Дифференциальный преобразователь "напряжение-ток" с широким диапазоном линейной работы

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения дифференциального преобразователя (ДПНТ) в его выходной ток, в т.ч. в диапазоне высоких частот, повышение верхней граничной частоты (fв) ДПНТ, а также повышение выходного сопротивления (rвых) ДПНТ. Результат достигается за счет организации дополнительного быстродействующего канала передачи входных сигналов. Следствием предложенного схемного решения является снижение погрешностей преобразования, а также повышение коэффициента петлевого усиления по напряжению устройств на основе дифференциального преобразователя, например, операционных усилителей, стабилизаторов напряжения и т.п. 5 з.п. ф-лы, 9 ил.

 

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток.

Преобразователи «напряжение-ток» являются базовым элементов многих электронных устройств, активных RC-фильтров, интеграторов, генераторов, непрерывных стабилизаторов напряжения, операционных усилителей и т.п. В ряде случаев к ним предъявляются повышенные требования по погрешности преобразования входного напряжения (uвх) в выходной ток (iвых), а также по диапазону рабочих частот.

В современной электронике широко применяются входные дифференциальные каскады, обладающие широким диапазоном линейной работы, т.е. обеспечивающие пропорциональность выходного тока и входного напряжения в широком диапазоне амплитуд входных сигналов (до единиц вольт). Данное качество обеспечивается за счет специальной схемотехники ДК [1-23], а также их работы в режиме класса «АВ». Такие ДК являются основой, например, быстродействующих операционных усилителей, «конвейерных» активных RC-фильтров и т.п.

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный преобразователь «напряжение-ток» (ДПНТ), представленный на стр. 205 (рис. 3.78) в справочнике В.И. Эннс, Ю.М. Кобзев. Проектирование аналоговых КМОП-микросхем. - М.: Горячая линия-Телеком. - 2005. - 454 с. Он содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, согласованные с первой 6 шиной источника питания, третий 7 и четвертый 8 противофазные токовые выходы входного дифференциального каскада 1, согласованные со второй 9 шиной источника питания, причем первый 4 токовый выход входного дифференциального каскада 1 синфазен с его третьим 7 токовым выходом, а второй 5 токовый выход входного дифференциального каскада 1 синфазен с его четвертым 8 токовым выходом, первое 10 токовое зеркало, согласованное со второй 9 шиной источника питания, вход которого соединен с третьим 7 токовым выходом входного дифференциального каскада 1, второе 11 токовое зеркало, согласованное с первой 6 шиной источника питания, токовый выход устройства 12, причем входной дифференциальный каскад 1 имеет широкий диапазон линейной работы (диапазон линейного преобразования uвх в токи первого 4, второго 5, третьего 7 и четвертого 8 токовых выходов).

Существенный недостаток известного устройства состоит в том, что оно не обеспечивает высокую статическую точность преобразования входного напряжения (uвх) в выходной ток (iвых), а также характеризуется повышенными погрешностями преобразования входных сигналов в iвых на высоких частотах. Эти недостатки обусловлены свойствами архитектуры ДПНТ-прототипа, которая несимметрична для разных полярностей uвх. Действительно, выходной ток iн известного устройства фиг. 1 зависит от коэффициента усиления по току Ki разного количества токовых зеркал (ТЗ) (для положительной полярности - одним ТЗ, а для отрицательной - двумя ТЗ). Учитывая, что Ki в практических схемах отличается от единицы, это приводит к значительным погрешностям преобразования сигналов положительной и отрицательной полярностей.

Основная задача предлагаемого изобретения состоит в уменьшении погрешности преобразования входного напряжения ДПНТ в его выходной ток, в т.ч. в диапазоне высоких частот.

Первая дополнительная задача - повышение верхней граничной частоты (fв) ДПНТ за счет организации дополнительного быстродействующего канала передачи входных сигналов.

Вторая дополнительная задача - повышение выходного сопротивления (rвых) ДПНТ и, как следствие, снижение погрешностей преобразования, а также повышение коэффициента петлевого усиления по напряжению устройств на его основе, например, операционных усилителей, стабилизаторов напряжения и т.п.

