Композиция на основе бактериальной целлюлозы и гиалуроновой кислоты



Владельцы патента RU 2659175:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" (RU)
Общество с ограниченной ответственностью "Генетико-селекционный исследовательский центр "Генология-МГУ" (RU)

Изобретение относится к области медицины и химико-фармацевтической промышленности, а именно к композиции биосовместимого материала, включающей 46-50 мас.% иммобилизированной гиалуроновой кислоты в 1%-ном растворе NaOH, в качестве биополимера – гель-пленку бактериальной целлюлозы в количестве 36-40 мас.% и в качестве сшивающего агента – 20%-ный 1,4-бутандиол-диглицидиловый эфир в 1%-ном растворе NaOH (остальное). Изобретение обеспечивает повышение прочности и биосовместимости подложки с иммобилизованной гиалуроновой кислотой. 1 табл.

 

Изобретение относится к области химико-фармацевтической промышленности, биотехнологии и медицины, а именно к композиции на основе бактериальной целлюлозы и гиалуроновой кислоты и ее применению в различных областях медицины, ветеринарии и косметологии.

Известен способ получения модифицированной гиалуроновой кислоты путем получения гидрогеля в результате реакции гиалуроновой кислоты, имеющей 1-10% гидроксильных групп, дериватизированных путем реакции с дивинилсульфоном (2-(винилсульфонил)этокси) 1-10% гиалуроновой кислотой), с тиольным сшивающим реагентом, имеющим 2-8 тиольных групп (RU 2539395, МПК A61L 27/20, опубл. 10.09.2013).

Известен способ получения композиции на основе модифицированного сополимера гиалуроната натрия и гепарина путем создания поперечных ковалентных связей между гидроксильными группами остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, входящих в состав гиалуроната натрия, и остатков α-D-глюкозамина и уроновой кислоты, относящихся к гепарину, посредством введения активного сшивающего бифункционального агента - (полиэтиленгликоль)диглицидилового эфира (ПЭГДЭ) в щелочной среде (RU 2582702, МПК C08L 5/08, С08В 37/08, C08J 3/075, А61K 31/728, А61К 47/36, А61K 8/73, А61K 9/00, A61L 27/52, опубл. 27.04.2016).

Недостатками известных решений является то, что синтетические полимеры оптимизируются по механическим свойствам и часто не обладают достаточной биосовместимостью, а биополимеры обычно не имеют необходимых механических характеристик. Смешивая биоразлагаемые и биосовместимые материалы полимеры с биологическими макромолекулами, например гиалуроновую кислоту, можно получить композиты с требуемыми физико-химическими и биологическими свойствами.

Известна гемостатическая композиция, включающая желатин и гиалуроновую кислоту (до 10%), не включающая химический сшивающий агент и стабилизированная сухим жаром при температуре от 110 до 200°С. Данная композиция может существовать в форме губки, порошка или хлопьев и содержать по меньшей мере один фактор свертывания крови, буферный агент, противомикробное средство и другие соединения, обладающие биологической активностью (RU 2486921, МПК A61L 15/28, опубл. 27.11.2010).

Наиболее близким по технической сущности к предлагаемому техническому решению является фармакологическое средство, обладающее антимикробным, ранозаживляющим и противовоспалительным действием, которое содержит растворимую гиалуроновую кислоту, а в качестве основы - полиэтиленоксид, дополнительно местноанестезирующее (RU 99117874, МПК А61K 9/06, А61K 31/728, А61K 31/715, А61K 31/137, А61Р 17/00, опубл. 10.06.2001).

Недостатком известной композиции является то, что в качестве основы используется полиэтиленоксид, не являющийся полностью биосовместимым и биодеградируемым с гиалуроновой кислотой, может вызвать аллергические реакции, кроме того полученные композиции не эластичны, имеют форму губки, порошка или хлопьев и из них сложно изготовить подложку или пленку, которые удобнее применять в медицине.

Технический результат предлагаемого технического решения заключается в повышении прочности и биосовместимости подложки с иммобилизованной (пришитой) гиалуроновой кислотой за счет применения биодеградируемой и экологически безопасной бактериальной целлюлозы и 1,4-бутандиол-диглицидилового эфира.

