Ротор торцевой

Изобретение относится к области электромашиностроения. Ротор торцевой содержит вал с проводящим диском и замыкающим магнитопроводом. Замыкающий магнитопровод выполнен в виде основных полых с внутренней резьбой болтов, а также дополнительных болтов, причем между основными и дополнительными болтами установлены немагнитные резьбовые втулки. Изобретение направлено на снижение нагрева болтов. 2 ил.

 

Изобретение относится к области электромашиностроения, а точнее к торцевым электродвигателям синхронного или асинхронного типа, а точнее к их роторам.

Известны роторы торцевых электродвигателей, описанные, например, в книге Москаленко В.В. «Электродвигатели специального назначения» - М.: Энергоиздат, 1981 г. - с. 26. Ротор выполнен в виде диска, на котором располагается, как правило, печатная обмотка, что требует наличия специального оборудования.

Из всех известных аналогов наиболее близок к заявленному ротор, описанный в книге Игнатова В.А., Вильданова К.Я. «Торцевые асинхронные электродвигатели интегрального изготовления» - М.: Энергоиздат, 1988 г. - с. 254. Описан ротор со штампосварной обмоткой, имеющий замыкающий магнитопровод традиционного типа, а в качестве обмоток могут быть использованы фрагменты проводящего диска, например сегменты и секторы. Ротор, естественно, снабжен валом.

Недостатком такого ротора, по сравнению с вышеописанным, является более сложная технология изготовления, включающая не одну операцию (например, травление), а как минимум три - штамповка, прессование и сварка.

Изобретение направлено на совершенствование технологии изготовления роторов, в частности на сокращение расходов на обмоточные работы с сохранением основных электромагнитных характеристик.

Это достигается тем, что в роторе торцевом, содержащем вал с проводящим диском и замыкающим магнитопроводом, согласно изобретению замыкающий магнитопровод выполнен в виде основных полых с внутренней резьбой болтов, а также дополнительных болтов, причем между основными и дополнительными болтами установлены немагнитные резьбовые втулки.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показан фрагмент ротора, вид сбоку, на фиг. 2 - то же, вид сверху.

Ротор содержит проводящий диск 1, основные болты 2 с утопленными головками, замыкающие пластины 3, прижатые гайками 4 основных болтов, а также гайками 5 дополнительных болтов. Основные болты выполнены полыми, с внутренней резьбой, а между основными и дополнительными болтами установлены немагнитные резьбовые втулки 6. Как обычно, ротор имеет вал 7, вращающийся в подшипнике. Внутри втулки ввернут дополнительный болт 8.

В процессе работы вращающееся поле, вводимое через зазор, проникает в ротор по цепи: параллельно по болтам 2 и 8, замыкающим пластинам 3, параллельно по болтам 2 и 8, зазору. В результате в диске 1, выполняющем функции короткозамкнутой обмотки, возникает наведенное поле, которое, взаимодействуя с полем статора, создает вращающий момент, приводящий к вращению ротора. Поскольку магнитный поток разделается параллельно между основными и дополнительными болтами, потери от вихревых токов существенно снижаются.

К технико-экономическим преимуществам ротора следует отнести его высокую технологичность. При этом возможный повышенный нагрев болтов 2 в их несинхронном исполнении с лихвой компенсируется теплоотводом на диск 1 через головки болтов 2.

Ротор торцевой, содержащий вал с проводящим диском и замыкающим магнитопроводом, отличающийся тем, что замыкающий магнитопровод выполнен в виде основных полых с внутренней резьбой болтов, а также дополнительных болтов, причем между основными и дополнительными болтами установлены немагнитные резьбовые втулки.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к ротору синхронной реактивной электрической машины. Технический результат – улучшение пусковых свойств.

Изобретение относится к области электротехники. Технический результат – повышение надежности ротора.

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение кпд на 1-2%, а также снижение потерь в магнитопроводе создаваемыми полями лобовых частей.

Изобретение относится к области электротехники, а именно к электрическим машинам. Технический результат - снижение потерь в стали сердечника и в меди обмотки.

Изобретение относится к области электротехники. Технический результат – улучшение соединения роторного вала и сердечника.

Изобретение относится к области электротехники, в частности к статору электрической машины. Технический результат – улучшении качества изоляции и теплоотвода, повышение технологичности изготовления обмотки.

Группа изобретений относится к машиностроению и может быть использована в линейных электродвигателях. Маховик содержит корпус из немагнитного материала, внутри которого выполнена камера, содержащая магнитную жидкость в коллоидном состоянии.

Изобретение относится к области электротехники. Технический результат – эффективное охлаждение сердечника ротора.