Поставленная задача достигается тем, что в дифференциальном преобразователе «напряжение-ток» фиг. 1, содержащем входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, согласованные с первой 6 шиной источника питания, третий 7 и четвертый 8 противофазные токовые выходы входного дифференциального каскада 1, согласованные со второй 9 шиной источника питания, причем первый 4 токовый выход входного дифференциального каскада 1 синфазен с его третьим 7 токовым выходом, а второй 5 токовый выход входного дифференциального каскада 1 синфазен с его четвертым 8 токовым выходом, первое 10 токовое зеркало, согласованное со второй 9 шиной источника питания, вход которого соединен с третьим 7 токовым выходом входного дифференциального каскада 1, второе 11 токовое зеркало, согласованное с первой 6 шиной источника питания, токовый выход устройства 12, причем входной дифференциальный каскад 1 имеет широкий диапазон линейной работы, предусмотрены новые элементы и связи - в схему введены первый 13 и второй 14 неинвертирующие повторители тока, выходы которых объединены и подключены к токовому выходу устройства 12, вход первого 13 неинвертирующего повторителя тока соединен с выходом второго 11 токового зеркала и вторым 5 токовым выходом входного дифференциального каскада 1, вход второго 14 неинвертирующего повторителя тока соединен с выходом первого 10 токового зеркала и подключен к четвертому 8 токовому выходу входного дифференциального каскада 1, а первый 4 токовый выход входного дифференциального каскада 1 соединен со входом второго 11 токового зеркала.

На чертеже фиг. 1 показана схема ДПНТ-прототипа.

На чертеже фиг. 2 показана схема входного дифференциального каскада 1, который используется в ДПНТ-прототипе.

На чертеже фиг. 3 приведен другой вариант построения входного дифференциального каскада 1 с расширенным диапазоном линейной работы, который широко используется во многих известных преобразователях «напряжение-ток» [1-23].

На чертеже фиг. 4 представлена функциональная схема заявляемого ДПНТ в соответствии с п. 1, п. 2 и п. 3 формулы изобретения.

На чертеже фиг. 5 представлена функциональная схема заявляемого ДПНТ в соответствии с п. 4, а на чертеже фиг. 6 - п. 5 формулы изобретения.

Чертеж фиг. 7 соответствует п.6 формулы изобретения.

На чертеже фиг. 8 приведен пример построения операционного усилителя на основе заявляемого устройства (соответствующего п.5 формулы изобретения).

На чертеже фиг. 9 приведен пример построения операционного усилителя на основе заявляемого устройства фиг. 8 с конкретным выполнением выходного буферного усилителя 32.

Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы фиг. 4 содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, согласованные с первой 6 шиной источника питания, третий 7 и четвертый 8 противофазные токовые выходы входного дифференциального каскада 1, согласованные со второй 9 шиной источника питания, причем первый 4 токовый выход входного дифференциального каскада 1 синфазен с его третьим 7 токовым выходом, а второй 5 токовый выход входного дифференциального каскада 1 синфазен с его четвертым 8 токовым выходом, первое 10 токовое зеркало, согласованное со второй 9 шиной источника питания, вход которого соединен с третьим 7 токовым выходом входного дифференциального каскада 1, второе 11 токовое зеркало, согласованное с первой 6 шиной источника питания, токовый выход устройства 12, причем входной дифференциальный каскад 1 имеет широкий диапазон линейной работы. В схему введены первый 13 и второй 14 неинвертирующие повторители тока, выходы которых объединены и подключены к токовому выходу устройства 12, вход первого 13 неинвертирующего повторителя тока соединен с выходом второго 11 токового зеркала и вторым 5 токовым выходом входного дифференциального каскада 1, вход второго 14 неинвертирующего повторителя тока соединен с выходом первого 10 токового зеркала и подключен к четвертому 8 токовому выходу входного дифференциального каскада 1, а первый 4 токовый выход входного дифференциального каскада 1 соединен со входом второго 11 токового зеркала.

На чертеже фиг. 4, в соответствии с п. 2 формулы изобретения, первый 13 и второй 14 неинвертирующие повторители тока выполнены в виде каскадов с общей базой на транзисторах 15, 16 с цепями установления статического режима в виде источников вспомогательного напряжения 18 и 19. Двухполюсник 17 в схеме фиг. 4 моделирует свойства нагрузки, которая подключается к токовому выходу 12.

На чертеже фиг. 4, в соответствии с п. 3 формулы изобретения, между первой 6 шиной источника питания и входом первого 13 неинвертирующего повторителя тока включен первый 20 дополнительный токостабилизирующий двухполюсник, а между второй 9 шиной источника питания и входом второго 14 неинвертирующего повторителя тока включен второй 21 токостабилизирующий двухполюсник.