Сущность изобретения заключается в том, что композиция биоcовместимого материала включает иммобилизированную гиалуроновую кислоту в 1%-ном растворе гидроксида (NaOH), в качестве биополимера – гель-пленку бактериальной целлюлозы и в качестве сшивающего агента – 20%-ный 1,4-бутандиол-диглицидиловый эфир в 1%-ном растворе гидроксида натрия (NaOH), при следующем соотношении компонентов, мас. %:

иммобилизированная гиалуроновая
кислота в 1%-ном растворе NaOH 46-50
гель-пленка бактериальной целлюлозы 36-40
20%-ный 1,4-бутандиол-диглицидиловый эфир
в 1%-ном растворе NaOH остальное

Гиалуроновая кислота - природный полисахарид из класса гликозаминогликанов, состоит из повторяющихся единиц D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединенных β - (1→4) - и β - (1→3) гликозидными связями. Гиалуроновая кислота является полианионным полимером с молекулярной массой от нескольких сотен Да до 10 миллионов Да (в среднем 1-2 млн Да) с уникальными физико-химическими и биологическими свойствами.

Гиалуроновая кислота находится в межклеточном матриксе всех высших животных и может быть выделена различными методами из соединительной ткани или получена с помощью продуцирующих гиалуроновой кислоты специальных бактерий.

Бактериальная целлюлоза представляет собой химически чистый внеклеточный продукт, не содержащий лигнина, смол, жиров и восков. По химическому составу бактериальная целлюлоза не отличается от растительной целлюлозы и представляет собой биополимер, мономером которого является ангидро-D-глюкопираноза, соединенная β-1,4-гликозидными связями в линейные неразветвленные спиральные цепи и содержащая три свободные гидроксильные группы у 2-го, 3-го и 6-го атома углерода, содержание которых в неупорядоченных областях у бактериальной целлюлозы составляет 30-42%.

Преимущество бактериальной целлюлозы как основы для биосовместимого материала в том, что кристаллические микрофибриллы, которые она образует, в 100 раз тоньше микрофибрилл растительной целлюлозы. Бактериальная целлюлоза отличается от растительной целлюлозы более высокими показателями кристалличности, набухаемости и гигроскопичности. При этом она обладает высокой удельной площадью поверхности по сравнению с растительной целлюлозой, высокими адсорбционными свойствами, хорошей растяжимостью и прочностью на разрыв. Бактериальную целлюлозу «сшивают» с различными пептидами или другими высокомолекулярными молекулами для формирования определенного терапевтического эффекта.

1,4-бутандиол-диглицидиловый эфир является отличным бифункциональным сшивающим агентом, оказывающим небольшое влияние на механические свойства молекулы, и отличается стойкостью к растворителям.

Способ осуществляют следующим образом. Для получения бактериальной целлюлозы используют штамм Gluconacetobacter sucrofermentans Н - 110 (ВКПМ В-11267), полученный в Мордовском государственном университете им. Н.П. Огарева (RU 2523606, МПК C02F 3/34, C12N 1/14, C12R 1/645, опубл. 27.05.2014).

В табл. 1 показаны свойства композиций.

Культивирование бактерий проводят в статических условиях на среде Шрама Хетрикс (HS) при 28°С. Бактериальную целлюлозу очищают от избытка клеток, промывая 4-5 раз 1Н NaOH с выдержкой 30 мин при 80°С и проводят нейтрализацию избытка щелочи промыванием дистиллированной водой до рН 7. Затем очищенную бактериальную целлюлозу размером 2×4 см, весом 8 мг и толщиной 20 мкм высушивают при комнатной температуре и проводят сшивание гиалуроновой кислоты с бактерицидной целлюлозой. Для этого 8 мг гиалуроновой кислотой растворяют в 10 мл 1%-ного раствора NaOH. Заливают в стаканчик с бактериальной целлюлозой, так чтобы раствор покрывал пленку. Перемешивают раствор в течение 60 мин стерильной лопаточкой, периодически помешивая по 5 мин. Сшивание производят с помощью сшивающего агента 20%-ным BDDE, 3 мл раствора, разведенного в соотношении 1:5 в 1%-ном растворе NaOH, добавляют в стаканчик с бактериальной целлюлозой. Перемешивают раствор стерильной лопаточкой в течение 10 мин. Помещают гель-пленку на водяную баню на 3 часа при 52°С для лучшего протекания реакции сшивки. Об эффективности сшивки судят по интенсивности поглощения на FTIR-ИК спектрах в диапазоне 1075-1000 см-1, свидетельствующей об образовании эфирных связей между компонентами композиции.

По сравнению с известным решением предлагаемое решение позволяет повысить прочность в 4,3-4,8 раз и биосовместимость подложки с иммобилизованной (пришитой) гиалуроновой кислотой за счет применения биодеградируемой и экологически безопасной бактериальной целлюлозы и BDDE.

