентных элементов, включая бериллий, а также плавление фосфата натрия. При температуре выше 600°С разрушается ортофосфорная кислота и идет вплавление оксидов металлов в жидкий фосфат натрия. При температуре выше 800°С происходит стеклообразование. После выдержки стекломассы при температуре от 850 до 1200°С отбирается образец стекла, который затем охлаждается и исследуется.

Результаты исследования свойств бериллийсодержащих стекол с общей формулой Na2O-ВеО-Al2O3-Fe2O3-P2O52О3 приведены в таблице 1.

Оксидный состав изученных стекол соответствует следующим диапазонам содержания компонентов:

Na2O - от 25,7 до 26,2;

ВеО - от 2,9 до 4,8;

Al2O3+Fe2O3 - от 17,2 до 17,5;

P2O5+B2O3 - от 52,2 до 53,0 (в том числе B2O3 от 0 до 3,9);

SO3 - от 0,1 до 0,4.

В результате синтеза получают стеклообразный продукт с заявляемыми составом и свойствами.

Изменение вязкости расплавов фосфатных и борофосфатных стекол при включении в их состав до 3 масс. % ВеО носит плавный характер, что не должно вызывать каких-либо затруднений при сливе таких расплавов из плавителя. Вязкость стекол, содержащих бериллий, при характерных температурах сливаемого расплава несущественно отличается от таковой для стекол без бериллия. Присутствие бора обеспечивает приемлемые вязкостные характеристики расплава при содержании до 5 масс. % ВеО.

Электропроводность расплавов бериллийсодержащих стекол в диапазоне содержания ВеО от 0 до 5% составляет 0,28-0,31 Ом-1⋅см-1 (при температуре 900°С), незначительно отличаясь от электропроводности расплавов безбериллиевых стекол (0,32 Ом-1⋅см-1), что не вызовет затруднений при варке первых в печах прямого электрического нагрева.

Унос бериллия в процессе получения в пересчете на массовую долю составляет 0,4-0,5% от исходного содержания бериллия, что не превышает значений аэрозольного уноса для компонентов стеклообразующих растворов, которые, априори, не образуют летучих соединений в процессе получения стекломассы.

Химический анализ образцов стекол, отобранных из различных частей стеклоблоков, показал равномерность распределения бериллия по объему фосфатных и борофосфатных стекол.

Полученные методом картирования на электронном микроскопе данные по распределению макрокомпонентов (Na, Al, Р) показали, что поверхностный слой закаленных образцов стекол однороден и не содержит инородные включения и какие-либо кристаллические фазы.

Бериллий прочно фиксируется в стекломатериале - скорость выщелачивания бериллия составляет (4,7-5,9)⋅10-7 г/(см2⋅сут).

Пример 2.

Вещество получали по методике, описанной в примере 1. В состав исходного раствора дополнительно были введены стабильные элементы, имитирующие конструкционные материалы ОЯТ (Pb, Bi, Mg, Са), и продукты деления ядерного топлива (Sr, Cs, Zr, Mo и Се). Кроме того, для определения скорости выщелачивания 137Cs и 90Sr в стекла были введены указанные радионуклиды в количестве, обеспечивающем их удельную активность 1,1⋅106 Бк/г и 2,2⋅106 Бк/г, соответственно.

Результаты исследования химической стойкости бериллийсодержащих стекол с общей формулой Na2O-Me(I)2O-ВеО-Al2O3-MeXOY-P2O52О3 приведены в таблице 2.

Оксидный состав изученных стекол соответствует следующим диапазонам содержания компонентов:

Na2O+Cs2O - 26,6;

ВеО - от 1,9 до 3,8;

Al2O3+MeXOY - от 15,1 до 17,0 (где MeXOY=PbO+Bi2O3+MgO+CaO+SrO+ZrO2+MoO3+Ce2O3);

P2O5+B2O3 - от 54,5 до 54,6 (в том числе B2O3 от 1,9 до 3,8).

