Глобальная многофункциональная инфокоммуникационная спутниковая система

Изобретение относится к области космической связи и может быть использовано для построения эффективной глобальной многофункциональной инфокоммуникационной спутниковой системы. Технический результат состоит в обеспечении глобальности спутниковой связи и передачи данных с использованием космических аппаратов, размещенных на средних круговых орбитах при меньшем количестве космических аппаратов. Для этого система, в составе космического сегмента, содержит орбитальную группировку космических аппаратов на круговых орбитах в нескольких орбитальных плоскостях. Общая полоса частот, предназначенная для абонентских радиолиний, равномерно распределена между орбитальными плоскостями. Земной сегмент содержит станции контроля орбитальной группировки и сопряжения с наземными сетями электросвязи общего пользования. Система содержит множество абонентских терминалов. Орбитальная группировка содержит в своем составе, по меньшей мере, 4 космических аппарата на круговых орбитах высотой от 4000 до 15000 км, в каждой из, по меньшей мере, трех орбитальных плоскостей с наклонением от 45° до 55°. Орбитальные плоскости равномерно разнесены по дуге экватора. 1 з.п. ф-лы, 1 ил.

 

Область техники

Изобретение относится к области космической связи и может быть использовано для построения эффективной глобальной многофункциональной инфокоммуникационной спутниковой системы.

Уровень техники

Известна система связи (Международная заявка №WO20160553390, приоритет от 30.09.2014), включающая в себя созвездие спутников связи на орбите Земли. Каждый спутник связи имеет соответствующую орбитальную траекторию с углом наклона больше 0° и менее 90°по отношению к экватору Земли. Система состоит из двух групп спутников связи, каждая из которых вращается на разных высотах от земли и под разными углами наклона. Однако такая система требует значительного количества спутников, а также больших энергетических затрат на межспутниковую связь, особенно в приполярных районах.

Известна многофункциональная система спутниковой связи (Заявка РФ №2015131692, приоритет от 29.07.2015), включающая в себя орбитальную группировку космических аппаратов на геостационарной и высокоэллиптической орбитах, а также объекты наземного сегмента. Однако большие задержки сигналов ввиду значительных расстояний между спутниками существенно снижают возможности таких систем с точки зрения осуществления голосовой связи.

Известна сеть спутниковой связи Iridium (Европатент № ЕР2999136, приоритет от 17.09.2014), включающая группу спутников, соединенных друг с другом межспутниковыми каналами связи. Каждый из спутников настроен для подключения, по меньшей мере, к одной наземной станции по каналу спутник–Земля с передачей по линии Земля–спутник таблицы маршрутизации для каждого из множества спутников. Каждая таблица маршрутизации содержит список спутников, ведущих к спутнику назначения, по крайней мере, двумя возможными маршрутами с целью обеспечения надежной передачи сигнала при возникновении проблемы на одном из маршрутов. Однако поддержание межспутниковой связи со всеми соседними спутниками, находящимися в разных орбитальных плоскостях, а через них со всеми спутниками системы требует весьма значительных энергетических затрат.

Наиболее близким техническим решением является «Глобальная система спутниковой связи и передачи данных с космическими аппаратами на низкой круговой орбите» (Патент РФ № 2614049, приоритет от 29.10.2014). Система спутниковой связи и передачи данных состоит из орбитальной группировки космических аппаратов с многолучевыми антеннами на низких круговых орбитах, региональных станций для организации связи и обеспечения сопряжения с внешними сетями. Имеющийся частотно-орбитальный ресурс равномерно распределяется между различными орбитальными плоскостями. Основным недостатком такой системы, также как и других систем на низких круговых орбитах является необходимость запуска и поддержания активного существования большого количества космических аппаратов.