Композиция биосовместимого материала, включающая иммобилизированную гиалуроновую кислоту в 1%-ном растворе гидроксида натрия (NaOH), в качестве биополимера – гель-пленку бактериальной целлюлозы и в качестве сшивающего агента – 20%-ный 1,4-бутандиол-диглицидиловый эфир в 1%-ном растворе гидроксида натрия (NaOH), при следующем соотношении компонентов, мас. %:

иммобилизированная гиалуроновая кислота в 1%-ном
растворе NaOH 46-50
гель-пленка бактериальной целлюлозы 36-40
20%-ный 1,4-бутандиол-диглицидиловый эфир в 1%-ном
растворе NaOH остальное



 

Похожие патенты:

Изобретение относится к области биохимии. Предложен способ выделения водного раствора глюканов из содержащего глюканы и биомассу водного ферментационного бульона на фильтрационной установке.

Группа изобретений относится к биотехнологии. Штамм Gluconacetobacter intermedius, продуцирующий бактериальную целлюлозу, депонирован в Национальном Институте передовой промышленной науки и технологии (Япония) под регистрационным номером SIID 9587.

Группа изобретений относится к области биохимии. Предложен способ гидролиза лигноцеллюлозной биомассы и гидролизат биомассы, полученный вышеуказанным способом (варианты).

Изобретение относится к биотехнологии, а именно к переработке биомассы. Предложен способ получения фермента.

Изобретение относится к способу получения фибриллированного целлюлозного материала и к фибриллированной целлюлозе. Способ получения фибриллированного целлюлозного материала включает фибриллирование исходного материала на основе целлюлозы с помощью фермента(ов) и усиление фибриллирования путем механического перемешивания, перед фибриллированием исходный материал на основе целлюлозы добавляют в суспензию, содержащую, таким образом, после добавления исходный материал на основе целлюлозы с консистенцией от 10% до 60%, после чего фибриллирование выполняют с применением ферментативной смеси, проявляющей главным образом целлобиогидролазную активность и низкую эндоглюканазную активность, при этом эндоглюканазная активность является достаточной для создания новых концевых групп цепи, в сочетании с механическим перемешиванием без измельчающего действия, и при этом фибриллирование осуществляют в две стадии путем селективного регулирования температуры реакции, при этом на первой стадии выбирают такую температуру реакции, которая позволяет быть активной как целлобиогидролазе, так и эндоглюканазе, и на второй стадии инактивируют эндоглюканазную активность путем повышения температуры реакции.

Группа изобретений относится к области биохимии. Предложен способ получения капсулярного полисахарида Haemophilus influenzae типа b, применение вышеуказанного капсулярного полисахарида для получения вакцинной композиции и способ получения вакцинной композиции.

Изобретение относится к микробиологии, биотехнологии, фармакологии и медицине. Предложено применение физиологического липополисахарида, продуцируемого штаммом фототрофной бактерии Rhodobacter capsulatus ВКМ ИБФМ РАН B-2381Д, в качестве нетоксичного фактора, усиливающего дифференцирующую активность 1α,25-дигидроксивитамина D3 при дифференцировке моноцитоподобных клеток в моноциты.

Изобретение относится к области биохимии. Предложен иммобилизованный биокатализатор для получения бактериальной целлюлозы.

Группа изобретений относится к биотехнологии, в частности к усовершенствованному способу изготовления альгинатного гидрогеля с применением липазы, субстрата, гидролизуемого липазой, альгината и карбоната, высвобождающего двухвалентные катионы.
Изобретение относится к области химии биополимеров. Описан способ получения низкомолекулярного хитозана и олигомеров хитозана методом химической деполимеризации, включающий гидролиз хитозана в присутствии кислоты с последующими фильтрацией, фракционированием, очисткой и сушкой продуктов, отличающийся тем, что гидролиз хитозана проводят 2,5-12,5% разбавленной азотной кислотой при температуре 70°С с последующим разделением гидролизата на две фракции - осадок низкомолекулярного хитозана и маточный раствор, далее из маточного раствора при добавлении изопропилового спирта и охлаждении осаждают олигомеры хитозана, затем оба продукта промывают изопропиловым спиртом и высушивают на воздухе, окончательно продукты деполимеризации хитозана перерастворяют в воде и высушивают лиофильно.

Изобретение относится к биотехнологии, а именно к переработке биомассы. Предложен способ получения фермента.

