Устройство для исследования в скважинах динамического состояния горных пород



Устройство для исследования в скважинах динамического состояния горных пород
Устройство для исследования в скважинах динамического состояния горных пород
G01V2210/6169 - Геофизика; гравитационные измерения; обнаружение скрытых масс или объектов; кабельные наконечники (обнаружение или определение местоположения инородных тел для целей диагностики, хирургии или опознавания личности A61B; средства для обнаружения местонахождения людей, засыпанных, например, снежной лавиной A63B 29/02; измерение химических или физических свойств материалов геологических образований G01N; измерение электрических или магнитных переменных величин вообще, кроме измерения направления или величины магнитного поля Земли G01R; устройства, использующие магнитный резонанс вообще G01R 33/20)

Владельцы патента RU 2658592:

Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук (ИГФ УрО РАН) (RU)

Изобретение относится к области геофизики и может быть использовано как при каротажных работах, так и для мониторинга динамического состояния горных пород в скважинах. Заявленное устройство содержит следующие элементы: три ферритовых антенны (1, 2, 3), третий коммутатор ферритовых антенн (4), первый коммутатор конденсаторов (5), три конденсатора (6), первый усилитель (7), смеситель сигналов (8), переключаемый генератор (9), фильтр нижних частот (10), выпрямитель электромагнитных сигналов (11), три датчика геоакустических сигналов (12, 13, 14), второй коммутатор геоакустических сигналов (15), второй усилитель (16), заграждающий фильтр (17), датчик гамма-излучения (18), блок полосовых фильтров (19), блок выпрямителей (20), четвертый коммутатор (21), аналого-цифровой преобразователь (22), блок передачи (23), блок питания (24), блок управления (25), каротажный кабель (26). Технический результат - повышение информативности исследований. 1 ил.

 

Процесс трещинообразования в горных породах сопровождается сейсмоакустической эмиссией и электромагнитным излучением среды, однако наличие сейсмоакустического излучения и электромагнитного излучения в объеме геосреды происходит по-разному. В анизотропных средах распределение сигналов по направлениям не одинаково. Это позволяет классифицировать зоны нарушенности по их тектонофизической природе. Применение 3-компонентных измерений рассматриваемых процессов позволяет по расхождению амплитуд сигналов определять интервалы трещиноватости с разной направленностью трещин и тем самым выделять анизотропные и изотропные зоны по разрезу скважин. Применение трехкомпонентных измерений сейсмоакустической эмиссии и электромагнитного излучения позволяет увеличить объем информации в нарушенных зонах при естественном залегании пород и осуществляется впервые. Это также снижает стоимость геофизических исследований и расширяет область применения предлагаемого устройства.

Известно устройство [1], содержащее три взаимно ортогональных датчика акустических сигналов, коммутатор, блок управления, антенну для приема электромагнитных сигналов, высокочастотный перестраиваемый усилитель. К недостаткам устройства следует отнести то, что оно измеряет только одну составляющую электромагнитного сигнала, что существенно снижает его возможности. Кроме того, требуется трехжильный кабель и дополнительные устройства для преобразования измеряемых сигналов в цифровую форму.

Известно устройство [2], содержащее три взаимно ортогональных датчика акустических сигналов, термометр, блок гамма-каротажа. Это устройство не позволяет измерять электромагнитные сигналы. Кроме того, применение частотно-импульсного модулятора, работающего на частоте, близкой к частотам электромагнитных сигналов, исключает возможность их измерения из-за высоких помех со стороны модулятора.

Наиболее близким техническим решением к предлагаемому изобретению является устройство [3], содержащее в скважинном приборе три взаимно ортогональных датчика акустических сигналов, первый и второй коммутаторы, усилитель, блок фильтров, аналого-цифровой преобразователь, ферритовую антенну, блок передачи. К недостаткам устройства следует отнести то, что оно измеряет только одну составляющую электромагнитного сигнала, что может привести к ошибкам измерений при определении динамического состояния среды.

Устройство для исследования в скважинах динамического состояния горных пород, содержащее ферритовую антенну, три конденсатора, первый коммутатор конденсаторов, первый усилитель, смеситель, фильтр нижних частот, переключаемый генератор, выпрямитель, три взаимно ортогональных датчика акустических сигналов, второй коммутатор, второй усилитель, блок полосовых фильтров, блок выпрямителей, четвертый коммутатор, аналого-цифровой преобразователь, блок передачи, блок гамма-каротажа, отличается тем, что в него дополнительно введены две ферритовые антенны, расположенные перпендикулярно оси скважинного прибора таким образом, что с первой антенной они образуют взаимно ортогональную систему, оси чувствительности которой параллельны осям геоакустических датчиков, третий коммутатор ферритовых антенн, выход которого подключен к входу первого коммутатора конденсаторов и входу первого усилителя, а также заграждающий фильтр, вход которого подключен к выходу второго усилителя, а выход - к входу блока полосовых фильтров.