Раскрытие изобретения

Технический результат заключается в обеспечении глобальности спутниковой связи и передачи данных с использованием космических аппаратов (КА), размещенных на круговых орбитах, при меньшем количестве космических аппаратов. Технический результат достигается за счет того, что предложена глобальная многофункциональная спутниковая система, в составе космического сегмента, содержащего орбитальную группировку КА на круговых орбитах в нескольких орбитальных плоскостях. Общая полоса частот, предназначенная для абонентских радиолиний, равномерно распределена между орбитальными плоскостями. Земной сегмент содержит станции контроля орбитальной группировки и сопряжения с наземными сетями электросвязи общего пользования. Система содержит множество абонентских терминалов. Орбитальная группировка содержит в своем составе, по меньшей мере, 4 КА, в каждой из, по меньшей мере, трех орбитальных плоскостей с наклонением от 45° до 55°. Высота круговых орбит всех КА одинакова и находится в диапазоне от 4000 до 15000 км. Орбитальные плоскости равномерно разнесены по дуге экватора. Количество орбитальных плоскостей и количество КА определено из расчета обеспечения гарантированного покрытия всей земной поверхности при углах видимости КА над горизонтом не менее 30° для территорий с широтой не более 80° и не менее 15° для территорий с широтой от 80° до 90°. Каждый КА снабжен двусторонними межспутниковыми линиями связи с двумя ближайшими КА в своей орбитальной плоскости, а связь между КА, находящимися в разных орбитальных плоскостях, при необходимости, осуществляется через станции сопряжения, связанные между собой и с внешними сетями высокоскоростными наземными линиями связи. Количество станций сопряжения и их местоположение выбрано из условия, что в каждый момент времени, по крайней мере, один из КА каждой орбитальной плоскости имеет устойчивую радиосвязь с одной из станций сопряжения.

Перечень чертежей

Изобретение иллюстрируется чертежами. На фиг. 1 показана схема расположения спутников в орбитальных плоскостях и зоны их покрытия.

Осуществление изобретения

Спутниковая система функционирует следующим образом. На фиг. 1 показан пример реализации спутниковой системы. Космический сегмент представляет собой спутниковую группировку из 12 КА (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) на круговых орбитах (13, 14, 15) высотой 15000 км, равномерно распределенных в трех орбитальных плоскостях по 4 КА в каждой. КА 1, 2, 3 и 4 в первой орбитальной плоскости 13, КА 5, 6, 7 и 8 во второй орбитальной плоскости 14, КА 9, 10, 11 и 12 в третьей орбитальной плоскости 15. Наземный сегмент показан условно земными станциями 16, связанными между собой и с внешними сетями высокоскоростными наземными линиями связи. Орбитальные плоскости равномерно разнесены по дуге экватора. В общем виде высоты круговых орбит находится в пределах от 4000 км до 15000 км. Границы высоты орбит определены исходя из границ радиационных поясов Земли. Нахождение КА вне радиационных поясов положительно сказывается на сроке активного существования КА, что является одной из важных характеристик спутниковых систем. Угол наклонения орбит в диапазоне 45...55°, как показывают расчеты, обеспечивает покрытие земной поверхности минимальным количеством КА. Так, при высоте орбит в 15000 км 4 КА в каждой из трех орбитальных плоскостей, обеспечивается гарантированное покрытие всей земной поверхности при углах видимости космических аппаратов над горизонтом не менее 30° для территорий с широтой не более 80° и не менее 15° для территорий с широтой от 80° до 90°. Такие параметры системы могут полностью удовлетворить потребности отечественного потребителя. Станции сопряжения связаны между собой и с внешними сетями высокоскоростными наземными линиями связи. Количество станций сопряжения и их местоположение выбрано из условия, что в каждый момент времени, по крайней мере, один из КА каждой орбитальной плоскости имеет устойчивую радиосвязь с одной из станций сопряжения. Если один из КА орбитальной плоскости связан со станцией сопряжения, то остальные КА в этой плоскости не подключаются к станциям сопряжения, даже при наличии прямой видимости этих станций. Трафик в этом случае осуществляется по каналам межспутниковой связи каждой орбитальной плоскости через КА, который связан со станцией сопряжения в данный момент времени. При эстафетной смене КА его роль начинает выполнять другой КА из орбитальной плоскости. Если в зоне радиовидимости земных станций окажутся более одного КА, то в этом случае для связи с Землей будет выбран лишь один КА из аппаратов одной орбитальной плоскости.

Если требуется связь с КА другой орбитальной плоскости, то она осуществляется через станции сопряжения, связанные с одним из КА другой орбитальной плоскости по наземным линиям связи, и по межспутниковой связи другой орбитальной плоскости. Такая организация позволяет существенно экономить энергоресурсы КА группировки. Большую часть времени КА расходует энергоресурсы только на связь с абонентскими терминалами и межспутниковую связь с КА своей орбитальной плоскости, не затрачивая их на энергоемкое взаимодействие с наземными станциями. В определенных случаях высота орбит КА порядка 15000 км может оказаться чрезмерной из-за временных задержек.