На чертеже фиг. 5, в соответствии с п. 4 формулы изобретения, первый 13 и второй 14 неинвертирующие повторители тока выполнены в виде каскадов с общим затвором на транзисторах 22 и 23.

На чертеже фиг. 6, в соответствии с п. 5 формулы изобретения, вход первого 13 неинвертирующего повторителя тока соединен с эмиттером первого 24 дополнительного биполярного транзистора, коллектор которого подключен к первой 6 шине источника питания, база соединена с первой 25 вспомогательной цепью смещения потенциалов, вход второго 14 неинвертирующего повторителя тока соединен с эмиттером второго 26 дополнительного биполярного транзистора, коллектор которого подключен ко второй 9 шине источника питания, а база соединена со второй 27 вспомогательной цепью смещения потенциалов.

На чертеже фиг. 7, в соответствии с п. 6 формулы изобретения, вход первого 13 неинвертирующего повторителя тока соединен с истоком первого 28 дополнительного полевого транзистора, сток которого подключен к первой 6 шине источника питания, затвор соединен с третьей 29 вспомогательной цепью смещения потенциалов, вход второго 14 неинвертирующего повторителя тока соединен с истоком второго 30 дополнительного полевого транзистора, сток которого подключен ко второй 9 шине источника питания, а затвор соединен с четвертой 31 вспомогательной цепью смещения потенциалов.

На чертеже фиг. 8 токовый выход устройства 12 связан со входом дополнительного буферного усилителя 32, имеющего потенциальный выход 33. Устойчивость схемы обеспечивается корректирующим конденсатором 34.

На чертеже фиг. 9 второе 11 токовое зеркало реализовано на транзисторах 35, 36, а первое 10 токовое зеркало содержит транзисторы 37, 38. Выходной буферный усилитель 32 (фиг. 8) содержит входных транзисторы 39, 40 и выходные транзисторы 41, 42. Конденсаторы 43 и 44 моделируют паразитные емкости цепи баз транзисторов 41 и 42. Для повышения быстродействия буферного усилителя введены транзисторы 45 и 46, форсирующие процессы перезаряда паразитных конденсаторов 43 и 44.

Рассмотрим работу схемы фиг. 4.

Статический режим транзисторов 15 и 16 в схеме фиг. 4 устанавливается соответственно первым 20 и вторым 21 токостабилизирующими двухполюсниками. При этом входной дифференциальный каскад 1, а также первое 10 и второе 11 токовые зеркала (при их коэффициенте передачи по току Кi=-1) не влияют на работу первого 13 и второго 14 неинвертирующих повторителей тока на постоянном токе. Это позволяет за счет выбора первого 20 и второго 21 токостабилизирующих двухполюсников устанавливать заданный статический режим первого 13 и второго 14 неинвертирующих повторителей тока, существенно влияющий на частотный диапазон выходной подсхемы заявляемого устройства.

Заявляемое устройство фиг. 4 характеризуется малой выходной проводимостью (повышенным выходным сопротивлением, rвых), т.к.

где - сопротивления коллектор-база транзисторов 15 и 16;

μ15, μ16 - коэффициенты внутренней обратной связи транзисторов 15 и 16 в схеме с общей базой (μ1515=10-3-10-4);

Rэ13, Rэ14 - эквивалентные сопротивления в цепи входов первого 13 и второго 14 неинвертирующих повторителей тока.

Причем

где Ri11, Ri10 - выходные сопротивления соответствующих первого 10 и второго 11 токовых зеркал.

Из последних уравнений (1), (2) следует, что эквивалентное выходное сопротивление заявляемого устройства rвых практически не зависит от выходных сопротивлений первого 10 и второго 11 токовых зеркал. Это объясняется тем, что данная составляющая rвых определяется формулой

В ДПНТ-прототипе

Это является важным достоинством заявляемого ДПНТ, т.к. оно позволяет снизить погрешность преобразования, а в частных случаях получить более высокие значения коэффициента усиления по напряжению, например, в операционных усилителях (фиг. 8, фиг. 9) и, особенно, в тех случаях, которые соответствуют фиг. 5 и фиг. 7.

Приращения токов в цепи токовых выходов первого 4, второго 5, третьего 7 и четвертого 8 токовых выходов входного дифференциального каскада 1 определяются формулами

где - проводимости передачи входного дифференциального напряжения в первый 4, второй 5, а также четвертый 8 и третий 7 токовые выходы входного дифференциального каскада 1.