На чертеже изображена функциональная схема устройства. Устройство содержит:

1, 2, 3 - три ферритовых антенны,

4 - третий коммутатор ферритовых антенн,

5 - первый коммутатор конденсаторов,

6 - три конденсатора,

7 - первый усилитель,

8 - смеситель сигналов,

9 - переключаемый генератор,

10 - фильтр нижних частот,

11 - выпрямитель электромагнитных сигналов,

12, 13, 14 - три датчика геоакустических сигналов,

15 - второй коммутатор геоакустических сигналов,

16 - второй усилитель,

17 - заграждающий фильтр,

18 - блок-гамма каротажа,

19 - блок полосовых фильтров,

20 - блок выпрямителей,

21 - четвертый коммутатор,

22 - аналого-цифровой преобразователь,

23 - блок передачи,

24 - блок питания,

25 - блок управления,

26 - каротажный кабель.

Устройство работает следующим образом: связь скважинного прибора с наземным пультом осуществляется при помощи одножильного каротажного кабеля, по которому также подается напряжение питания скважинного прибора. Скважинный прибор устройства работает с временным разделением каналов за 19 тактов. Управляет работой устройства блок управления 25. Синхронизация принимаемой наземным пультом информации осуществляется в момент паузы ее передачи со скважинного прибора. В первый, второй, третий такты коммутатор 4 подключает ферритовую антенну 1 к входу первого коммутатора конденсаторов 5, при этом в каждый из этих тактов параллельно катушке ферритовой антенны подключаются коммутатором 5 различные конденсаторы 6, образуя входной колебательный контур с частотами измеряемого сигнала (например, 40 кГц, 80 кГц, 120 кГц). Синхронно с этим изменяется частота генератора 9, которая в каждый такт соответствует частоте колебательного контура. После усиления блоком 7 сигнал поступает на один из входов смесителя 8, на второй вход которого поступает сигнал с генератора 9. На выходе смесителя 8 в каждый такт образуется сигнал в полосе частот

(fвx±fнч)-fч,

где fвx - частота принимаемого сигнала;

fнч - верхняя частота пропускания фильтра нижних частот 10;

fч - частота генератора 9 и входного контура, образованного ферритовой антенной 1 и одним из конденсаторов 6.

Выходной сигнал смесителя 8 через фильтр нижних частот 10 и выпрямитель 11 поступает на вход коммутатора 21, АЦП 22, и полученный цифровой сигнал через блок передачи 23 поступает на каротажный кабель 26. В четвертый, пятый, шестой такты коммутатор 4 подключает ферритовую антенну 2 к входу коммутатора 5 и, соответственно, к конденсаторам 6. В седьмой, восьмой, девятый такты аналогичным образом коммутатор 4 подключает ферритовую антенну 3. В такты с четвертого по девятый устройство работает таким же образом, как в первый, второй, третий такты, при подключении антенн 2, 3. Индуктивность антенн 1, 2, 3 подбирается одинаковой с достаточно высокой точностью. В десятый, одиннадцатый, двенадцатый такты коммутатор 15 подключает датчик геоакустических сигналов 12 к усилителю 16 и, далее, к заграждающему фильтру 17. Выходной сигнал блока 17 подается на блок полосовых фильтров, который разделяет этот сигнал на три полосы и подает эти частоты на входы блока выпрямителей, выходы которого через коммутатор 21 подаются на вход аналого-цифрового преобразователя 22, блок передачи 23 и каротажный кабель 26. В тринадцатый, четырнадцатый, пятнадцатый такт коммутатор 15 подключает датчик 13, а в шестнадцатый, семнадцатый, восемнадцатый такты - датчик 14 к входу усилителя 16. Устройство работает аналогично работе в десятый, одиннадцатый, двенадцатый такты. В девятнадцатый такт выходной сигнал блока гамма-каротажа постоянного тока через коммутатор 21 поступает на вход АЦП 22. Из-за большой инерционности блока 18 он не выключается при измерении геоакустических сигналов. Блок гамма-каротажа содержит блокинг-генератор, работающий на частотах 5-10 кГц, который создает вибрацию корпуса скважинного прибора, создавая помехи при измерении геоакустических сигналов. Помехи эти могут быть значительными, и блок полосовых фильтров 19 зачастую не может их подавить или требует существенного усложнения. Для ликвидации этих помех между выходом блока 16 и входом блока 19 установлен заграждающий фильтр 17, настроенный на частоту блокинг-генератора.