Как показывают расчеты, заявленные параметры покрытия земной поверхности можно обеспечить, расположив спутниковую группировку на высоте 8400...8600 км. Но в этом случае в каждой орбитальной плоскости необходимо равномерно разместить по 6 КА. При выборе иных значений высоты количество орбитальных плоскостей и КА в каждой из них, а также количество и расположение земных станций определяется исходя из требуемых параметров покрытия земной поверхности.

1. Глобальная многофункциональная спутниковая система, в составе космического сегмента, содержащего орбитальную группировку космических аппаратов на круговых орбитах в нескольких орбитальных плоскостях, при этом общая полоса частот, предназначенная для абонентских радиолиний, равномерно распределена между орбитальными плоскостями, земного сегмента, содержащего станции контроля орбитальной группировки и сопряжения с наземными сетями электросвязи общего пользования, а также множество абонентских терминалов, отличающаяся тем, что орбитальная группировка содержит в своем составе, по меньшей мере, 4 космических аппарата на круговых орбитах, в каждой из, по меньшей мере, трех орбитальных плоскостей с наклонением от 45° до 55°, равномерно разнесенных по дуге экватора, при этом высота орбит всех космических аппаратов системы одинакова и находится в диапазоне от 4000 до 15000 км, а количество орбитальных плоскостей и количество космических аппаратов определено из расчета обеспечения гарантированного покрытия всей земной поверхности при углах видимости космических аппаратов над горизонтом не менее 30° для территорий с широтой не более 80°, и не менее 15° для территорий с широтой от 80° до 90°, при этом каждый космический аппарат снабжен двусторонними межспутниковыми линиями связи с двумя ближайшими космическими аппаратами в своей орбитальной плоскости, а связь между космическими аппаратами, находящимися в разных орбитальных плоскостях, при необходимости, осуществляется через станции сопряжения, связанные между собой и с внешними сетями высокоскоростными наземными линиями связи, при этом количество станций сопряжения и их местоположение выбрано из условия, что в каждый момент времени, по крайней мере, один из космических аппаратов каждой орбитальной плоскости имеет устойчивую радиосвязь с одной из станций сопряжения.

2. Глобальная многофункциональная спутниковая система по п. 1, отличающаяся тем, что она содержит три орбитальных плоскости с наклонением 50°, в каждой из которых находится по 6 космических аппаратов, а высота орбит космических аппаратов выбрана в диапазоне 8400...8600 км.



 

Похожие патенты:

Изобретение относится к системам спутниковой связи с гибридным орбитальным построением. Технический результат состоит в использовании минимально необходимого количества спутников в системе, обеспечивающей глобальную радиосвязь, включая высокоширотные арктические и антарктические регионы Земли, при минимизации стоимости создания и последующих операционных затрат при эксплуатации системы спутниковой связи.

Изобретение относится к способу передачи данных между терминалом и шлюзом. Технический результат заключается в уменьшении дополнительных издержек, вызванных заголовками при передаче кадров Ethernet между терминалом и шлюзом.

Изобретение относится к способу передачи данных между терминалом и шлюзом. Технический результат заключается в уменьшении дополнительных издержек, вызванных заголовками при передаче кадров Ethernet между терминалом и шлюзом.

Изобретение относится к системе передачи и приемнику сигнала стандарта спутникового формата цифрового телевидения (DVB-S2). Технический результат заключается в обеспечении разделения высокоскоростного цифрового потока типа транспортного потока MPEG (MPEG-TS) на несколько потоков для передачи через спутник по множеству частотных каналов.

Изобретение относится к системе передачи и приемнику сигнала стандарта спутникового формата цифрового телевидения (DVB-S2). Технический результат заключается в обеспечении разделения высокоскоростного цифрового потока типа транспортного потока MPEG (MPEG-TS) на несколько потоков для передачи через спутник по множеству частотных каналов.

Изобретение относится к радиотехнике, а именно к области радионавигации, и может быть использовано при построении приемников Глобальных Навигационных Спутниковых Систем (ГНСС)., Достигаемый технический результат – повышение чувствительности, точности и помехозащищенности мультисистемного приемника ГНСС.

Изобретение относится к области спутникового радиоконтроля и может быть использовано при поиске и локализации земных станций спутниковой связи (ЗССС), являющихся источниками побочных излучений (ИПИ) в стволах с прямой ретрансляцией спутников-ретрансляторов (СР) на геостационарной орбите.

Изобретение относится к спутниковым системам (СС) связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли.