На основании закона Кирхгофа можно составить следующие уравнения для приращений входных токов первого 13 и второго 14 неинвертирующих повторителей тока

где Ki10 и Ki11 - коэффициенты передачи по току первого 10 и второго 11 токовых зеркал.

Поэтому токи i1(+) и i2(-) практически без изменений передаются на выход устройства 12, образуя ток нагрузки:

где α15≤1 и α16≤1 - коэффициенты передачи по току эмиттера транзисторов 15 и 16. Заметим, что в случае применения полевых транзисторов (фиг. 5, фиг. 7) эти коэффициенты равны единице (α1516=1). Поэтому

Таким образом, заявляемый ДПНТ обеспечивает высокую линейность преобразования входного напряжения в выходной ток устройства, которая определяется свойствами дифференциального каскада 1, а также одинаковым числом применяемых токовых зеркал (10 и 11).

Особенность заявляемого ДПНТ - наличие быстродействующего канала передачи выходного тока входного дифференциального каскада 1 - от второго 5 токового выхода на выход устройства через каскад с общей базой на транзисторе 15, а также от четвертого 8 токового выхода через каскад с общей базой на транзисторе 16. Известно, что такое включение является наиболее быстродействующим и оно способствует повышению верхней граничной частоты fв. Такой быстродействующий канал в ДПНТ-прототипе отсутствует - его высокочастотные свойства определяются инерционностью первого 10 и второго 11 токовых зеркал.

Для исключения нелинейных режимов работы заявляемой схемы предусмотрены соответствующие первый 24 и второй 26 дополнительные биполярные транзисторы (фиг. 6) или первый 28 и второй 30 дополнительные полевые транзисторы (фиг. 7). В статическом режиме данные элементы находятся в отсечке и не влияют на работу схемы. Второй 26 дополнительный биполярный транзистор открывается при положительном приращении входного напряжения и, поэтому, большой ток четвертого 8 токового выхода входного дифференциального каскада 1 замыкается через второй 26 дополнительный биполярный транзистор на вторую 9 шину питания.

Напряжения первой 25 и второй 27 вспомогательных цепей смещения потенциалов ограничивают диапазон изменения потенциала на входах первого 13 и второго 14 неинвертирующих повторителей тока. Если этого не сделать, то входной дифференциальный каскад 1 может войти в нелинейный режим (режим насыщения его выходных транзисторов), что нарушит его работоспособность.

В частном случае напряжения на первой 25 и второй 27 вспомогательных цепях смещения потенциалов могут совпадать с соответствующими напряжениями источников вспомогательных напряжений 18 и 19. Для данного случая изменение потенциалов на входах первого 13 и второго 14 неинвертирующих повторителей тока не будут превышать 1,4 В, что позволяет предотвратить переход в нелинейный режим выходных цепей входного дифференциального каскада 1.

Схемы фиг. 8 и фиг. 9, которые иллюстрируют применение заявляемого ДПНТ, соответствуют включению заявляемого устройства в быстродействующем операционном усилителе (ОУ). Как показывает компьютерное моделирование, благодаря применению разработанного ДПНТ максимальная скорость нарастания выходного напряжения ОУ фиг. 8 (фиг. 9) может достигать 1000-2000 В/мкс (для техпроцесса XFab).

Кроме этого, заявляемый ДПНТ обеспечивает (в сравнении с ДПНТ-прототипом) более высокий коэффициент усиления по напряжению на 20-40 дБ при его применении в схемах операционных усилителей, непрерывных стабилизаторов напряжения и т.п.

За счет организации передачи входного сигнала по высокочастотному (каскодному) каналу на основе схем с общей базой (транзисторы 15, 16) повышается верхняя граничная частота fв.

Таким образом, заявляемый преобразователь «напряжение-ток» имеет существенные преимущества в сравнении с известными устройствами.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 5122759, fig. 8

2. Патент US 5485119

3. Патент US 6437645

4. Патент US 3688538, fig. 1

5. Патент US 6249153, fig. 5

6. Патент US 5374897, fig. 6

7. Патент US 5343164, fig. 3

8. Авт. свид. СССР 1045349, фиг. 1

9. Патент US 4612513, fig. 3

10. Патент US 4783637, fig. 1

11. Патент US 4757273

12. Патент US 4229705

13. Патент US 4357578

14. Патент RU 2277753

15. Патентная заявка US 2006/0061491, fig. 7

16. Патент RU 2248085

17. Патент US 4902984, fig. 4

18. Патент US 6407588

19. Патент US 6486736

20. Патент RU 2292635, fig. 2

21. Патент US 7646243, fig. 1

22. Subhajit Sen and Bosco Leung. A Class-AB High-Speed Low-Power Operational Amplifier in BiCMOS Technology // IEEE Journal of Solid-State Circuits, vol. 31, No. 9, September 1996, pp. 1325-1330