Конструктивно ферритовые антенны и датчики геоакустических сигналов представляют собой две взаимно ортогональные системы. Оси чувствительности обеих систем расположены параллельно, что позволяет при интерпретации повысить информативность определения динамического состояния горных пород в скважине в интервалах с различной направленностью трещин и других нарушенностей.

Источники информации

1. Фадеев В.А. Аппаратура для регистрации естественного сейсмоакустического и электромагнитного излучения горных пород в скважинах. Сб. научн. тр. Геофизические методы исследования месторождений полезных ископаемых. - Караганда, 1991, с. 45-48.

2. Астраханцев Ю.Г., Троянов А.К. Устройство для проведения геоакустического каротажа. Патент РФ №2445653, GO1V 1/40.

3. Астраханцев Ю.Г., Белоглазова Н.А., Троянов А.К. Устройство для проведения исследований динамического состояния горных пород в скважинах. Патент РФ №2533334, GO1V 1/40, GO1V 11/00, GO1V 3/18.

Устройство для исследования в скважинах динамического состояния горных пород, содержащее ферритовую антенну, три конденсатора, первый коммутатор конденсаторов, первый усилитель, смеситель, фильтр нижних частот, переключаемый генератор, выпрямитель, три взаимно ортогональных датчика акустических сигналов, второй коммутатор, второй усилитель, блок полосовых фильтров, блок выпрямителей, четвертый коммутатор, аналого-цифровой преобразователь, блок передачи, блок гамма-каротажа, отличающееся тем, что в него дополнительно введены две ферритовые антенны, расположенные перпендикулярно оси скважинного прибора так, что образуют взаимно ортогональную систему с первой антенной, направленную параллельно осям чувствительности датчиков геоакустических сигналов, третий коммутатор ферритовых антенн, выход которого подключен к входу первого коммутатора конденсаторов и входу первого усилителя, а также заграждающий фильтр, вход которого подключен к выходу второго усилителя, а выход - к входу блока полосовых фильтров.



 

Похожие патенты:

Данное изобретение относится к области обработки изображений и, в частности, оно ориентировано на устройство, способ и систему для 3D-реконструкции объекта из изображений, генерируемых посредством сканирования объекта на 360°.

Изобретение относится к области нефтегазовых исследований. Способ проведения измерений в связи с нефтегазовыми работами для получения петрофизической, стратиграфической или геофизической информации о подземном пласте, включает сбор данных, относящихся к пласту, на основании измерений с помощью инструмента; формирование представления из данных путем сопоставления глубины исследования с цветовой шкалой, к которой применен алгоритм прозрачности; отображение представления таким образом, что обеспечено визуальное отображение свойства пласта, доступ к устройству хранения данных для сбора данных; обеспечение визуального отображения для интерактивного пользовательского интерфейса; получение входных данных из интерактивного пользовательского интерфейса; обработку входных данных, создание выходного визуального отображения информации с целью выполнения петрофизических, стратиграфических или геофизических определений или формирования каротажных диаграмм одного или более свойств пласта.

Изобретение относится к газодобывающей промышленности. Техническим результатом является повышение эффективности контроля изменения положения газоводяного контакта по площади всего месторождения.

Изобретение относится к области геофизических исследований, а именно для электрического каротажа скважин. Сущность изобретения заключается в том, что каждый из электродов многоканального зонда бокового каротажа оснащен как минимум тремя цилиндрическими токосъемными контактами, равномерно разнесенными относительно друг друга по окружности корпуса.

Изобретение относится к области геофизики и может быть использовано в процессе проведения скважинных электромагнитных исследований. Предложена скважинная телеметрическая система и способ, в которых электроизоляционный материал расположен выше и/или ниже запускающего электрический ток устройства или приемника вдоль скважинной колонны для расширения диапазона телеметрической системы, увеличения скорости телеметрии и/или понижения скважинных требований электропитания.

Изобретение относится к области геофизики и может быть использовано при проведении межскважинной томографии. Представлены способ и система для компенсации неточностей в межскважинной томографии.

Изобретение относится к области геофизики и может быть использовано для получения информации о подземной формации. В некоторых вариантах осуществления способ получения информации о по меньшей мере одной переменной, существующей при целевом местоположении в стволе подземной скважины и/или окружающей подземной формации, включает в себя этапы, на которых доставляют множество генерирующих сигнал устройств в целевое местоположение(я), излучают по меньшей мере один детектируемый сигнал из целевого местоположения и принимают по меньшей мере один такой сигнал.

Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию.

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ.

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор (8), аналого-цифровой преобразователь (9), блок (10) передачи цифрового сигнала, датчик (11) магнитной восприимчивости, измерительная схема (12) магнитометра, аналоговые запоминающие устройства (13, 14), вычитающий усилитель (15), генератор (16) прямоугольного напряжения, ферритовая антенна (17), третий коммутатор (18), три конденсатора (19), второй усилитель (20), смеситель (21), фильтр нижних частот (22), переключаемый генератор (23), выпрямитель (24), блок (25) управления, блок (26) питания.
Изобретение относится к способам дистанционного геотехнического мониторинга линейных сооружений и площадных объектов. Сущность: проводят воздушное лазерное сканирование местности.

Изобретение относится к области геоморфологии и инженерной геологии и может быть использовано для дешифрирования экзогенных геологических процессов и инженерно-геологических условий.

Изобретение относится к области геологии, а именно к прогнозу распределения рапоносных структур с аномально высоким давлением флюидов (АВПД) в геологическом разрезе осадочного чехла платформ и областей их сочленения с краевыми прогибами.

Изобретение относится кобласти геологии и может быть использовано для определения распределения углеводородов в подповерхностной зоне. Раскрыты способ и система историко-геологического моделирования для представления предполагаемого распределения углеводородов, заключенных в подповерхностных клатратах.

Способ вибрационной сейсморазведки включает возбуждение и регистрацию непрерывных сигналов, а также последующую взаимную корреляцию или деконволюцию полученных записей с использованием опорного сигнала, регистрируемого в приповерхностной зоне или в скважине.
Изобретение относится к области гидро- и геоакустики и может быть использовано в транзитной зоне вода-суша в качестве цифровой кабельной антенны для проведения исследований, мониторинга и сейсморазведки месторождений углеводородов в транзитных зонах и обеспечения инженерно-геофизических работ.

Изобретение относится к области геохимии и может быть использовано при проведении геохимических исследований. Предложен способ, позволяющий определить с пространственным разрешением геохимию геологических материалов или других материалов.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ одновременного обращения сейсмических данных полного волнового поля для многочисленных классов параметров физических свойств (например, скорости и анизотропии), включающий в себя вычисление градиента, то есть направления поиска, целевой функции для каждого класса параметров.

Изобретение относится к области геофизических исследований при поиске и разведке на залежи природных углеводородов. Мобильный поисковый метод проведения пассивной низкочастотной сейсморазведки включает в себя расстановку сейсмологических датчиков на дневной поверхности, регистрацию естественных микросейсмических колебаний, получение спектров микросейсмических колебаний, выполнение расчета методом численного моделирования теоретического спектра микросейсм, соответствующих разрезу с отсутствием нефтегазоносности и теоретических спектров микросейсм, соответствующих положению залежи на одном или нескольких исследуемых горизонтах, определение степени совпадения теоретических спектров с измеренными спектрами в каждой точке методами рангового корреляционного анализа, заключение о наличии в каждой точке измерения наличия залежи на исследуемых горизонтах либо об отсутствии залежи на основании коэффициентов корреляции, причем датчики при микросейсмических исследованиях расставляют по профилям одновременной записи с расстоянием между датчиками в профиле 100 метров и общей длине профиля, соответствующим предельной глубине исследования, получают скоростную модель под профилем наблюдения проведением интерферометрической обработки и используют данную скоростную модель для численного расчета теоретических спектров микросейсм.

Изобретение относится к области экологического картографирования и может быть использовано для решения различных природоохранных задач. Сущность: определяют перечень учитываемых объектов: важных компонентов биоты (ВКБ) - экологических групп/подгрупп/видов биоты, особо значимых объектов (ОЗО) и природоохранных территорий (ПОТ).

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на оптоволоконном кабеле.

Изобретение относится к области геофизики и может быть использовано как при каротажных работах, так и для мониторинга динамического состояния горных пород в скважинах. Заявленное устройство содержит следующие элементы: три ферритовых антенны, третий коммутатор ферритовых антенн, первый коммутатор конденсаторов, три конденсатора, первый усилитель, смеситель сигналов, переключаемый генератор, фильтр нижних частот, выпрямитель электромагнитных сигналов, три датчика геоакустических сигналов, второй коммутатор геоакустических сигналов, второй усилитель, заграждающий фильтр, датчик гамма-излучения, блок полосовых фильтров, блок выпрямителей, четвертый коммутатор, аналого-цифровой преобразователь, блок передачи, блок питания, блок управления, каротажный кабель. Технический результат - повышение информативности исследований. 1 ил.

Наверх