Изобретение относится к системе для переключения электронных связей между первой сетью и второй сетью, где первая сеть содержит одну из сотовой сети мобильной связи или спутниковой сети связи, а вторая сеть содержит другую из указанных сетей связи.

Изобретение относится к радиотехнике и связи и предназначено для определения координат неизвестного источника сигналов на земной поверхности в системах спутниковой связи, работающих через спутники на геостационарной орбите с прямой ретрансляцией сигналов.

Изобретение относится к космической технике, конкретно к области создания и функционирования систем персональной спутниковой связи с применением низкоорбитальных спутников-ретрансляторов. Технический результат состоит в снижении количества жестких эстафетных передач и уменьшении количества возникающих вследствие этого перерывов радиосвязи, ведущих к кратковременным сбоям и потерям информации. Для этого в способе трафик на абонентский терминал осуществляют через спутник-ретранслятор в течение времени, когда соотношения мощности сигнала к мощности шума превышает пороговое значение. Переносят трафик на другой спутник-ретранслятор, когда соотношение мощности сигнала к мощности шума становится ниже порогового значения, а соотношение мощности сигнала к мощности шума от другого спутника-ретранслятора превышает пороговое значение. При наличии двух и более спутников-ретрансляторов в зоне радиовидимости абонентского терминала, определяют соотношения мощности сигнала к мощности шума каждого спутника-ретранслятора. Затем сравнивают полученные значения с пороговым уровнем соотношения мощности сигнала к мощности шума, необходимым для регистрации абонентским терминалом спутника-ретранслятора. Выделяют спутники-ретрансляторы, у которых соотношение мощности сигнала к мощности шума превышает пороговый уровень, затем измеряют значения допплеровских сдвигов частоты пилот-сигналов выделенных спутников-ретрансляторов и отправляют запрос на регистрацию абонентским терминалом спутника-ретранслятора, у которого допплеровский сдвиг частоты пилот-сигнала является наибольшим из всех выделенных спутников-ретрансляторов. 2 ил.

Изобретение относится к системам спутниковой связи, имеющим космический и наземный сегменты и, в частности, к гибридной наземно-космической системе связи с использованием низкоорбитальных группировок космических аппаратов дистанционного зондирования Земли (ОГ КАДЗЗ). Технический результат состоит в повышении технологичности управления и оперативности связи при отсутствии межспутниковых каналов связи и частичном отсутствии наземных каналов связи. Для этого космический сегмент состоит из орбитальной группировки из трех спутников-ретрансляторов (ОГ CP), разнесенных относительно друг друга по геостационарной орбите для покрытия всей территории и акватории России с прилегающими регионами в широтах от 75 градусов южной широты до 75 градусов северной широты и орбитальной группировки космических аппаратов дистанционного зондирования Земли и метеонаблюдения, а также вновь введенных ОГ низкоорбитальных КА связи на круговых орбитах с высотой 1500 км, наклонением 82,5 градуса. 2 ил.

Изобретение относится к средствам спутниковой связи и может быть использовано для организации радиолиний спутниковой связи при работе через стволы ретрансляторов космических аппаратов (КА), находящихся на геостационарной орбите, в диапазоне 4/6 ГГц. Технический результат заключается в создании переносной станции спутниковой связи, работающей в сетях многостанционного доступа с кодовым и частотно-кодовым разделением каналов, обеспечивающей расширение функциональных возможностей по организации сети радиосвязи. Для этого в переносную станцию спутниковой связи дополнительно введены полосовой фильтр приема, полосовой фильтр передачи, сверхвысокочастотный (СВЧ) блок, блок обработки широкополосных сигналов (ШПС), внешний блок интерфейсов, пульт управления станцией, шлемофонная гарнитура, линия связи для приема/передачи сигналов по стыку С1-ФЛ-БИ, линия Еthernet, линия связи для приема/передачи сигналов по стыку RS-232 и соединительная линия (СЛ) от станции АТС, при этом для уменьшения массогабаритных показателей станции и улучшения ее эксплуатационно-технических характеристик антенно-фидерное устройство, полосовые фильтры приема и передачи, малошумящий усилитель и усилитель мощности функционально и конструктивно объединены в антенный модуль, а в аппаратный модуль функционально и конструктивно объединены блок СВЧ, блок усилителей-преобразователей приема и передачи, блок модулятора-демодулятора, каналообразующая аппаратура и блок обработки широкополосных сигналов. 1 ил.
Наверх