23. H.H. Kuntman and A. Uygur, "New possibilities and trends in circuit design for analog signal processing," 2012 International Conference on Applied Electronics, Pilsen, 2012, pp. 1-9.

1. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы, содержащий входной дифференциальный каскад (1) с первым (2) и вторым (3) входами, первый (4) и второй (5) противофазные токовые выходы входного дифференциального каскада (1), согласованные с первой (6) шиной источника питания, третий (7) и четвертый (8) противофазные токовые выходы входного дифференциального каскада (1), согласованные со второй (9) шиной источника питания, причем первый (4) токовый выход входного дифференциального каскада (1) синфазен с его третьим (7) токовым выходом, а второй (5) токовый выход входного дифференциального каскада (1) синфазен с его четвертым (8) токовым выходом, первое (10) токовое зеркало, согласованное со второй (9) шиной источника питания, вход которого соединен с третьим (7) токовым выходом входного дифференциального каскада (1), второе (11) токовое зеркало, согласованное с первой (6) шиной источника питания, токовый выход устройства (12), причем входной дифференциальный каскад (1) имеет широкий диапазон линейной работы, отличающийся тем, что в схему введены первый (13) и второй (14) неинвертирующие повторители тока, выходы которых объединены и подключены к токовому выходу устройства (12), вход первого (13) неинвертирующего повторителя тока соединен с выходом второго (11) токового зеркала и вторым (5) токовым выходом входного дифференциального каскада (1), вход второго (14) неинвертирующего повторителя тока соединен с выходом первого (10) токового зеркала и подключен к четвертому (8) токовому выходу входного дифференциального каскада (1), а первый (4) токовый выход входного дифференциального каскада (1) соединен со входом второго (11) токового зеркала.

2. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы по п. 1, отличающийся тем, что первый (13) и второй (14) неинвертирующие повторители тока выполнены в виде каскадов с общей базой.

3. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы по п. 1, отличающийся тем, что между первой (6) шиной источника питания и входом первого (13) неинвертирующего повторителя тока включен первый (20) дополнительный токостабилизирующий двухполюсник, а между второй (9) шиной источника питания и входом второго (14) неинвертирующего повторителя тока включен второй (21) токостабилизирующий двухполюсник.

4. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы по п. 1, отличающийся тем, что первый (13) и второй (14) неинвертирующие повторители тока выполнены в виде каскадов с общим затвором.

5. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы по п. 2, отличающийся тем, что вход первого (13) неинвертирующего повторителя тока соединен с эмиттером первого (24) дополнительного биполярного транзистора, коллектор которого подключен к первой (6) шине источника питания, а база соединена с первой (25) вспомогательной цепью смещения потенциалов, вход второго (14) неинвертирующего повторителя тока соединен с эмиттером второго (26) дополнительного биполярного транзистора, коллектор которого подключен ко второй (9) шине источника питания, а база соединена со второй (27) вспомогательной цепью смещения потенциалов.

6. Дифференциальный преобразователь «напряжение-ток» с широким диапазоном линейной работы по п. 4, отличающийся тем, что вход первого (13) неинвертирующего повторителя тока соединен с истоком первого (28) дополнительного полевого транзистора, сток которого подключен к первой (6) шине источника питания, затвор соединен с третьей (29) вспомогательной цепью смещения потенциалов, вход второго (14) неинвертирующего повторителя тока соединен с истоком второго (30) дополнительного полевого транзистора, сток которого подключен ко второй (9) шине источника питания, а затвор соединен с четвертой (31) вспомогательной цепью смещения потенциалов.



 

Похожие патенты:

Изобретение относится к электротехнике. Устройство содержит катушку индуктивности, соединенную последовательно с емкостью, с образованием резонансного контура и прибор для периодического изменения параметров резонансного контура.