В результате синтеза получают стеклообразный продукт с заявляемыми составом и свойствами.

Образцы закаленных стекол характеризуются однородной структурой, в которой отсутствуют кристаллические образования, о чем свидетельствуют внешний вид и данные рентгенофазового анализа.

137Cs, 90Sr и бериллий прочно фиксируются в стекломатериале - скорости выщелачивания указанных элементов находятся в диапазоне значений от 3,2⋅10-7 до 6,9⋅10-6 г/(см2⋅сут). Термическое воздействие на стекла не приводит к существенному снижению химической устойчивости бериллийсодержащих стекол - скорости выщелачивания 137Cs, 90Sr и бериллия находятся в диапазоне значений от 1,2⋅10-7 до 6,5⋅10-5 г/(см2⋅сут).

Пример 3.

Вещество получали по методике, описанной в примере 1. В состав исходного раствора дополнительно были введены стабильные элементы, имитирующие конструкционные материалы ОЯТ (Fe, Cr, Ni, Mo, Mg, Са, Zr) и продукты деления ядерного топлива (Mo, Zr, Sr и Cs).

Составы полученных бериллийсодержащих стекол с общей формулой Na2O-Cs2O-BeO-Al2O3-MeXOY-P2O5-B2O3-SiO2 приведены в таблице 3.

Оксидный состав изученных стекол соответствует следующим диапазонам содержания компонентов:

Na2O+Cs2O - от 20 до 27;

ВеО - от 0,1 до 2,0;

Al2O3+MeXOY - от 15 до 23 (где MeXOY=Fe2O3+NiO+MgO+CaO+SrO+Cr2O3+ZrO2+MoO3);

P2O5+B2O3 - от 50 до 57 (в том числе B2O3 от 1 до 6);

SiO2 - от 0 до 10.

В результате синтеза получают стеклообразный продукт с заявляемыми составом и свойствами.

Образцы закаленных стекол характеризуются однородной структурой, в которой отсутствуют кристаллические образования, о чем свидетельствуют внешний вид и данные рентгенофазового анализа.

Cs, Sr и бериллий прочно фиксируются в стекломатериале - скорости выщелачивания указанных элементов, находятся в диапазоне значений от 6,8⋅10-7 до 4,9⋅10-6 г/(см2⋅сут).

Пример 4.

Вещество получали по методике, описанной в примере 1. В состав исходного раствора дополнительно были введены стабильные элементы, имитирующие продукты деления ядерного топлива и их распада (Mo, Zr, Sr, Cs, Ва, Y, La, Се, Nd) и актиноиды (U, Th).

Составы полученных бериллийсодержащих стекол с общей формулой Na2O-Cs2O-BeO-Al2O3-MeXOY-P2O5-B2O3 приведены в таблице 4.

Оксидный состав изученных стекол соответствует следующим диапазонам содержания компонентов:

Na2O+Cs2O - от 23 до 25;

ВеО - от 2 до 5;

Al2O3+MeXOY - от 16,4 до 22,5 (где MeXOY=U3O8+ThO2+La2O3+Ce2O3+Nd2O3+SrO+BaO+Y2O3+ZrO2+MoO3);

P2O5+B2O3 - от 51,5 до 55,8 (в том числе B2O3 от 3 до 5).

В результате синтеза получают стеклообразный продукт с заявляемыми составом и свойствами.

Образцы закаленных стекол характеризуются однородной структурой, в которой отсутствуют кристаллические образования, о чем свидетельствуют внешний вид и данные рентгенофазового анализа.

Cs, Sr и бериллий прочно фиксируются в стекломатериале скорости выщелачивания указанных элементов находятся в диапазоне значений от 2,2⋅10-7 до 3,8⋅10-6 г/(см2⋅сут).