Изобретение относится к ротору электродвигателя. Ротор (3) электродвигателя содержит магнитопровод (4), закрепленные на нем по окружности магниты (5) и провод (6), намотанный соприкасающимися витками на магнитопровод (4) и магниты (5).

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д.
Изобретение относится к электростанциям. Способ получения электрической энергии от наземной электростанции на естественной тяге заключается в том, что наземную электростанцию располагают в сквозном канале, соединенном с привязным летательным аппаратом, в котором используют подъемную силу пара.
Изобретение относится к электростанциям. Электростанция с постоянной тягой от паронагревателя содержит помещение, сквозной канал, турбину, электрогенератор, паронагреватель с электронагревателями и терморегуляторами.

Изобретение относится к системе генерирования электрической энергии для летательного аппарата. Система (20) содержит обтекатель (21), содержащий по меньшей мере одну турбину (22), размещенную в передней части (21a) обтекателя (21), и генератор (23) электрической энергии, соединенный с упомянутой турбиной.

Изобретение относится к ветронасосным установкам. Ветронасосная установка содержит силовую ветротурбину, кинематически связанную через силовой вал и расположенный на нем кривошип переменного радиуса вращения со штангой поршневого насоса, шарнирно присоединенной к пальцу кривошипа, силовой вал имеет сквозное концентрическое отверстие, через которое пропущен вспомогательный вал, одним концом связанный со вспомогательной ветротурбиной, установленной с возможностью вращения на силовом валу, а другим концом - зубчатым зацеплением с шестерней, установленной на промежуточной оси кривошипа, при этом палец кривошипа закреплен на шестерне со смещением относительно ее оси, а синхронная быстроходность вспомогательной ветротурбины равна быстроходности, при которой коэффициент использования энергии ветра силовой ветротурбины имеет максимальное значение.

Изобретение относится к энергетическим установкам, работающим от ветра. Аэровысотная ветроэнергетическая установка состоит из турбинно-генераторного блока, поднятого над поверхностью аэростатной оболочкой положительной плавучести в виде полой горизонтально расположенной двояковыпуклой линзы, соединенной гибкими тросовыми связями с зафиксированными на поверхности лебедками.

Изобретение относится к области теплоэнергетики. Вихревой ветротеплогенератор для нагрева жидкого теплоносителя систем отопления и горячего водоснабжения зданий и сооружений в условиях Арктики, содержащий ортогональный ветродвигатель, преобразователь механической энергии в тепловую энергию в виде мешалки с подвижными лопастями, работающими по принципу регулятора Уатта, тепловой аккумулятор, теплообменник и трубопроводы для циркуляции теплоносителя в системах отопления различных объектов.

Изобретение относится к устройству привязных аэростатных комплексов, предназначенных для подъема ветроэнергетических установок и обеспечения их работы на больших высотах.

Изобретение относится к области ветроэнергетики. Ротор сегментного ветроэлектрогенератора содержит вал, ступицу, П-образные магнитопроводы.

Изобретение относится к области электростанций метрополитена на воздушном потоке. Ротор с лопастями на встречных воздушных потоках от движения электропоездов, установленный между встречными тоннелями метрополитена, содержит вертикальный вал.

Изобретение относится к ветроэнергетике. Ветровая энергетическая станция содержит генератор электрического тока, соединенный посредством вертикального вала с воздушной турбиной, расположенной в воздуховоде, сообщенном с воздухозаборником конфузорного типа, установленным в нижней части станции.

Изобретение относится к области энергомашиностроения. Технический результат направлен на обеспечение максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику. Тепловая энергия от топки, лучистая энергия солнца и т.д. подводятся к теплообменнику и нагревают воздух во внутренней полости теплообменника. Система управления отслеживает величину температуры и давления воздуха в теплообменнике. В момент времени, когда температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускной клапан цилиндра. Максимальная величина давления и температуры воздуха в теплообменнике выбирается из соображения прочностных характеристик материала теплообменника. Воздух из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня. Под действием воздуха поршень начинает движение из исходной точки движения в конечную точку движения. Из компрессорной полости поршня воздух через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор. Магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора. В результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается. Соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии. В момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра. Якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора. В результате поршень движется в исходное для генерирования очередного импульса электроэнергии положение. Отработавший воздух из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в атмосферу, а через обратный клапан цилиндра воздух из атмосферы засасывается в компрессорную полость поршня. Одновременно система управления открывает клапан пневмоаккумулятора и воздух из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха до температуры и давления, при котором температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха. После чего цикл генерирования импульса электроэнергии повторяется. 1 ил.
Наверх