Изобретение относится к электротехнике, в частности к устройствам усиления электрических сигналов на основе резонансных преобразователей электрической энергии. Технический результат заключается в увеличении коэффициента усиления и снижении зависимости параметров от величины нагрузки.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве неинвертирующего усилителя переменного тока с коэффициентом передачи по току больше единицы.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в расширении диапазона изменения отрицательного выходного напряжения ОУ до уровня, близкого к напряжению на второй (12) шине источника питания, и повышении коэффициента ослабления входных синфазных сигналов (Кос.сф) ОУ.

Изобретение относится к прецизионным устройствам усиления сигналов. Технический результат заключается в повышении разомкнутого коэффициента усиления по напряжению операционного усилителя.

Изобретение относится к устройствам усиления электрических сигналов на основе резонансных преобразователей электрической энергии. Задачей и техническим результатом является в способе и устройстве увеличение коэффициента усиления и снижение зависимости параметров от величины нагрузки с увеличением добротности резонансных контуров за счет однонаправленной передачи электрической энергии от источника питания к нагрузке, исключения сопротивления нагрузки из электрической цепи, обеспечивающей параметрическое усиление электрических колебаний, и использования энергии электрического поля уединенных емкостей, что приводит к параметрическому изменению емкости в резонансных контурах высоковольтных обмоток трансформаторов Тесла.

Изобретение относится к области электротехники и может использоваться для регулирования обмоток генераторов. Технический результат заключается в повышении коэффициента полезного действия.

Изобретение относится к электронной технике и может быть использовано в устройствах радиолокации. Технический результат заключается в повышении надежности устройства, который достигается за счет того, что в устройство, содержащее ЛБВ, источник питания анода (ИПА), источник питания коллектора (ИПК), источник питания накала (ИПН), источник напряжения отпирания (Uотп), источник напряжения запирания (Uзап), модулятор и диод, причем источники первым выводом соединены с катодом ЛБВ, а вторым выводом соответственно - с замедляющей системой (ЗС), коллектором и накалом ЛБВ и входами модулятора, выход модулятора соединен с анодом диода, катод которого соединен с другим выводом источника напряжения Uотп, введены коммутатор, датчик тока, резистор и второй диод.

Изобретение относится к области электронных приборов СВЧ, в частности к вакуумным усилителям с распределенным взаимодействием. Техническим результатом является снижение входной емкости распределенного усилителя и, как следствие, увеличение верхней границы рабочего диапазона частот, а так же снижение массогабаритных показателей распределенного усилителя.

Изобретение относится к радиотехнике и может быть использовано в радиотехнических установках. Технический результат заключается в увеличении динамического диапазона при усилении сигналов в узком диапазоне частот за счет снижения уровня шумов.

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ на основе трех токовых зеркал с микроамперными статическими токами.

Изобретение относится к устройствам усиления широкополосных сигналов. Технический результат заключается в повышении коэффициента усиления по току ДУТ при сохранении у него опции rail-to-rail.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве неинвертирующего усилителя переменного тока с коэффициентом передачи по току больше единицы.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве неинвертирующего усилителя переменного тока с коэффициентом передачи по току больше единицы.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в расширении диапазона изменения отрицательного выходного напряжения ОУ до уровня, близкого к напряжению на второй (12) шине источника питания, и повышении коэффициента ослабления входных синфазных сигналов (Кос.сф) ОУ.

Изобретение относится к области радиоэлектроники. Технический результат заключается в повышении верхней граничной частоты коэффициента усиления по напряжению без увеличения тока потребления.

Изобретение относится к области электроники и радиотехники. Технический результат: уменьшение коэффициента передачи входного синфазного сигнала.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в уменьшении систематической составляющей напряжения смещения нуля.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: уменьшение систематической составляющей напряжения смещения нуля, а также создание условий для применения в схеме заявляемого устройства КМОП транзисторов.

Изобретение относится к области аналоговой микроэлектроники. Технический результат: повышение быстродействия ОУ в режиме большого сигнала до уровня 20000 В/мкс.

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения дифференциального преобразователя в его выходной ток, в т.ч. в диапазоне высоких частот, повышение верхней граничной частоты ДПНТ, а также повышение выходного сопротивления ДПНТ. Результат достигается за счет организации дополнительного быстродействующего канала передачи входных сигналов. Следствием предложенного схемного решения является снижение погрешностей преобразования, а также повышение коэффициента петлевого усиления по напряжению устройств на основе дифференциального преобразователя, например, операционных усилителей, стабилизаторов напряжения и т.п. 5 з.п. ф-лы, 9 ил.

Наверх