1. Вещество для иммобилизации бериллия из высокоактивных растворов, которое представляет собой натрийалюмофосфатное стекло, имеющее общую формулу:

Na2O-Me(I)2O-BeO-Al2O3-MeXOY-P2O5-BX1OY1-ElX2OY2, где:

Me(I) – одновалентные металлы, за исключением натрия;

Me – многовалентные металлы, за исключением бериллия и алюминия;

El – неметаллы, за исключением фосфора и бора;

Х, Х1, Х2, Y, Y1, Y2 – стехиометрические коэффициенты (1, 2, 3, 4, 5, 6, 7);

при содержании, мас.%:

Na2O + Me(I)2O – от 20 до 27;

BeO – от 0,1 до 5;

Al2O3 + MeXOY - от 15 до 23;

P2O5 + B2O3 - от 50 до 57 (в том числе B2O3 от 0 до 6);

ElX2OY2 – от 0 до 10.



 

Похожие патенты:

Изобретение относится к области охраны окружающей среды, в частности к процессам отверждения органических ЖРО. Способ отверждения органических жидких радиоактивных отходов (ЖРО) заключается в соединении ЖРО с отвердителем, содержащим парафин, нагревании полученной смеси и выдерживании до перехода отвердителя в жидкое состояние и растворения в нем ЖРО, охлаждении смеси.

Группа изобретений относится к области переработки жидких радиоактивных отходов. Способ иммобилизации загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов заключается в их отверждении в солевой кристаллической матрице, которая затем иммобилизуется в прочной минеральной матрице.

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения.

Изобретение относится к области охраны окружающей среды, а точнее к области переработки радиоактивных отходов, и может быть использовано для целей безопасного и эффективного обращения с большим количеством жидких радиоактивных отходов различного уровня активности.
Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание получающейся смеси.

Изобретение относится к области охраны окружающей среды, а именно к области эксплуатации объектов по переработке радиоактивных материалов. Способ ликвидации аварии при разливе радиоактивных растворов, включающий нанесение на место разлива полимерсодержащей композиции, обеспечивающей поглощение пролитой жидкости, сушку полученной смеси и ее удаление с обрабатываемой поверхности.

Изобретение относится к способам обращения с радиоактивными отходами и может быть использовано для утилизации облученного графита. Cпособ глубинного захоронения облученного графита уран-графитовых ядерных реакторов включает предварительную подготовку отходов к глубинному захоронению, выбор тектонически устойчивых участков земной коры.
Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения и может быть использовано для снижения класса опасности жидких радиоактивных отходов (ЖРО), в том числе высокоактивных отходов (ВАО).

Изобретение относится к методам отверждения жидких радиоактивных отходов. Установка для отверждения жидких радиоактивных отходов содержит контейнер с перемешивающей мешалкой, узлы подачи ЖРО и наполнителя.

Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла. Способ очистки жидких радиоактивных отходов (ЖРО) включает операции их термической обработки, очистку ЖРО проводят в два этапа.

Изобретение относится к области переработки жидких радиоактивных растворов, в частности к отверждению высокоактивных растворов, содержащих бериллий и другие стабильные и радиоактивные элементы. В качестве вещества для иммобилизации бериллия из высокоактивных растворов используют натрий алюмофосфатное стекло, имеющее общую формулу: Na2O-Me2O-BeO-Al2O3-MeXOY-P2O5-BX1OY1-ElX2OY2, где: Me – одновалентные металлы, за исключением натрия; Me – многовалентные металлы, за исключением бериллия и алюминия; El – неметаллы, за исключением фосфора и бора; Х, Х1, Х2, Y, Y1, Y2 – стехиометрические коэффициенты ; при содержании, мас.: Na2O + Me2O – от 20 до 27; BeO – от 0,1 до 5; Al2O3 + MeXOY - от 15 до 23; P2O5 + B2O3 - от 50 до 57 ; ElX2OY2 – от 0 до 10. Изобретение позволяет получить химически стойкое и не пылящее вещество, способное включать бериллий. 4 табл.

Наверх