Изобретение относится к химической промышленности, конкретно, к технологии производства очищенной целлюлозы из льноволокна. Способ производства очищенной целлюлозы из льноволокна включает механическую обработку, жидкостную обработку для разрушения сопутствующих примесей, промывку теплой водой, окислительную обработку щелочным раствором пероксида водорода, содержащим стабилизатор, первую промывку горячей водой, окислительную варку, вторую промывку горячей и теплой водой, отжим на центрифуге, при этом жидкостную обработку для разрушения сопутствующих примесей производят горячей водой при постоянной температуре воды 98-100°C в течение 30 минут, окислительную обработку и варку осуществляют при постоянном значении силикатного модуля и постоянном значении температуры раствора 98-100°C.

Изобретение относится к способу получения наночастиц из полисахаридов и их производных путем специфического окисления полисахаридных цепей и присоединения гидрофобных соединений.

Изобретение относится к области биотехнологии. Предложен способ изготовления корма для животных.

Изобретение относится к области биотехнологии, а именно к переработке биомассы. Предложен способ повышения доступности углеводов, содержащихся в исходном материале биомассы.
Изобретение относится к биотехнологии. Предложены варианты способа переработки биомассы растительного происхождения в переработанную, подходящую для использования в качестве топлива.

Изобретение относится к технологии получения микрокристаллической целлюлозы, применяемой в качестве матрицы или наполнителя для получения нанокомпозитов, нанопорошков, мембран, катализаторов, синтетических полимеров, цеолитов, химических сорбентов, лекарственных препаратов, косметических кремов, эмульсий и красителей, широко используемых в нефтехимической, фармацевтической, пищевой и текстильной и в других отраслях промышленности.

Способ и устройство для изготовления формованных изделий из основного вещества, а именно из целлюлозы, протеинов, полилактидов или крахмала, или смеси этих веществ, которое перемешивают с растворителем для образования формовочного раствора, а затем этот растворитель по меньшей мере частично удаляют из формовочного раствора и подают формовочный раствор в устройство формования.

Изобретение относится к технологии получения целлюлоз, обладающих улучшенными качествами и повышенной реакционной способностью, и может быть использовано при их химической переработке, в том числе готовых партий, для получения нитроцеллюлозы и других продуктов.

Настоящее изобретение относится к способу переработки лигноцеллюлозы и может быть использовано в химической промышленности. Предложенный способ включает подготовку лигноцеллюлозной биомассы, которая содержит первую твердую фракцию, содержащую целлюлозу и лигнин, первую жидкую фракцию; отделение указанной первой твердой фракции от указанной первой жидкой фракции; смешивание указанной первой твердой фракции с водой с образованием суспензии; где указанная суспензия имеет рН от рН 3,0 до рН 4,5; повышение указанного рН указанной суспензии на величину от 0,5 единицы рН до 5,0 единиц рН, чтобы получить суспензию со скорректированным рН; где указанная суспензия со скорректированным рН имеет рН от рН 5,0 до рН 8,0; необязательно, предварительное нагревание указанной суспензии со скорректированным рН до температуры, которая ниже критической точки воды; приведение указанной суспензии со скорректированным рН в контакт с текучим веществом для второй реакции, содержащим сверхкритическое или близкое к сверхкритическому текучее вещество, с получением реакционной смеси, которая содержит вторую твердую фракцию, содержащую лигнин; и вторую жидкую фракцию, содержащую растворимый С6-сахарид, выбранный из группы, состоящей из целлоолигосахаридов, глюкозы, галактозы, маннозы, фруктозы и их смесей; где указанное сверхкритическое или близкое к критическому текучее вещество содержит воду и, необязательно, СО2 при температуре, равной 300°С или выше, и давлении, по меньшей мере достаточно высоком для того, чтобы гарантировать, что все текучее вещество для второй реакции находится в жидкой фазе или сверхкритической фазе; и где указанное приведение указанной суспензии со скорректированным рН в контакт с указанным текучим веществом для второй реакции имеет длительность больше чем 2 секунды; необязательно, снижение температуры указанной реакционной смеси до температуры ниже 280°С; и необязательно, гидролиз указанной второй жидкой фракции с образованием С6-сахарида, выбранного из группы, состоящей из С6-олигосахарида, имеющего звенья с меньшей степенью полимеризации, глюкозы, галактозы, маннозы, фруктозы и их смесей.

Изобретение относится к медицине, в частности к офтальмологии и клинической фармакологии, и может быть использовано для лечения роговично-конъюнктивального ксероза.
Наверх